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Figure 1: A bare-bones capture setup (left) consisting of only an iPhone, a flashlight and a sweet potato. The user captures a few images

(with voice control) of the object by moving around with a flashlight directed at the object. We then reconstruct surface normal, albedo and

roughness at high-resolution (1024×1024). Normals are integrated to create a mesh that is rendered with novel views and illuminations.

Abstract

In this paper, we present a technique for estimating the

geometry and reflectance of objects using only a camera,

flashlight, and optionally a tripod. We propose a simple

data capture technique in which the user goes around the

object, illuminating it with a flashlight and capturing only a

few images.Our main technical contribution is the introduc-

tion of a recursive neural architecture, which can predict

geometry and reflectance at 2k × 2k resolution given an in-

put image at 2k×2k and estimated geometry and reflectance

from the previous step at 2k−1
×2k−1. This recursive archi-

tecture, termed RecNet, is trained with 256×256 resolution

but can easily operate on 1024×1024 images during infer-

ence. We show that our method produces more accurate

surface normal and albedo, especially in regions of specu-

lar highlights and cast shadows, compared to previous ap-

proaches, given three or fewer input images.

1. Introduction

Capturing an object’s shape and material is a long-

studied problem in Computer Vision and Graphics, with a

broad range of applications such as Augmented and Virtual

Reality. With the rise of e-commerce, it is now even more

important to develop a system that allows sellers to capture

3D shape and material of their product with relative ease. It

can also be extremely useful for digital artists who can use

captured 3D objects as a starting point for their models.

In this work, we present a system where the shape and

reflectance of an object can be captured by a user with ev-

eryday household items. We propose a capture setup that

requires a camera, flashlight, and ideally a tripod. The user

can capture one or multiple images of an object by illu-

minating the object with a flashlight from multiple direc-

tions. This relatively straight-forward data capture setup

provides us with important photometric cues necessary for

high-quality reconstruction.

High quality object geometry can be recovered using a

large number of images either from different views (Multi-

View Stereo) [48, 67, 68], or from different lighting vari-

ations (Photometric Stereo) [10, 13, 15] . Our work

falls in the category of both Photometric Stereo (PS) and

Shape-from-Shading (SfS). PS techniques generally require

a light-stage setup in a dark room to capture an object. Al-

though these techniques often produce high-quality recon-

struction given a large enough number of images, it is ex-

tremely difficult to create such a capture setup at home. On

the other hand, single image based methods have shown

success in capturing geometry and material using a cam-

era with co-directional flash [37], often with an extra image

without the flash [7]. However, these approaches rely on
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priors learned from synthetic data with limited generaliza-

tion to real data, especially with slight variation in capture

setup. In this work, we aim to meet reconstruction quality

and ease of capture in the middle. We propose to capture

only a few images (at most six) of the object from approx-

imately known lighting directions in a weakly calibrated

fashion to achieve satisfactory reconstruction quality.

We introduce a novel, recursive architecture, RecNet,

that is capable of predicting normal, albedo and rough-

ness at high resolution. This allows our approach to create

a high-quality reconstruction with fine details. RecNet is

trained to predict normal, albedo and roughness at 2k × 2k

resolution given an input image at 2k × 2k and predicted

normal, albedo and roughness from the a previous iteration

at 2k−1
× 2k−1. We parameterize shape with surface nor-

mal and reflectance with albedo and roughness following

the Cook-Torrance model. RecNet is trained with resolu-

tions between 64×64 and 256×256, but can then be ap-

plied to images of arbitrary resolution. To start this recur-

sive process off, we use a small network, InitNet, that takes

in the image at 32×32 and estimates the normals, albedo,

and roughness at the same resolution. We demonstrate that

RecNet produces high-quality results for 1024×1024 im-

ages, yielding a mesh with enough vertices to capture fine

detail.

