
4D Hyperspectral Photoacoustic Data Restoration with Reliability Analysis

Weihang Liao 1,2, Art Subpa-asa2, Yinqiang Zheng3, Imari Sato1,2,3

1Tokyo Institute of Technology, 2National Institute of Informatics, 3The University of Tokyo

liao.w.ac@m.titech.ac.jp, art@nii.ac.jp, yqzheng@ai.u-tokyo.ac.jp, imarik@nii.ac.jp

Abstract

Hyperspectral photoacoustic (HSPA) spectroscopy is an

emerging bi-modal imaging technology that is able to show

the wavelength-dependent absorption distribution of the in-

terior of a 3D volume. However, HSPA devices have to scan

an object exhaustively in the spatial and spectral domains;

and the acquired data tend to suffer from complex noise.

This time-consuming scanning process and noise severely

affects the usability of HSPA. It is therefore critical to exam-

ine the feasibility of 4D HSPA data restoration from an in-

complete and noisy observation. In this work, we present a

data reliability analysis for the depth and spectral domain.

On the basis of this analysis, we explore the inherent data

correlations and develop a restoration algorithm to recover

4D HSPA cubes. Experiments on real data verify that the

proposed method achieves satisfactory restoration results.

1. Introduction

Discovered in 1880 [4], the photoacoustic (PA) effect is

a phenomenon in which materials emit acoustic signals un-

der light irradiation. In the last few decades, photoacous-

tic imaging (PAI) [32] has emerged as a 3D imaging tech-

nology that combines light and ultrasound to form images.

It has the advantages of both optical imaging (high optical

contrast) and ultrasonic imaging (better penetration capa-

bility) [33] and thus is an alternative to X-ray exposure as

a way to visualize the interiors of objects in a noninvasive

manner. PAI uses light as an excitation source and an ultra-

sound sensor to detect sound waves generated by the opti-

cally excited targets. It can be used to analyze the properties

and interior structure of a 3D volume [32, 33, 34, 37].

Thanks to the evolution of wavelength-tunable lasers,

multispectral or hyperspectral photoacoustic (HSPA) imag-

ing techniques have been developed. HSPA irradiates the

material with different wavelengths of light and provides

4D data cubes, e.g. a 3D volume for each wavelength, as

shown in Fig. 1. The amount of light absorbed by the ma-

terial is determined by the spectral absorption coefficient of

Figure 1. 4D HSPA data of leaf (rendering by KURUMI viewer

[1]). The variance at each wavelength is clearly visible.

the material at each wavelength. HSPA has the capability

of providing spectral absorbance information on the interi-

ors of a target material, which support many tasks such as

medical diagnosis, classification, and segmentation. Previ-

ous studies have shown that HSPA is promising in compre-

hensive clinical applications [35, 9, 20, 21].

A typical HSPA system is shown in Fig. 2, where an ob-

ject is scanned by moving a wavelength-tunable laser and

ultrasonic transducer along the surface of the object. There

are two obstacles that severely limit practical use of HSPA:

long acquisition time and complex noise. The data scan-

ning process is time-consuming because it is performed ex-

haustively in the spatial and spectral domains. The abil-

ity to use fewer samples would speed up the data acquisi-

tion. HSPA also suffers from a very low signal to noise

ratio (SNR) when the amount of received incident light is

weak and when the spectral absorption coefficient is low.

Thus, the SNR of HSPA should be adaptively enhanced.

This issue motivated us to devise a method to restore full-

grid, noise-free 4D HSPA data from incomplete and noisy

observations.

In this paper, we first conduct a reliability analysis for

different depths and spectrum wavelengths. Based on the

analysis, we formulate the 4D HSPA restoration task as an

optimization problem. We explore the data correlations, in-
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Figure 2. Scanning-based hyperspectral photoacoustic imaging system, whose scanning process is usually time-consuming.

cluding transform sparsity and local self-similarity, and rep-

resent them into regularization terms. Finally, we develop

a numerical algorithm to reconstruct clear and high-quality

data. Our contributions are summarized as follows:

1. For the first time, we consider the variance of the re-

liability of PA data and perform a depth and spectral

reliability analysis.

