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Abstract

Recently, neural architecture search (NAS) has been ex-

ploited to design feature pyramid networks (FPNs) and

achieved promising results for visual object detection. En-

couraged by the success, we propose a novel One-Shot Path

Aggregation Network Architecture Search (OPANAS) al-

gorithm, which significantly improves both searching ef-

ficiency and detection accuracy. Specifically, we first

introduce six heterogeneous information paths to build

our search space, namely top-down, bottom-up, fusing-

splitting, scale-equalizing, skip-connect and none. Sec-

ond, we propose a novel search space of FPNs, in which

each FPN candidate is represented by a densely-connected

directed acyclic graph (each node is a feature pyramid

and each edge is one of the six heterogeneous informa-

tion paths). Third, we propose an efficient one-shot search

method to find the optimal path aggregation architecture;

specifically, we first train a super-net and then find the op-

timal candidate with an evolutionary algorithm. Exper-

imental results demonstrate the efficacy of the proposed

OPANAS for object detection: (1) OPANAS is more ef-

ficient than state-of-the-art methods (e.g., NAS-FPN and

Auto-FPN) at significantly smaller searching cost (e.g., only

4 GPU days on MS-COCO); (2) the optimal architecture

found by OPANAS significantly improves main-stream de-

tectors including RetinaNet, Faster R-CNN and Cascade R-

CNN, by 2.3∼3.2 % mAP compared to their FPN counter-

parts; and (3) a new state-of-the-art accuracy-speed trade-

off (52.2 % mAP at 7.6 FPS) is achieved at smaller training

costs than comparable recent arts. Code will be released at

https://github.com/VDIGPKU/OPANAS.

1. Introduction

Recognizing objects at vastly different scales is one of

the major challenges in computer vision. To address this

*indicates corresponding author.
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Figure 1: Different FPN architectures: (a) FPN [17], (b)

PANet [21], (c) Libra R-CNN [23], (d) SEPC-Neck [28],

(e) BiFPN [25], and (f) our searched optimal FPN.

issue, great progress has been made in designing deep con-

volutional networks in the past few years. Intuitively, di-

rectly extracting feature pyramid [22] from CNN at differ-

ent stages provides an efficient solution. Each level of the

feature pyramid corresponds to a specific scale in the orig-

inal image. However, high-level features are with more se-

mantics while the low-level ones are more content descrip-

tive [31]. Such a semantic gap is unable to deliver strong

features for multi-scale visual recognition tasks (e.g., object

detection, and segmentation). To alleviate the discrepancy,

different feature fusion strategies have been proposed. Fea-

ture Pyramid Network (FPN) [17] is arguably the most pop-

ular basic architecture and inspires many important variants.

It adopts a backbone model, typically designed for image

classification, and builds a top-down information flow by

sequentially combining two adjacent layers in feature hier-

archy in the backbone. By such design, low-level features

are complemented by semantic information from high-level

features. Despite simple and effective, FPN may not be the

optimal architecture design.

Two lines of research have been conducted to advance

FPN-based detection algorithms. On one hand, various

approaches (e.g., PANet [21], BiFPN [25], Libra R-CNN

[23] and SEPC [28]) enrich FPN by aggregating multi-

ple heterogeneous information paths and achieve impres-
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Figure 2: 1. Single-path FPN super-net from SPOS search space [12]. 2. Our OPANAS: (a) super-net training, i.e., the

optimization of super-net weights; (b) optimal sub-net search with an evolutionary algorithm; (c) the searched optimal archi-

tecture. Note that two information paths (skip-connect and none) work only for (b).

sive results. However, as shown in Fig. 1 (a-e), they

only explore aggregations of up to three types of infor-

mation paths, (i.e., top-down and bottom-up [21], top-

down and fusing-splitting [23], and top-down and scale-

equalizing [28]). Moreover, most of these methods follow

a straightforward chain-style aggregation structure, except

BiFPN that adds additional skip-connect on PANet with

several repetitions, but remains in a simple topology. On

the other hand, Neural Architecture Search (NAS)-based

FPN architectures [10, 26, 29] have achieved remarkable

performance gain beyond manually designed architectures,

but with following limitations: (1) inefficiency, the search-

ing processes are often computationally expensive (e.g., 300

TPU days [10]) due to the extremely large search space, and

(2) weak adaptability, their searched architectures are spe-

cialized for certain detector with special training skills (e.g.,

large batch size or longer training schedule).