An alternative approach is to train at the same resolu-

tion as inference. However, training on higher resolution

input offers its own unique challenges; it requires high-

quality synthetic data and a very deep convolutional net-

work. This would necessitate large amounts of GPU mem-

ory and training time, making it extremely difficult if not

impossible. Thus PS techniques that require a large num-

ber of images (50-100) often train on pixels or patches

[62, 27, 41, 10, 13, 15], but they do not perform well when

using a small number of images. Most previous single im-

age techniques can only be run at 256× 256 [37, 7]. This is

because photometric cues from a single image are not suf-

ficient to determine normals using local information alone,

and the global priors the network learns from 256×256 data

do not transfer well to higher resolution. A network trained

on lower resolution, when applied to higher resolutions ef-

fectively shrinks its receptive field, implicitly assuming that

the normals are conditionally independent of the rest of the

image, preventing it from capturing global context. In con-

trast, we assume that normals at higher resolution depend on

the normals at lower resolution within the receptive field via

our recursive architecture, RecNet. Normals at lower reso-

lution reflect larger global context with the same receptive

field and thus help our network to reconstruct better shape

and reflectance utilizing the global context.

Our network can also handle anywhere from one to six

images. When multiple images are used, we compare with

a current state-of-the-art PS technique, SDPS-Net [10], and

when a single image is used as input, we compare with

[37, 7], which assume flash-light co-directional with the

camera. We predict higher quality surface normals com-

pared to SDPS-Net, especially on objects with spatially

varying BRDF and when given a low number of input im-

ages. While SDPS-Net only predicts geometry, we also pre-

dict material reflectance as albedo and roughness. In com-

parison to single image techniques, we predict better sur-

face normals and albedo, especially in the regions of cast

shadows and specular reflectance.

In summary, our contributions are as follows:

• We introduce a weakly calibrated photometric stereo

technique, where shape and material of an object can be

captured easily at home with a camera, flashlight, and op-

tionally a tripod. • We present a recursive multi-resolution

architecture that can handle a varying number of input im-

ages (1-6) at arbitrary resolution, which can be higher than

the training resolution (training at 256, inference at 1024)

with minimal artifacts.

2. Prior Work

Photometric Stereo (PS), first introduced in [65], aims

to reconstruct the shape of an object from images under

varying illumination, and is a long studied problem in com-

puter vision (see [2, 19, 60] for surveys). When intensity

and direction of the lights are unknown the problem is re-

ferred to as Uncalibrated PS (UPS) [4], which is often more

challenging due to ambiguity [5]. Previous approaches ei-

ther assume Lambertian reflectance [21, 51, 25] or aim to

model non-diffuse reflectance using various BRDF models

[45, 22, 50, 44]. A few works [26, 49, 8, 30] aim to solve

PS for more general environment lighting.

With the recent success of deep learning, researchers

have shown renewed interest in pushing the boundaries of

PS. Recent works [56, 27, 41] focus on the calibrated set-

ting with a large number of input images and learn on a

per-pixel basis, thus ignoring global context. Taniai et al.

[62] proposed a network that is trained per object to predict

normal and BRDF using unsupervised reconstruction loss

with known lighting. Chen et al. [14] trained a network

on synthetic data to predict normals with known lighting.

For UPS, recent works focus on predicting the lighting and

then using it to predict normals [11], often in a recursive

fashion [15], and can handle spatially varying BRDF [12].

While most PS methods require a large number of images

(50-100), researchers have also attempted to solve PS with

few images [59, 46, 52, 35, 71]. Researchers have also pro-

posed techniques to solve PS with known direction and un-

known intensity [17, 53, 52], and with inaccurate direction

and intensity [54]. In this work, our system assumes that

the lighting direction is known to within 10◦ to 15◦, and the

intensity is unknown. It requires only a few images (1-6)

and predicts both normal and spatially-varying BRDF.
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Capture Setup Front Front-right Right Front-Left Left Top`

Figure 2: Our at-home capture setup uses a camera, a flashlight, and optionally a tripod and a remote. A user moves around the object to

capture a single or multiple images with variation in lighting. Images are captured from the ‘Front’ and the five positions shown above.

While PS usually requires a large number of obser-

vations, another research direction, Shape from Shading

[70], attempts to predict shape and reflectance from a sin-

gle image. Previous approaches like Barron and Malik

[3] relied on extensive, manually designed shape priors.

With recent advances in deep networks such priors are of-

ten learned from large volumes of synthetic data. Recent

works made progress in solving Shape from Shading for

faces [32, 58, 34] and Inverse Rendering for general scenes

[69, 57, 36], all from a single image. For a generic ob-

ject, researchers have attempted to estimate reflectance and

illumination from a single image [42, 43, 23, 24, 55, 47].