2. On the basis of the results of the analysis, we propose

an integral framework for 4D data restoration, in which

data completion and denoising are simultaneously con-

ducted.

2. Related Works

2.1. PA data completion

Various studies have used compressive sensing (CS) the-

ory [11, 8] to complete PA data from a limited number of

measurements and thereby accelerate the data acquisition.

Provost and Lesage [29] proposed to use CS theory instead

of the back-projection algorithm and achieved better perfor-

mance than the simple pseudo-inverse on simulation data.

Guo et al. [14] utilized CS theory to reduce the number of

measurements and tested their method both on simulation

data and in in vivo experiments. Liu et al. [24] used the al-

ternating direction method to further accelerate the calcula-

tion. Arridge et al. [3] combined a model-based spatial sub-

sampling scheme and total variation (TV) regularization to

dramatically increase the acquisition speed. Haltmeier et al.

[15] developed a sparsifying temporal transform and pro-

posed a reconstruction algorithm with low complexity. The

framework proposed in [16] jointly explores the sparsity of

the original PA signal and the second-order derivative. An-

tholzer et al. [2] introduced a deep-learning method to solve

the CS problem on PA data. Their method outperformed the

default CS on simulation data, while it performed compara-

bly to CS on real data due to the lack of training data.

All of the previous studies focused on 3D PA data com-

pletion; thus, they only studied sub-sampling in the spatial

domain. This means there hasn’t been enough research on

4D HSPA.

2.2. PA denoising

Some studies have tried to enhance the SNR or reduce

the noise of 3D PA data. Telenkov and Mandelis [31] pro-

posed to use chirped modulation waveforms to increase the

SNR. Haq et al. [17] utilized K-means singular value de-

composition to eliminate noise; it has been shown to per-

form better than Wiener or wavelet filtering. Zhang et

al. [38] demonstrated that acoustic sub-aperture process-

ing could be used to improve the SNR of PA data. Zhou

et al. [41] proposed a denoising method combining em-

pirical mode decomposition with conditional mutual infor-

mation. There has also been a study on denoising of 4D

multi-spectral PA data. Kazakeviciute et al. [19] treated the

spectral bands as time series; they used an auto regressive

model to estimate the noise and Wiener filter to perform de-

noising. However, they only explored the frontward spec-

trum correlation and ignored the backward correlation, be-

cause the auto regressive model only uses short wavelength

data to predict the noise for long wavelength band.

The variance of the reliability of PA data was not well

studied nor considered in previous works. Here, we pro-

pose a depth/spectral reliability analysis for HSPA data and

enhance the SNR for different parts adaptively.

2.3. Lowrank representation

Low-rank representations have been proved to be effec-

tive in data restoration and are used in many applications.

The key idea is to represent the data in a low-rank form

and recover the underlying low-rank matrix from degraded

observations [26]. Ji et al. [18] proposed to restore video

by exploiting low-rank representations and sparsity. Zhang

et al. [39] used low-rank matrix recovery to remove dif-

ferent kinds of noise and stripes from remote-sensing im-
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ages. Dong et al. [10] proposed to use nonlocal low-rank

regularization to recover MRI images. Fu et al. [12] ex-

plored spectral-spatial correlations via two low-rank terms

and developed a reconstruction algorithm for coding-based

HS imaging systems. Liu et al. [23, 22] proposed a system

combining low-rank representations with CS theory and ob-

tained 3D PA data with low sampling rates. In this study, we

utilize low-rank representations for HSPA restoration.

In summary, most of the previous work focused on

restoration of 3D data, while 4D HSPA restoration is a much

more complicated issue, because: i) the signal amplitude is

smaller due to the low energy conversion efficiency from

light to sound [41]; ii) the observations are not equally re-

liable; it correlates with depth and spectral band; iii) it is

challenging to observe sufficient PA effects from deep lay-

ers and bands with weak absorption. Thus, more constraints

are needed for restoration. Below, we directly process 4D

cubes to explore data correlations in different dimensions in

HSPA.