Inspired by these studies and meanwhile to address

aforementioned issues, we propose a new efficient and ef-

fective NAS framework, named OPANAS (One-Shot Path

Aggregation Neural Architecture Search, see Fig. 2) to

automatically search a better FPN for object detection.

Firstly, we carefully design four parameterized information

paths (top-down, bottom-up, scale-equalizing and fusing-

splitting, see Fig. 3 (a-d)) and two parameter-free ones

(skip-connect and none, see Fig. 3 (e-f)) to build our search

space. Clearly, these six modules introduce different infor-

mation flows, different connections between backbone and

detection head, and lead to complementary and highly inter-

pretable aggregation modules. Note that the four parame-

terized ones are relatively heavy and the two parameter-free

ones are light-weighted, and they work together to achieve

a promising accuracy-efficiency trade-off.

Secondly, to achieve the optimal aggregation of the six

information paths, we propose a novel FPN search space,

in which each FPN candidate is represented by a densely-

connected directed acyclic graph (each node is a feature

pyramid and each edge is a specific one of the six heteroge-

neous information paths as shown in Fig. 3). Notably, our

search space contains richer aggregation topological struc-

tures of FPNs than existing methods as in Fig. 1, and hence

enables richer cross-level and cross-module interactions.

Thirdly, we propose an efficient one-shot search method

to search the optimal FPN architecture, that is, we first train

a super-net and then search the optimal sub-net from the

super-net with an evolutionary algorithm that has strong

global optimum search capability. Experiments show that

our method is efficient as the differentiable NAS methods,

i.e., DARTS [20] and Fair DARTS [5], while the searched

FPN architecture can achieve better detection accuracy with

less parameters and FLOPs. Moreover, following the sim-

ple vanilla training protocol, our searched FPN architec-

ture can consistently improve the detection accuracy of the

main-stream detectors including RetinaNet, Faster R-CNN

and Cascade R-CNN by 2.3∼3.2 mAP, with less parame-

ters and FLOPs. These results demonstrate the efficacy of

the proposed OPANAS for object detection.

Our contributions can be summarized as:

• We carefully design 6 information paths that can ag-

gregate multi-level information, and thus enable the

effective and complementary combination of low-,

medium- and high-level information. To our knowl-

edge, we are the first to investigate the aggregations of

multiple (>3) information paths.

• We propose a novel one-shot method, OPANAS, to ef-

ficiently and effectively search the optimal aggregation

of the 6 kinds of information paths.

• Working as a plug and play module, our searched ar-

chitecture can easily be adapted to main-stream detec-

tors including RetinaNet, Faster R-CNN and Cascade
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Figure 3: The proposed six heterogeneous information paths mapping 4-level pyramid features {P2, P3, P4, P5} to

{F2, F3, F4, F5}. (a)-(d) are parameterized and (e)-(f) are parameter-free.

R-CNN, and significantly improve their detection ac-

curacy by 2.3∼3.2 % mAP. Notably, we achieve a new

state-of-the-art accuracy-speed trade-off (52.2 % mAP

at 7.6 FPS).

2. Related Work

2.1. Object detection

Existing deep learning-based detectors can be briefly

categorized into two streams: one-stage detectors such as

SSD [22] and RetinaNet [18], which utilize CNN directly

to predict the bounding boxes; and two-stage methods such

as Faster R-CNN [24] and Mask R-CNN [13], which gen-

erate the the final detection results after extracting region

proposals upon a region proposal network (RPN). Although

encouraging signs of progress have been made, existing de-

tectors are still suffering from the problems caused by the

scale variation across object instances. The feature pyramid

is popularly used to deal with scale variation [17], which

introduces a top-down information flow.

Beyond FPN, some recent extensions employ two or

three types of information paths. For example, PANet [21]

introduces an extra bottom-up path after the top-down path

of classic FPN [17], and Libra R-CNN [23] adopts Non-

Local module [27] to fuse the features produced by the

classic FPN [17] and then transfers the fused feature into

multi-scale pyramid features. Multi-level FPN [32] first

fuses the backbone features as the base feature and then

introduces multiple U-shape modules to extract multi-level

pyramid features and builds a powerful one-stage detector.