Liu et al. [40] predicted normal and DS-BRDF from a sin-

gle image by training on ShapeNet objects. Li et al. [37]

proposed a framework where a single image of an object

is captured with a flash co-directional with the camera and

predicted normal, depth, spatially varying BRDF and illu-

mination. They trained a cascaded architecture on synthetic

data, generated similarly to our approach. An extension of

single image based shape from shading is to capture two

images, with and without a co-direction flash, as presented

in Boss et al.. [7], which also uses a cascaded architecture.

Both [37, 7] can only make predictions at 256×256 resolu-

tion. In contrast, we present a unified architecture that pre-

dicts state-of-the-art normal and spatially varying BRDFs

from a single image or from a few images (2-6) illuminated

with a flashlight and ambient light (in at least one image the

flashlight is approximately co-directional with the camera),

at 1024×1024 resolution.

A key contribution of our technique is a recursive multi-

scale network, where a single network is trained with multi-

ple resolutions. The importance of multi-scale information

in normal estimation from a single image goes back well

before the age of deep learning. This is due to ambiguities

that cannot be resolved with local information alone but re-

quire global context. Separate networks for local and global

context and a fusion step to exploit multi-scale information

were used in [63, 20]. Recent deep networks often aim to

achieve this by using a cascaded architecture where the later

stages in the cascade are responsible for learning details

[37, 36], but all stages operate at the same resolution. How-

ever, these methods trained for 256×256 cannot operate on

1024×1024, as they involve fully connected layers. Often

optimization is also used for refining the network prediction

[6] at the cost of runtime. Researchers have also explored

cascaded architectures that operate at different resolutions

in segmentation [38, 39], super-resolution [33], and gen-

erative models [16, 31]. In contrast to these methods, our

network uses the same weights at each step for predicting

normal, albedo and roughness at resolution 2k × 2k given

an input image at 2k × 2k and predicted normal, albedo and

roughness at 2k−1
× 2k−1. This also enables us to operate

on images larger than those we train on.

3. Our Approach

Our goal is to capture high-quality shape and reflectance

of household objects with minimal effort. To achieve this

goal, we make several design choices. First, we parame-

terize shape with surface normals, which will then be inte-

grated into a depth map and converted into a mesh represen-

tation. Second, we parameterize spatially-varying BRDF

(SV-BRDF) with albedo and roughness using the Cook-

Torrance BRDF model [18] (for details please see the sup-

plement). We aim to reconstruct surface normal, albedo and

roughness at 1024×1024 resolution, in contrast to 256×256

used in [7, 37], such that the reconstructed mesh can pre-

serve details. Finally, our capture setup includes a camera

mounted on an inexpensive tripod about 2’ from the ob-

ject. Then the user captures multiple images of the object

by walking around with a flashlight, with at least one image

where the light is roughly co-directional with the camera.

Our data capture setup inspires us to generate synthetic data

reflective of our real data.

3.1. Our Capture Setup

We want our capture setup to be simple such that, with

instructions, a user can easily replicate it in their home, and

also provide enough distinct observations for high-quality

reconstruction. For our capture setup we used the following

items (i) A CANON 2000D DSLR camera; (ii) a tripod; (iii)

a remote trigger; and (iv) an LED flashlight. As we show

in Figure 1 our capture setup can be performed with just a

camera phone, stand, and flashlight.

Our capture protocol is as follows. The object is placed

on a flat surface in a room dimly lit relative to the flash-

light (dark room not required). The camera is pointed to-

ward the object; its optical axis making approximately a 20

to 40◦ angle with the surface. The user can then take one

to six images by moving around with a flashlight pointed

at the object. In one image, the light should be approxi-

mately co-directional with the camera. For six images, the
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Figure 3: We propose a recursive multi-resolution architecture, RecNet, that predicts surface normal, albedo and roughness from the input

image(s) and from the prediction at the previous step by continuously upsampling by a factor of 2. The recursion is initialized by InitNet.

flashlight is pointed at the object from the following direc-

tions: right (+90◦), front-right (+45◦), co-directional with

the camera (0◦), front-left (−45◦), left (−90◦), and directly

above. Note that these directions are weakly calibrated, i.e.

our system roughly knows the location of the light and can

tolerate ±15◦ error in angular direction. We chose these

directions because we felt they are easy for the user to es-

timate. Please see Fig 2, which depicts a user capturing an

object following our capture setup. To evaluate our method,

we capture a large real dataset of 111 scenes containing a

variety of objects we obtained at various discount stores.