3. Data Analysis

Let us first analyze the depth and spectral reliability of

HSPA data. Unlike other high-dimensional data, such as

video or hyper-spectral images, HSPA data have a special

feature in which observations on different parts have dis-

similar reliabilities depending on the absorbed light energy.

This reliability correlates with both depth and spectral band;

thus in this section, we discuss how to represent them.

3.1. Depth reliability analysis

During PA imaging, the object is irradiated by a laser

pulse, and the absorbed light is converted into thermal

energy, causing thermoelastic expansion. The expansion

in turn causes a pressure change, which propagates as an

acoustic wave. PAI utilizes ultrasonic transducer to capture

this wave and translates it into an electric signal. The elec-

trical signal is then amplified, digitized, and transformed by

a computer into 3D volumetric data [32, 30].

The intensity of the PA signal is correlated with the

amount of energy absorbed from the incident light. As light

propagates in the material, its energy inevitably becomes

weaker because of scattering and attenuation. Thus, objects

deep inside the material absorb less light energy and conse-

quently have a weaker signal intensity and lower SNR. De-

velopers of PA imaging systems have reported that PA sig-

nal decays linearly with depth for a homogeneous material.

This allows us to represent the depth-dependent PA-signal

reliability by considering the depth of an interior point from

the surface. For a small data patch X d in depth d, its depth-

dependent reliability can be described as

γdep(d) =
I(d)− Imin

Imax − Imin

, (1)

Figure 3. 3D printed objects and PA data. The decay in signal

intensity with depth can be seen.

Figure 4. Comparison of SNRs at different depths and predicted

reliability.

where I(d) is the average signal intensity in X d, and Imax

and Imin are the maximum and minimum intensity of the

whole PA cube, respectively. γdep ∈ [0, 1], where 0 means

a totally unreliable observation and 1 means a most reliable

observation.

We verified the above depth-dependent reliability by ex-

amining the signal intensity of a 3D printed checker object.

The checker pattern is installed at a tilt, covering with an

translucent object, as shown in Fig. 3. It can be clearly ob-

served that the lines in the deeper layer have a weaker sig-

nal intensity and suffer from more noise; the deepest line

at the bottom is almost invisible. We uniformly selected

eight depth layers and calculated their SNRs. Then we com-

pared the SNRs with the proposed γdep, as shown in Fig. 4.

We can see that γdep fits the tendency of the real SNR; this

demonstrates the validity of the proposed depth reliability.

3.2. Spectral reliability analysis

PA imaging can provide spectral absorbance information

on the interiors of target materials. Accordingly, another

factor determining PA signal intensity is the spectral ab-

sorption of the material that determines the amount of light

absorbed by that material. By considering the differences

in PA signal intensities caused by differences in spectral ab-

sorption of the materials in the interior, we can represent

the spectral reliability of the HSPA data captured at each

wavelength length λ as

γspec(λ) = η(λ) · φ(λ), (2)
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Figure 5. Three tubes containing ink, water, and horse blood. PA

images acquired at different wavelengths.

Figure 6. Comparison of SNR and predicted reliability for horse

blood.

where η(·) is the laser emitter output energy function, and

φ(·) is the object’s absorption spectrum. Moreover, as we

did with depth reliability, we perform normalization on

γspec, to make γspec ∈ [0, 1], where 0 means a totally unre-

liable band and 1 means a most reliable band.

We examined the validity of the proposed spectral reli-

ability by measuring a scene consisting of three tubes of

black ink, water, horse blood (Fig. 5). For this experiment,

a laser light from 500 nm to 700 nm was used to irradi-

ate the target scene at 20 nm intervals. We can see that the

water tube is always invisible, because water is transpar-

ent, while the ink has constant light absorption at all wave-

lengths. Thus, the ink was captured in the PA images at all

wavelengths. The blood tube has the strongest intensity at

540 nm, as the blood absorption spectrum has a peak here,

and it is invisible beyond 600 nm. We calculated the SNR

of the horse blood tube in each band and compared them

with the proposed γspec, as shown in Fig. 6. We can see

that the variation in γspec is similar to the tendency of the

real SNR. This demonstrates the validity of the proposed

spectral-reliability measure.