SEPC [28] stacks 4 scale equalizing modules behind clas-

sic FPN to enhance cross-scale correlation. More recently,

BiFPN [25] exploits a simplified architecture of PANet

and stacks it repeatedly with skip-connect to build a more

powerful one-stage detector named EfficientDet. Though

promising results are achieved by EfficientDet, its training

cost is extremely expensive, i.e., large batch-size (128 on

32TPU) with a long training schedule (300 or 500 epochs).

Generally speaking, these FPNs suffer from intrinsic archi-

tecture limitations since they only aggregate at most three

types of information paths with naive topological structure.

2.2. Neural Architecture Search

More recently, neural architecture search (NAS) is ap-

plied to automatically search an FPN architecture for a

specific detector. NAS-FPN [10], NAS-FCOS [26] and

SpineNet [6] use reinforcement learning to control the ar-

chitecture sampling and obtain promising results. SM-

NAS [30] uses evolutionary algorithm and partial order

pruning method to search the optimal combination of dif-

ferent parts of the detectors. The above NAS methods are

effective though can be time-consuming. Auto-FPN [29],

Hit-Detector [11] uses gradient-based method to search the

optimal detector, which can significantly reduce searching

time. However, gradient-based methods tend to trap into lo-

cal minima in certain nodes of super-net during the progress

of optimization and introduce further complexity [12]. Re-

cently, researchers [1, 2, 12] propose one-shot method to

decouple the super-net training and architecture search in

two sequential steps. DetNAS [3] follows this idea to search

an efficient backbone for object detection. One limitation of

the single-path approach is that the search space is restricted

to a sequential structure as shown in Fig. 2.1.

The aforementioned methods take the layer-wise opera-

tions as transform blocks (i.e, single-scale feature as nodes),

which are completely separated from manual design. Such

design forms a large search space which contains archi-

tectures beyond human design, while also includes many

poor-performing architectures, leading to low search effi-

ciency. To reduce the post-processing overhead, we pro-

pose multi-level information path aggregation as our search

space. With the help of carefully designed information
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paths, our search can be efficient and robust.

3. Methodology

In this work, we first propose six types of information

paths, which capture diverse multi-level information. Sec-

ond, to search the optimal aggregations of these information

paths, we introduce an efficient One-Shot Path Aggregation

Network Architecture Search (OPANAS) algorithm. Last,

we detail the optimization and searching process.

3.1. Information Paths

To effectively aggregate different levels of pyramidal

features, we propose 6 information paths, which can cap-

ture low-, medium- and high-level information. Simi-

lar to classic FPN [17], these information paths map the

input pyramidal features {P2, P3, P4, P5} (see Fig. 3) to

{F2, F3, F4, F5}. However, the proposed information paths

can capture much richer and diverse information than FPN,

which will be described as following.

Top-down Information Path The top-down information

path is modified from the classic FPN [17] (Fig. 3 (a)).

For this path, the output pyramidal features (denoted as

F t
2 , F

t
3 , F

t
4 , F

t
5) are sequentially constructed in a top-down

manner, i.e., the smaller scale (high-level, e.g., F t
5) feature

map is constructed first. Specifically, each feature map (F t
i )

is iteratively built by combining input pyramid feature map

of the same level (Pi) and the higher-level output feature

(F t
i+1):

F t
i = W

t
i ⊗ (U(F t

i+1) + Pi), (1)

where U(·) denotes upsampling with factor of 2. For high-

level features (i = 3, 4, 5), Wt
i is the 3 × 3 deformable

convolution filter to alleviate discrepancy of a feature pyra-

mid [28], and W
t
2 is a normal 3× 3 convolution filter.

Bottom-up Information Path For the bottom-up infor-

mation path, the output pyramidal features (denoted as

F b
2 , F

b
3 , F

b
4 , F

b
5 ) are sequentially constructed in a bottom-up

manner, i.e., the large scale (low-level, e.g., F b
2 ) feature map

is constructed first as shown in Fig. 3 (b). Each feature map

(F b
i ) is obtained by merging the input feature maps (Pi) of

the same level, and the output feature map below it (F b
i−1):

F b
i = W

b
i ⊗ (D(F b

i−1) + Pi), (2)

where D(·) denotes downsampling with factor of 2 and W
b
i

is the convolution filter with the same setting as above.