3.2. Synthetic Data

Since it is extremely difficult to capture real-world ob-

jects with ground-truth shape and reflectance, we rely on

synthetic data to train our network. Our synthetic data gen-

eration is motivated by our real-world data capture setup.

We perform synthetic data generation with primitive shapes,

similar to Xu et. al [66]. We consider 5,000 objects, each

consisting of 1-9 primitive shapes (cubes, ellipsoids, and

cylinders) with surface perturbations of various frequen-

cies. Additionally, we consider 14 realistic shapes from the

Sculptures dataset [64].

For spatially varying albedo we use free textures from

[1]. Unlike [66, 37, 7] we do not use the roughness supplied

with the textures because their details are too small to be re-

covered faithfully. Instead, we apply a random roughness

to each primitive shape in the scene. For sampling rough-

ness, we first sample a Phong exponent from an exponential

distribution that is approximately the same as the one used

by [47]. We then convert it into a Beckmann equivalent

roughness [29]. We observe that this design choice forces

the network trained on this data to rely more on photometric

cues than prior associations between albedo and roughness.

Thus the network can generalize better to real data. More

details on our synthetic data generation procedure can be

found in the supplementary material.

3.3. Recursive Multi-Resolution Network

Our goal is to predict high-resolution surface normals,

albedo and roughness, such that when we integrate the nor-

mals to create a mesh, we can preserve the details of the

object. An obvious choice is to train a convolutional net-

work, e.g. ResNets [72], on high-resolution input-output

pairs. However, this is extremely difficult to achieve for

the following reasons. First, the primitive shapes used

for data generation lack details, and so do most synthetic

shape datasets like Shapenet [9]. Thus the synthetic high-

resolution data will lack the details often observed in real-

world objects. Second, training a ResNet with sufficient

depth on 1024×1024 images will require significant mem-

ory and training time, which often makes it impossible to

train on a single GPU with batch-size of one. ResNets

trained on low-resolution 256×256 images introduce addi-

tional artifacts when tested on 1024×1024 images. Thus

our goal is to design a network that can be trained at low-

resolution yet still produce satisfactory results on high-

resolution data during inference.

The input to our system is a set of images of an ob-

ject illuminated by a light co-directional with the camera

and optionally up to five additional images of the object il-

luminated by directional light from the right, center-right,

center-left, left, and above. We also input a segmentation

mask. Then our system predicts surface normal N , albedo

A and roughness R. We use an interactive segmentation

tool [61] to create a the mask, usually with just 3-5 clicks.

Our network, depicted in Figure 3, consists of two com-

ponents, an initialization network (InitNet) and a recur-

sive network (RecNet). InitNet receives input at a down-

sampled resolution of 32×32, I32, and predicts normal,

albedo, and roughness at the same resolution. This is used

as initialization to the recursive network RecNet, which

continuously upsamples the result by a factor of 2. RecNet

starts by taking in the 32×32 normal, albedo, and roughness

predictions made by InitNet along with the input images
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downsampled to 64×64 and predicts the normal, albedo,

and roughness at 64×64. These are then recursively fed into

RecNet along with the inputs downsampled to 128×128.

This procedure is repeated until the normal, albedo, and

roughness match the resolution of the original input images.

This procedure is described in pseudo-code in Algorithm 1.

Algorithm 1 Network procedure: The input image at 2K ×

2K is down sampled to 2k × 2k resolution, denoted by I2
k

,

for k from K to 6. A2
k

,N2
k

,R2
k

represent albedo, normal

and roughness predicted at 2k × 2k resolution, respectively.