Finally, combining γdep and γspec, we define the total

reliability as:

γ(d, λ) = c1 · γdep(d) · γspec(λ) + c2, (3)

where c1 is the scaler and c2 is the offset.

Figure 7. Overview of the proposed HSPA restoration method.

4. HSPA Data Restoration

First, we formulate the 4D HSPA restoration problem;

then, we explore the data correlation globally and locally

and incorporate the findings in regularization terms for op-

timization. Finally, we develop a numerical algorithm to

solve the optimization problem. The overall framework is

shown in Fig. 7.

4.1. Problem formulation

Consider HSPA data P ∈ R
n1×n2×n3×n4 , where

(n1, n2) is the spatial resolution, n3 is the depth resolution,

and n4 is the spectral resolution. We formulate the degra-

dation as:

O = D(P) +N , (4)

where D(·) is a sub-sampling function, N is additive noise,

O is the observation.

Our target is to restore clear, full-grid data P from a de-

graded observation O. Obviously, this problem is ill-posed

as there are many fewer observations than unknowns, and

many observations are unreliable. To solve the optimiza-

tion problem, we will explore the correlations between data

and formulate them into an objective function.

4.2. Data constraints as regularization

We will explore two data constraints, i.e., global trans-

form sparsity and local self-similarity. First, let us discuss

the transform sparsity constraint. By specifying the spa-

tial location (i, j) and spectral band λ, we can get a 1D

vector pi,j,λ along the depth direction. We call this 1D

vector defined by fixing all indices but one a Fiber. Ac-

cording to the PA imaging mechanism, Fiber is a bipolar

waveform signal [32]. We can always use an appropriate

sparse transform for de-correlation [13]. Thus, we will im-

pose the following constraint: the depth Fiber should be

sparse in a transform domain. Popular sparse transforms in-

clude the Karhunen-Loeve transform (KLT), Fourier trans-

form (FT), discrete cosine transform (DCT), etc. Here, we

will use DCT for simplicity. Mathematically, sparsity can

be achieved by minimizing the l1 norm of the transformed

coefficients:

P̂ = argmin‖Tdct(P)‖1, s.t.‖O −D(P)‖F = 0, (5)
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where Tdct(P) =
∑

i

∑

j

∑

λ dct(pi,j,λ) is the sum of

DCTs of all depth Fibers.

Now, let us examine the local self-similarity constraint:

in a local region, a small patch should have a similar struc-

ture to its neighbor patches. This similarity can be captured

with a low-rank regularization term. Mathematically, we

split the HSPA data P into several non-overlapping small

patches {X 1,X 2, · · · }; the size of each patch is X ∈
R

m1×m2×m3×m4 . We will consider a patch X l at location

l and find the k nearest patches in a neighboring region in

4D space, denoted as {ΩNei(X l)|XN1
,XN2

, · · · ,XNk
}.

Note that we do not split the HSPA data into spatial and

spectral domains; instead, we explore all of the data corre-

lations simultaneously.

We reform the patch X l into a vector xl ∈ R
M , where

M = m1∗m2∗m3∗m4. We perform the same vectorization

on all neighboring patches in ΩNei(X l) and write them as

a matrix Xl ∈ R
M×(k+1), where each row is a vectorized

patch. This matrix has a low-rank structure in rows, because

of the patches’ self-similarity. Thus, we consider a noise

model Xl = Yl + N, where Yl is the desired noise-free

low-rank matrix, and can be recovered as

Ŷl = argmin rank(Yl), s.t.‖Xl −Yl‖F ≤ σ2
N , (6)

where σ2
N is the noise level.

4.3. Numerical algorithm

By writing equation (5), (6) in Lagrange function form

and combining them with equation (4), we obtain the final

objective function:

(P̂ , Ŷ) =argmin‖O −D(P)‖
2
F + α‖Tdct(P)‖1

+
∑

l

[

γ(d, λ)‖Xl −Yl‖
2
F + β · rank(Yl)

]

,

(7)

where α and β are Lagrange multipliers and γ(d, λ) is the

adaptive reliability of each local patch, as defined in sec-

tion 3.2. This objective function contains two parts (global

transform sparsity and local self-similarity), and we solve

them sequentially.