Scale-equalizing Information Path The scale-

equalizing information path is motivated by SEPC [28],

which stacks scale-equalizing pyramid convolutions after

the classic FPN to capture inter-scale correlation. Here

we take a single pyramid convolution operation as an

information path. As shown in Fig. 3 (c), each feature map

(F s
i ) is obtained by merging the adjacent-level input feature

maps (Pi):

F s
i = U(Ws

1 ⊗ Pi+1) +W
s
0 ⊗ Pi +W

s
−1 ⊗ Pi−1, (3)

where W
s
1,W

s
0,W

s
−1 are 3 × 3 deformable convolution

filters and the stride of Ws
−1 is set to 2 to down-sample.

Fusing-splitting Information Path We design a two-step

fusing-splitting information path, which first combines the

high- and low-level input pyramidal features, and then splits

the combined features to multi-scale output features in

Fig. 3 (d). In practice, the highest two input feature maps

are merged into αs, and the lowest two are merged into αl

through an element-wise sum:

αs = P4 + U(P5), αl = D(P2) + P3. (4)

After obtaining the combined features, we fuse them

through concatenation,

βs = W
f
s ⊗ concat(αs,D(αl)),

βl = W
f
l ⊗ concat(U(αs), αl),

(5)

where Wf
s and W

f
l are 3×3 deformable convolution filters,

and concat(·) represents concatenation along the channel

dimension. After these operations, feature maps βs, βl carry

information fused from all level features. Finally, we resize

them into multi-scale pyramid feature maps,

F f
2 = U(βl), F

f
3 = βl;F

f
4 = βs, F

f
5 = D(βs). (6)

Skip-connect Information Path and None Specially, we

add a skip-connect path to perform identity mapping. More-

over, a ‘none’ information path is exploited to remove re-

dundant information paths. These two parameter-free infor-

mation paths are designed to reduce the complexity of the

model, leading to a better accuracy-efficiency trade-off.

3.2. One­Shot Search

We propose a one-shot search method to efficiently and

effectively search the optimal aggregation of the above six

types of information paths. Specifically, we first construct

a super-net A, which is a fully-connected Multigraph DAG

(directed acyclic graph). The node of DAG stands for fea-

ture maps (in the way of a feature pyramid), and there are

six edges of different types between two nodes, and each

edge represents one information path. The whole optimiza-

tion includes two steps: (i) super-net training and (ii) op-

timal sub-net search, as shown in Fig. 2. For (i), we train

the super-net until convergence (optimization of the weights

of the super-net) using a fair sampling strategy detailed in
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Method Backbone Time (fps) FLOPs Params Search Part
Search Cost

mAP
(GPU-day)

NAS-FPN(7@ 256)[10] ResNet50 17.8† 281G 60.3M Neck 333×#TPUs 39.9

DetNAS-FPN-Faster[3] Searched - - - Backbone 44 40.2

Auto-FPN[29] ResNet50 7.7 260G 32.5M Neck & Head 16 40.5

Faster OPA-FPN@64 ResNet50 22.0 123G 29.5M Neck 4 41.9

Auto-FPN[29] X-64x4d-101 5.7 493G 90.0M Neck & Head 16 44.3

SM-NAS[30] Searched 9.3† - - Backbone & Neck & Head 188 45.9

NAS-FCOS(@128-256)[26] X-64x4d-101 - 362G - Neck & Head 28 46.1

Cascade OPA-FPN@160 ResNet50 12.6 326G 60.6M Neck 4 47.0

NAS-FPN(7@ 384)&DropBlock[10] AmoebaNet 3.6† 1126G 166.5M Neck 333×#TPUs 48.3

SP-NAS[15] Searched 2.1† 949G - Backbone & Neck & Head > 26 49.1

EfficientDet-D7 (1536× 1536)[25] EfficientNet-B6 3.8† 325G 51.9M - - 52.2

SpineNet-190[6] SpineNet-190 - 1885G 164.0M Backbone & Neck 700×#TPUs 52.1

Cascade OPA-FPN@160 (1200× 900) Res2Net101-DCN 7.6 432G 80.3M Neck 4 52.2

1 † FPS marked with † are from papers, and all others are measured on the same machine with 1 V100 GPU.

Table 1: Comparison with SOTA methods on COCO test-dev set . Here and after, ‘@c’ denotes the feature channel is

c, e.g., ‘@160’ implies that the feature channel is 160.