N2
5

, A2
5

, R2
5

= InitNet(I2
5

)
for k = 6 to K do

N2
k

, A2
k

, R2
k

= RecNet(I2
k

, N2
k−1

, A2
k−1

, R2
k−1

)
end for

InitNet consists of three small Resnets, one for albedo,

normal, and roughness, that only differ in the number of

output channels: 3 for albedo; 2 for normal (we only pre-

dict the x and y component of the normal, z is calculated as
√

1− x2 − y2); and 1 for roughness. The ResNets in Init-

Net have no downsampling and only two residual blocks.

The input to the network is a concatenation of six or fewer

images and the mask of the object. When less than six im-

ages are used, respective channels in the input are zeroed.

The RecNet architecture also consists of 3 ResNets; each

ResNet contains 8 residual blocks, at its narrowest point

each feature resolution is 1/4 the input resolution. The in-

put to RecNet is six images and the mask along with the

predicted normal, albedo and roughness from the previous

step upsampled by a factor of 2. Please see the supplement

for a detailed description of the network architectures.

Our architecture at test time applies the same network at

each step to refine the network predictions from the previ-

ous step by a scale factor of 2. Thus we aim to train this

network to be scale-independent. All networks are trained

simultaneously. The networks are applied as in algorithm 1.

This produces estimates of albedo, normal, and roughness

at four resolutions from 32 to 256. We take the L1 loss of

normal, albedo, and roughness at all four resolutions and

sum them to get our full loss function:

min
N,A,R

8
∑

k=5

L1(A
2
k

, Â2
k

) + L1(N
2
k

, N̂2
k

) + L1(R
2
k

, R̂2
k

),

where N̂ , Â and R̂ denotes ground-truth normal, albedo,

and roughness. Thus, RecNet is being trained at 3 scales

simultaneously, and InitNet is only being trained at 32×32.

To explain the necessity of this recursive architecture,

consider the rendering of a pyramid in Figure 4A. The pyra-

mid is diffuse with uniform albedo, and the light is co-

directional with the camera. If we would only consider a

local window around point p we would just see a uniform

color; it requires global context to disambiguate the normal

Figure 4: (A) A pyramid rendered with co-directional light and

camera, and its ground truth normals. (B) Visualization of the gra-

dient of the input image with respect to output pixel p, for RecNet

and ResNet at 512×512 resolution. Both RecNet and ResNet are

trained at 256×256 and have receptive fields 93 and 85, respec-

tively. Note that for the ResNet the output at pixel p only depends

on the input in a neighborhood of pixel p, this is not the case for

RecNet. (C) Normal prediction by RecNet and ResNet at different

input resolutions.

at this location. A fully convolutional architecture, such as

a Resnet, has a finite receptive field; thus if we have this

image at very high resolution, the network’s receptive field

will not be large enough to capture the global context nec-

essary to disambiguate the normal. Furthermore, even if we

trained a network with a very large receptive field, it seems

unlikely that it could learn relationships more distant than

the size of the training data itself, in our case 256×256.

In Figure 4C we see that as the resolution of the triangle

grows, it requires more and more relatively distant informa-

tion to predict the normal correctly; thus the quality of the

prediction by the ResNet deteriorates. In contrast, with the

RecNet the receptive field is proportional to the number of

iterations i.e. image size; thus its prediction does not dete-

riorate with increasing image resolution. We show this in

4B by plotting the gradient of the input image with respect

to pixel p. We observe that for the ResNet the normal at

pixel p is determined only by a small neighborhood around

p whereas the RecNet also takes into account pixels a much

greater distance away. Although this example seems con-

trived, we show in section 5 that for real data, the ResNet

produces significantly more artifacts than the RecNet.

3.4. Implementation

We implement our network in Pytorch. We train with

the Adam optimizer for 50 epochs with a batch size of 10

and a learning rate of 10−4. In each batch, one to five im-

ages out of six are randomly zeroed such that the probability

of getting 1,2,3,4,5,6 non-zero images is 0.3, 0.2, 0.2, 0.1,

0.1, 0.1. Note the co-directional light image is never ze-
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roed. Training took approximately two days on two Nvidia

RTX2080Ti GPUs.

After our network predicts surface normal, albedo and

roughness, we integrate the normals to obtain a depth map.

Then we consider each pixel of the depth map as a vertex of

a mesh. For details on our integration procedure, please see

the supplement.