Step 1: for global transform sparsity, we denote Q =
Tdct(P); thus, equation (5) becomes

Q̂ = argmin
1

2
‖O −D(Tidct(Q))‖

2
F +

α

2
‖Q‖1, (8)

where Tidct(·) is the sum of inverse DCTs of all depth

Fibers. Equation (8) is a typical Lasso problem; we solve

it by using the alternating direction method of multipliers

(ADMM) [5]. Consequently, we get the intermediate result

P̃ = Tidct(Q̂).
Step 2: we split P̃ into small patches and calculate the

reliability for each patch based on their depth and spectral

band, as defined in equation (3). We write out the low-rank

matrix and local self-similarity constraint equation for each

patch, as described in the previous sub-section. The rank

term in equation (6) is non-convex and NP-hard; a com-

mon solution is to approximate it using the nuclear norm

[7]. Thus, we rewrite equation (6) as

Ŷ = argmin
1

2
‖X−Y‖

2
F +

β

2γ
‖Y‖

∗
, (9)

where ‖ · ‖
∗

is the nuclear norm. According to [6], equation

(9) can be optimized as

Ŷ = US(Σ,
β

2γ
)V⊤,S(Σ,

β

2γ
) = diag

{

(σX −
β

2γ
)
+

}

,

(10)

where UΣV⊤ is the singular value decomposition of X,

and σX are the singular values. S(·) is the singular value

shrinkage operator, (a)+ = max(0, a).

Step 3:, we reconstruct clear small patches X̂ from Ŷ

and combine them to form the final restoration result P̂ .

5. Experimental Results

First, we will describe the dataset used in the exper-

iments and the reference for the performance evaluation.

Then, we will present qualitative and quantitative results on

the proposed restoration method and verify the depth and

spectral reliabilities.

5.1. Data set

Our dataset consists of two types of data: 4D HSPA data

and high-resolution blood vessel PA data. The HSPA data

include ’Leaf’, ’Tube’, and ’Banana’. They were captured

using a photoacoustic microscope machine (ADVANTEST,

HadatomoTM Z WEL5200) connected to a wavelength tun-

able laser emitter (Japan Laser, Opolette HR 355). We mea-

sured a 6 mm2 area with a 30 µm scanning interval over

1280 time steps. The resulting 4D volumetric data had a res-

olution of 200×200×1280× bands. For Leaf and Banana,

we uniformly measured 9 bands ranging from 420 nm to

580 nm. For Tube, we uniformly measured 11 bands rang-

ing from 500 nm to 700 nm. The entire HSPA data are

shown in the supplementary material.

The blood vessel PA data consisted of ’Hand’ and ’Leg’.

They were captured by the PAI-05 system proposed in

[28]. The blood vessel PA is provided at a higher resolu-

tion for large body parts by fusing several PA data. Be-

cause of scanning time limitations, ’Hand’ and ’Leg’ con-

sist of only single-band PA data. The wavelength of the

incident light was 797 nm, which is the isosbestic point

of oxyhemoglobin and de-oxygenated hemoglobin [28].

The full resolution is 2480 × 1760 × 160 for Hand, and

2176× 1440× 256 for Leg.
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5.2. Evaluation reference

The major challenge of evaluating the performance of PA

restoration algorithms is the lack of a reliable baseline. The

original data contains noise, and typical techniques such as

averaging over multiple shots are difficult to perform be-

cause of mechanical misalignment between shots. Thus we

first acquire a noise-removed full-grid data by considering

local self-similarity and data reliability. This clear data will

be later used as a reference in the following evaluations.