Section 3.2.1. The weights of super-net are fixed once this

training is done (one-shot optimization). For (ii), we use

evolutionary algorithm (EA) to search for the optimal sub-

net a∗, which is a DAG with only one optimal edge be-

tween two nodes. Obviously, the optimal sub-net represents

the desired optimal FPN aggregating multiple information

paths. Note that (ii) is very efficient because each sampled

sub-net a just goes through the inference process by using

the weights of the super-net trained in (i). This is the main

reason why one-shot optimization is very efficient.

To detail the optimization process, we first introduce the

components of the super-net. The super-net is a DAG con-

sists of N + 2 nodes (N is a predefined constant value),

where the input node P represents the extracted feature

from the backbone, and the output node O is the final out-

put feature pyramid. Similarly, intermediate nodes xi(i =
1, 2, ..., N) are also feature pyramids. Each directed edge

(i, j) is associated with some information path IP(i, j) that

transforms xi to xj . We assume the intermediate nodes are

fully connected with former nodes, and identity mapped to

the output node through summation. In such DAG model,

each node i ∈ {1, 2, . . . , N} aggregates inputs from previ-

ous nodes, where

xj =
∑

i<j

IP(i, j)(xi). (7)

In this way, OPANAS allows 6N(N+1)/2 possible DAGs

without considering graph isomorphism with N intermedi-

ate nodes. In particular, to maximize the search space with-

out affecting the convergence, we set N = 5, and the total

number of sub-nets is approximately 615 ≈ 1012.

Second, we formulate the super-net training as follow-

ing. The architecture space A is encoded in a super-net,

denoted as N (A,W ), where W stands for the weights of

super-net. Thus, the super-net training can be formulated

as:

WA = argmin
W

Ltrain (N (A,W )). (8)

This super-net training is detailed in Section 3.2.1.

Third, we discuss the optimal sub-net search in (ii). We

aim to search the optimal sub-net a∗ ∈ A that maximizes

the validation accuracy, which can be formulated as:

a∗ = argmax
a∈A

ACCval

(

N (a,WA(a))
)

. (9)

We use an evolutionary algorithm to conduct this optimal

sub-net search as detailed in Section 3.2.2.

3.2.1 Super-net Training

Edge Importance Weighting Unlike the existing One-

Shot method SPOS [12] only having edges between adja-

cent nodes, our OPANAS is densely connected to explore

richer topological structures for aggregation. To adapt to

our multiple paths (edges) optimization, we associate an

edge importance weight to each edge. To guarantee the con-

sistency between training and test, we set these weights to

be continuous. Consequently, each node i ∈ {1, 2, . . . , N}
aggregates weighted inputs from the previous nodes, then

Eq. (7) can be formulated as:

xj =
∑

i<j

γi,jIP(i, j)(xi), (10)

where γi,j denotes the edge importance weight between

node i and j. Concomitantly, the optimization in Eq. (8)

is modified as:

WA = argmin
W,γ

Ltrain (N (A,W, γ)). (11)
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To assist the convergence of model, we add L1 regular-

ization to these edge importance weights with a hyper-

parameter µ to balance with the original bounding box loss.

Thus the total loss function is:

L = Lbbox + µL1

=
∑

(Lcls + Lloc) + µ‖γ‖1.
(12)

Lcls,Lloc are objective functions corresponding to recogni-

tion and localization task respectively.

Fair Sampling Instead of training the whole super-net di-

rectly, we sample K sub-nets per training iteration to reduce

the GPU memory cost. Note that ‘skip-connection’ and

‘none’ are parameter-free and do not require any optimiza-

tion. Hence, they are only considered during the searching

process. Consequently, in super-net training, only K = 4
types of information paths are involved. To alleviate train-

ing unfairness between the K parameterized information

paths, we adopt strict fair sampling strategy [4] in our super-

net training. To be more specific, in the n-th super-net train-

ing step, K sub-nets are sampled with no intersection. That

is, each edge of them is associated with different informa-

tion path, and the weights of the super-net are updated after

accumulating gradients from the K sampled sub-nets. By

this sampling strategy, all information paths are ensured to

be equally sampled and trained within each training step,

and each edge is activated only once within each training

step. Consequently, the expectation and variance of edge

Ei with information path i (i = 0, 1, 2 and 3 correspond to

top-down, bottom-up, scale-equalizing and fusing-splitting,

respectively) are given by,

E(YEi
) = n× PEi

= n/K, Var(YEi
) = 0. (13)

The variance does not change with n, thus fairness is as-

sured at every training step.

3.2.2 Sub-net Search with Evolutionary Algorithm

We conduct the sub-net search with an evolutionary algo-

rithm. Specifically, during the optimal sub-net search in

Fig. 2 (b), we first randomly sample NS sub-nets, each

passes the coarse search, from the super-net and rank their

performance. Note that evaluating a sub-net requires only

inference without training, which makes the search very ef-

ficient. Then we repeatedly generate new sub-nets through

crossover and mutation on top k performing sub-nets. Fol-

lowing an evolutionary algorithm [12], crossover denotes

that two randomly selected sub-nets are crossed to produce

a new one, mutation means a randomly selected sub-net mu-

tates its every edge with probability 0.1 to produce a new

sub-net. In this work, we set population size NS = 50, max

iterations T = 12 and k = 10.

Detector Method FLOPs Params mAP FPS

RetinaNet
Baseline 239G 37.7M 35.7 19.7

SEPC-Neck 314G 45.3M 38.0 15.1

Balanced FPN 240G 38.0M 36.4 18.5

PAFPN 245G 40.1M 35.9 17.8

OPA-FPN@168 207G 36.5M 38.0 18.1

Faster
R-CNN

Baseline 207G 41.5M 36.4 20.6

SEPC-Neck 509G 49.1M 39.0 10.9

Balanced FPN 208G 41.8M 37.2 19.3

PAFPN 232G 45.1M 36.5 19.1

OPA-FPN@112 197G 35.5M 39.6 17.3

Cascade
R-CNN

Baseline 235G 69.2M 40.3 18.1

SEPC-Neck 536G 76.3M 42.6 9.9

Balanced FPN 236G 69.4M 41.2 17.0

PAFPN 259G 72.7M 40.5 16.8

OPA-FPN@120 225G 50.6M 42.8 15.0

Table 2: Comparisons of model adaptability for main-

stream detectors on COCO with FPN [17] (baseline),

SEPC-Neck [28] (stacking 4 scale-equalizing information

paths behind FPN), Balanced FPN [23], PAFPN [21].

4. Experiments

4.1. Implementation Details

4.1.1 Datasets and Evaluation Criteria

We conduct experiments on the COCO [19] and PASCAL

VOC [7] benchmarks. For COCO, the training is conducted

on the 118k training images, and ablation studies are eval-

uated on the 5k minival images. We also report the re-

sults on the 20k images in test-dev for comparison with

state-of-the-art (SOTA). For evaluation, we adopt the met-

rics from the COCO detection evaluation criteria, includ-

ing the mean Average Precisions (mAP) across IoU thresh-

olds ranging from 0.5 to 0.95 at different scales. For PAS-

CAL VOC, training is performed on the union of VOC 2007

trainval and VOC 2012 trainval (10K images) and evalua-

tion is performed on VOC 2007 test (4.9K images), mAP

with an IoU threshold of 0.5 is used for evaluation.

4.1.2 Super-net Training and Sub-net Searching Phase

We consider a total of N = 5 intermediate nodes for super-

net training and optimal sub-net searching. We choose

Faster R-CNN (ResNet50 [14]) as the baseline. During

super-net training, we use input-size 800× 500 and sample

1/5 images from training-set of COCO to further reduce the

search cost. As for PASCAL VOC, the input-size is set to

384× 384. We use SGD optimizer with initial learning rate

0.02, momentum 0.9, and 10−4 as weight decay. We train

super-net for 12 epochs with batch-size of 16. Edge impor-

tance weight γ is initialized as 1, and hyper-parameter µ is

10−4. In total, the whole search phase is completed in 4

days (1 day for super-net training and 3 days for optimal
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Dataset Method Search on FLOPs Params mAP

COCO

Basline [17] - 207 41.5M 38.6

Auto-FPN VOC - 31.3M 38.9

Auto-FPN COCO 260G 32.6M 40.5

OPA-FPN@64 VOC 128G 29.8M 41.5

OPA-FPN@64 COCO 124G 29.8M 41.6

VOC
Basline [17] - 207G 41.2M 79.7

Auto-FPN VOC - 31.2M 81.8

Auto-FPN COCO 256G 32.5M 81.3

OPA-FPN@64 VOC 127G 29.5 M 82.7

OPA-FPN@64 COCO 124G 29.6M 82.5

Table 3: Comparisons of model transferability between dif-

ferent datasets with Auto-FPN [29].

sub-net search) using 1 V100 GPU.