Here we examined the validity of noise-removed full-

grid reference using a simple scene consisting of a single

opaque plane. In this care, only a point (x, y, z) on the

plane should exhibit a strong PA signal. From this, we fit-

ted a plane by applying the least squares method and cal-

culated the ground-truth surface locations (x, y, z)gt. Then

we compared locations of maximum intensity points from

the original noisy observation and our reference data with

(x, y, z)gt. We captured an opaque plane with five different

orientations. The average sum of squares of errors (SSE)

for the noisy observations was 114.9421, while the average

SSE for our reference was only 2.7237, which demonstrates

the validity of our reference data. The full error matrices for

each orientation are in the supplementary material.

5.3. Performance evaluation and comparison

We quantitatively and qualitatively evaluated i) the over-

all performance of our method, ii) the effectiveness of depth

reliability, and iii) the effectiveness of spectral reliability.

For the quantitative evaluation, the most widely used

metrics are the peak signal-to-noise ratio (PSNR) and struc-

tural similarity (SSIM) [36]. These metrics were originally

designed for 2D gray-scale images, while the PA data has

more dimensions and contains negative values. Thus, we

applied a Hilbert transform and re-scaled the PA data to [0,

255]; then, we calculated the quality metrics on each 2D

slice by fixing the depth and spectral band. We used the av-

erage value among all slices for the evaluation; larger num-

bers indicate better restoration quality.

5.3.1 Restoration method evaluation

We verified our methods on incomplete and noisy observa-

tions, which were randomly sub-sampled from the original

data. We evaluated the restoration quality against those of

other approaches, including the default compressive sens-

ing (CS) algorithm, CS with a Wiener filter (CS + Wiener),

and CS with partially known support (CS-PKS) algorithm

[27]. We also compared with sophisticated restoration tech-

niques that are not originally developed for PA data, includ-

ing BM4D[25] and SMF-LRTC[40]. The visualizations for

restoration results are shown in Fig. 8 (visualizations of

Tube and Banana are in the supplementary material). We

visualize a part of original data (480 nm for Leaf, palm for

Hand, ankle for Leg) in (a), and show 2D slices for refer-

ence data and different approaches in (b-g). The quantita-

tive metrics are listed in Table 1, the results show that our

method outperforms the others with or without reliability.

The default CS result is very noisy and has the lowest

PSNR and SSIM. This is because CS utilizes the basis pur-

suit algorithm as the solver, which doesn’t take noise into

consideration. CS + Wiener, CS + BM4D, and SMF-LRTC

outperformed default CS, but still had obvious defects. CS-

PKS over-smoothed the edge and lost some details, because

of the total variation term in the objective function, which

optimizes the global smoothness in the spatial domain. Our

method produced a noise-free and detailed restoration; the

visual quality was close to that of the reference data. Quan-

titatively, our method had the highest PSNR and SSIM for

almost all data and all sampling ratios. This is because our

method does not split the high-dimensional PA data into

spatial and depth domains; instead it allowed all of the data

correlations to be explored simultaneously.

We further visualize the restoration result of our method

on other portions of Hand data, as shown in Fig. 9. A satis-

factory and stable restoration performance can be observed

for them.

5.3.2 Depth reliability verification

We verified the depth reliability by observing two differ-

ent depth layers of Hand and Leg, as shown in Fig. 10,

where the first row shows a shallow layer and the second

row shows a deep layer. The reference data, restoration re-

sults with reliability (marked in red), and results without

reliability (marked in green) are in columns (a), (b), (d) and

(e), respectively. Utilizing the reference data as a baseline,

we calculated the absolute error map of the results with and

without reliability, as shown in column (c) and (f). It can

be seen that for the shallow layer, the results with and with-

out reliability have similar restoration quality. On the other

hand, for the deep layer where the signal intensity is low, re-

liability obviously improves the performance. These results

demonstrate the effectiveness of depth reliability.

5.3.3 Spectral reliability verification

The PSNR and SSIM results across all spectral bands are

plotted in Fig. 11. For Banana, our method achieve a sim-

ilar degree of improvement across all bands, as the data

has strong signal intensity due to the consistent high ab-

sorptions. For Leaf in wavelengths with high absorptions

(420 to 480 nm), our method produces a marginal improve-

ment over other approaches. On the other hand, for wave-

lengths with low absorptions (500 to 580 nm), the data have

much lower signal intensity. Our method with reliability has

higher PSNR, because it adaptively adjusts the optimization
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Figure 8. The visualization of restoration results by different methods on 50% sampled data.