4.1.3 Full Training Phase

In this phase, we fully train the searched model.SGD is per-

formed to train the full model with batch-size of 16. The

initial learning rate is 0.02; 10−4 as weight decay; 0.9 as

momentum. Single-scale training with input 1333×800 size

is trained for 12 epochs, and the learning rate is decreased

by 0.1 at epoch 8 and 11. While multi-scale training (pixel

size=400 ∼ 1400) is trained for 24 epochs with learning

rate decreased by 0.1 at epoch 16 and 22. We use single-

scale training for ablation studies if not specified, and we

compare with SOTA with multi-scale training.

4.2. Results

4.2.1 Comparison with SOTA

The searched optimal architecture by OPANAS, denoted as

OPA-FPN, is illustrated in Fig. 2 (c). It is evaluated to-

gether with state-of-the-art detectors including hand-crafted

[25] and NAS-based ones [30, 10, 26, 6, 29, 3]. Note

that these methods search different components of detec-

tors. Specifically, SM-NAS searches the overall architec-

ture of Cascade R-CNN, NAS-FPN searches the neck ar-

chitecture, and Auto-FPN searches the architectures of both

neck (FPN) and detection head. As shown in Tab. 1, com-

pared with representative results achieved by these SOTA

methods, our method achieves better or very competitive

results in terms of amount of parameters, computation com-

plexity, accuracy, and inference speed. Notably, our method

can search for the best neck architecture more efficiently,

e.g., 4 GPU days on COCO. Specially, our searched OPA-

FPN equipped with Cascade R-CNN Res2Net101-DCN

[9] achieves a new state-of-the-art accuracy-speed trade-

off (52.2 % mAP at 7.6 FPS), outperforming SpineNet (the

SOTA NAS based method) and EfficientDet (based on the

SOTA NAS searched backbone). These results demonstrate

the effectiveness of our carefully designed search space and

the efficiency of the search algorithm.

Method FLOPs Params mAP

Baseline [17] 207G 41.5M 36.4

Top-down 209+0.7%G 41.8+0.5%M 37.5+1.1

Bottom-up 209+0.7%G 41.8+0.5%M 30.0−6.4

Scale-equalizing 234+13.0%G 41.1−0.9%M 32.6−3.8

Fusing-splitting 181
−12.4%G 40.1−3.4%M 37.6+1.2

OPA-FPN@112 197−3.4%G 35.5
−14.5%M 39.6

+3.2

Table 4: Comparisons with the single-information-path

FPN architectures on COCO minival.
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Figure 4: Comparisons of the intermediate results of super-

net training w/ or w/o edge importance weighting. mmAP

denotes the mean mAP of random sampled 50 sub-nets from

the current super-net training epoch.

4.2.2 Model Adaptability for Main-stream Detectors

To further verify the performance of the OPA-FPN on main-

stream detectors, we adapt it to RetinaNet [18], Faster R-

CNN [24] and Cascade R-CNN [8] in Tab. 2. Under the

same training strategy with baseline, we obtain a lighter

model with better performance on each detector: improv-

ing RetinaNet by 2.3% mAP with 13% FLOPs decreasing,

and improving Cascade R-CNN by 2.5% mAP with 27%
parameter amount decreasing. Moreover, comparing with

other hand-craft FPNs, our architecture achieves clearly bet-

ter results in terms of amount of parameters, computation

complexity, accuracy.

4.2.3 Model Transferability Between COCO and VOC

To evaluate the transferability of our architecture on dif-

ferent datasets, we transfer the searched architecture be-

tween COCO and VOC with multi-scale training, as shown

in Tab. 3. With the architecture searched on COCO, our

method boosts the performance by 3.0% mAP for COCO,

2.8% mAP for VOC, respectively. When searched on

VOC, our method boosts the performance by 3.0% mAP

for VOC, 2.9% mAP for COCO, respectively. No matter

which dataset we search on, our architecture performs bet-

ter than Auto-FPN [29] (e.g., 41.6% vs.40.5% in terms of

mAP) with fewer computation cost (e.g., FLOPs 128G vs.

260G). These results further demonstrate the effectiveness

of our method.
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Densely Fair Edge Importance
τ mAP

Connected Sampling Weight

0.4390 38.4

✓ 0.3584 39.2

✓ ✓ 0.5865 39.5

✓ ✓ ✓ 0.6145 39.6

Table 5: Correlation analysis of proposed method.

4.3. Ablation Study

4.3.1 Information Path Aggregation

To demonstrate the effectiveness of aggregating different in-

formation paths in our searched OPA-FPN, we first compare

it with the architectures using single information path in

Tab. 4. We choose the original Faster R-CNN (ResNet50) +

vanilla FPN [17] as the baseline, and we adjust the channel

dimensions of our searched OPA-FPN and detection head,

aiming to align the complexity with the baseline. OPA-

FPN significantly surpasses the baseline and the single-

information-path architectures, with fewer FLOPs/Params

(e.g, FLOPs 197G vs. 207G, Params 35.5M vs. 41.5M),

achieving an effective aggregation and exploration of infor-

mation paths.

4.3.2 Edge Importance Weighting

To verify the effectiveness of the edge importance weight

γ in Eq. (10), we illustrate the intermediate results of train-

ing super-net with fair sampling in Fig. 4, and observe that

the edge importance weighting brings clear benefits for the

training of super-net. These results prove that distinguish-

ing the importance of different edges is effective for densely

connected super-net training.

4.3.3 Correlation Analysis

Recently, the effectiveness of weight sharing-based NAS

methods is questioned because of the lack of (1) fair com-

parison on the same search space and (2) adequate anal-

ysis on the correlation between the super-net performance

and the stand-alone sub-net model performance [12]. Here

we adopt Kendall Tau [16] to measure the correlation of

model ranking obtained from super-net. Specifically, we

randomly sample 15 sub-nets from the trained super-net and

conduct full train to evaluate their performance. In Tab. 5,

when changing from single-path super-net used by SPOS

[12] to our densely connected super-net, there is a drop in

correlation but the detection accuracy increases. However,

by adopting fair sampling and edge importance weight, we

achieve a much higher correlation value, showing that our

method can achieve a higher correlation between super-net

and sub-net with the fair sampling and the proposed edge

importance weighting.

Search

Method

Search time

(GPU days)

FLOPs Params Best mAP of

searched arch

Random 55 231/206G 36.4/35.9M 37.5/39.1

SPOS 4 207G 36.3M 38.4

DARTS 5 198G 37.8M 39.1

FairDarts 4 269G 36.2M 39.4

OPANAS 4 197G 35.5M 39.6

Table 6: Comparisons with more NAS baselines on

COCO minival. The baseline detector is Faster R-CNN

ResNet50, the search space of SPOS is illustrated in Fig.

2.1, and the others all adopt the proposed search space il-

lustrated in Fig. 2.2

4.3.4 Comparisons with More NAS Baselines

We further compare our method with more existing NAS

methods, including a) Random Search: we randomly sam-

ple 15 architectures from the proposed search space and

conduct full training under the same training setting in our

experiments; b) SPOS: we train the single-path one-shot

FPN super-net and perform EA search strategy following

[12]; c) DARTS: a very popular differentiable NAS method

[20]; and d) Fair DARTS: an improved version of DARTS

with softmax relaxation and zero-one loss [15]. As the re-

sults reported in Tab. 6, compared with other NAS methods,

our method can find a better architecture with less or com-

parable time. These results prove the effectiveness of our

super-net training and optimal sub-net search strategy.

5. Conclusion

In this paper, we propose One-Shot Path Aggregation

Network Architecture Search (OPANAS), which consists of

a novel search space and an efficient searching algorithm, to

automatically find an effective FPN architecture for visual

object detection. In particular, we introduce six types (i.e.,

top-down, bottom-up and scale-equalizing, fusing-splitting,

balanced, skip-connect, and none) of information paths as

candidate operations, and exploit densely connected DAG

to represent FPN to aggregate them. An efficient one-

shot search method is further invented to search the opti-

mal FPN, based on the super-net training with fair sampling

and edge importance weighting. Extensive experimental re-

sults demonstrate the superiority of the proposed OPANAS

in both efficiency and effectiveness.
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