Table 1. The quantitative results for different methods
Sample

Method
Leaf Tube Banana Hand - palm Leg - ankle

Ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.7

default CS 31.78 0.1480 31.18 0.1130 34.80 0.1838 37.46 0.2119 39.48 0.3173

CS + Wiener 36.38 0.2366 38.63 0.1885 35.35 0.2130 40.44 0.2559 42.33 0.3646

CS + BM4D 37.68 0.2204 39.02 0.1465 36.11 0.2534 41.23 0.2701 43.20 0.3846

CS-PKS 35.84 0.1650 37.73 0.0877 35.79 0.2925 40.10 0.2577 41.98 0.3721

SMF-LRTC 32.51 0.1713 31.60 0.1333 37.36 0.2400 37.76 0.2138 39.86 0.3222

Ours w/o reliab. 37.77 0.5094 38.92 0.4604 39.27 0.4081 42.94 0.2909 45.84 0.4398

Ours w/ reliab. 44.35 0.5528 45.86 0.4989 42.75 0.8129 53.01 0.9695 55.97 0.9784

0.5

default CS 31.58 0.1277 31.71 0.0909 32.27 0.1277 37.47 0.2094 39.43 0.3123

CS + Wiener 35.50 0.1971 38.92 0.1508 31.83 0.1383 39.93 0.2532 41.77 0.3584

CS + BM4D 36.51 0.1902 39.45 0.1231 32.06 0.1500 40.91 0.2769 42.82 0.3856

CS-PKS 34.92 0.1425 38.63 0.0760 34.57 0.2622 39.57 0.2534 41.33 0.3612

SMF-LRTC 32.84 0.1626 32.43 0.1254 37.24 0.2307 38.08 0.2145 40.26 0.3253

Ours w/o reliab. 36.63 0.3840 38.93 0.3273 37.15 0.3855 42.72 0.3013 45.25 0.4437

Ours w/ reliab. 40.13 0.4148 43.33 0.3577 38.45 0.6523 46.75 0.8856 49.19 0.9033

0.3

default CS 31.13 0.0889 32.35 0.0630 29.54 0.0691 36.75 0.1891 38.58 0.2797

CS + Wiener 34.03 0.1419 38.66 0.1015 29.03 0.0714 38.36 0.2335 40.08 0.3226

CS + BM4D 34.82 0.1418 39.35 0.0889 29.23 0.0858 39.05 0.2642 40.89 0.3564

CS-PKS 32.94 0.1049 38.64 0.0581 32.50 0.2037 37.28 0.2002 39.05 0.2910

SMF-LRTC 32.99 0.1476 33.62 0.1152 36.55 0.2117 38.17 0.2110 40.49 0.3238

Ours w/o reliab. 35.02 0.2682 38.82 0.2155 34.66 0.3254 40.69 0.3056 42.73 0.4295

Ours w/ reliab. 35.99 0.2870 40.41 0.2398 34.79 0.4379 41.13 0.6879 43.51 0.7101

weight according to the reliability of the prior knowledge.

This result verifies the effectiveness of spectral reliability.

6. Conclusions

We studied the hyperspectral photoacoustic (HSPA) data

restoration problem. We discussed the variance in reliabil-

ity at different depths and in different spectral bands. On the

basis of the reliability analysis, we proposed a framework to

reconstruct clear, high-quality HSPA data from incomplete,

noisy observations. The correlations of the data in different

dimensions can be explored simultaneously by using low-

rank representations and sparsity regularization. We veri-

fied our method on captured HSPA data and blood vessel
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Figure 9. The visualization of restoration results for different portions of 50% sampled Hand data.

Figure 10. Results of restoration on 50% sampled data at different depths (Hand and Leg). The results with reliability are marked in red,

and results without reliability are marked in green.

Figure 11. Quality of restoration on 50% sampled data across spectral bands (Leaf and Banana).

PA data. The results show that our method has satisfactory

restoration performance.
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