4. Experiments

We compare with various state-of-the-art approaches for

shape and material estimation: • SPDS-Net [10] is a PS

technique that only predicts surface normals from multiple

images. Although not emphasized in the original paper, it

can also be used for predicting normals from a single image.

SDPS-Net, like ours, can predict normals at 1024×1024

resolution. • Li’18 [37] predicts surface normal, albedo and

roughness from a single image captured with co-directional

camera and light at 256×256 resolution. • Boss’20 [7] also

predicts normal, albedo and roughness but requires two im-

ages, with and without flash, at 256×256 resolution.

Since it is extremely difficult to capture ground-truth

albedo and roughness of household objects, our evaluation

relies on qualitative comparison. However, it is possible to

quantitatively evaluate normals on real data with the DiLi-

GenT dataset [60]. DiLiGenT consists of 10 objects with

diverse materials captured under 96 calibrated lighting di-

rections with ground truth normals. The lighting directions

lie approximately on a rectangle and are all within roughly

45 degrees of the camera.

Surface Normal estimation with multiple images. In

Table 1, we compare our normal estimation with SDPS-Net

on the DiLiGenT dataset with three images coming from

the front, front-right, and front-left. We are restricted to at

most three images on this dataset because images from the

left, right, and above are not included. We report a mean

angular error (MAE) of 12.5◦ compared to 23.3◦ for [10].

However, SDPS-Net is trained on 32 images, so we retrain it

with only three images as input. Although this improves the

quality of SDPS-Net our method is still numerically supe-

rior to it. Furthermore, the qualitative evaluation in Figure

5, clearly shows the superior performance of our method on

challenging objects. We also show superior performance to

SDPS-Net on the two image task (see supplementary).

Surface Normal estimation with single image. In Ta-

ble 2 we compare normal estimation error of our method

with that of Li’18 [37] and SDPS-Net [10] on DiLiGenT

using a single image captured with approximately co-

directional light and camera. We also retrained SDPS-Net

just on a single image, although our method is trained to

work with up to 6 images at once, and still, we outper-

form SDPS-Net. We could not compare with Boss’20 [7] on

DiLiGenT as it requires two images with and without flash.

In Figure 6, we present a qualitative comparison of our

Figure 5: Comparison of our normal estimation method with that

of SDPS-Net retrained on 3 images. Tested with front, front-right

and front-left images.

method with that of SDPS-Net retrained on a single image,

Li’18 and Boss’20 on images captured by us. Both quanti-

tative and qualitative evaluations show that our method out-

performs state-of-the-art normal estimation techniques for

single and few image inputs.

Material Estimation. We present a visual comparison

of albedo in Figure 7 and roughness in Figure 8 estimated

by our method with that of Li’18 using a single image and

Boss’20 with the same image and an additional image with-

out directional light. We also show the albedo and rough-

ness predicted by our method with six images as input. We

observe that our method is often better in removing cast

shadows and specular highlights from the albedo. Rough-

ness is challenging for all methods. We often observe that

even relative roughness predictions do not agree between

methods. More qualitative results on our data and data col-

lected by [37] can be found in the supplement.

5. Ablation Studies

Evaluation of Recursive Architecture. To evaluate

the effectiveness of our recursive architecture, we train a

ResNet based on [72, 28]. Our recursive network has ap-

proximately 14.5M parameters, and the vanilla Resnet has
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Table 1: Three Image Results on DiLiGenT Comparison of SDPS-Net [10], SDPS-Net retrained with 3 input images, and our method on

DiLiGenT. Lights are from the front, front-right, and front-left of the camera. MAE (in degrees) for each object is reported.

Algorithm ball cat pot1 bear pot2 buddha goblet reading cow harvest mean

SDPS-Net [10] 15.4 22.4 25.7 17.9 18.5 24.0 31.0 29.3 21.4 27.1 23.3

SDPS-Net (3 image retrained) 5.7 15.3 13.1 7.6 13.0 18.7 24.6 22.5 12.1 22.3 15.5

ResNet (ablation) 5.8 14.7 12.9 8.3 12.3 14.9 23.4 17.3 15.7 23.2 14.8

Ours 5.7 12.7 10.6 7.1 10.2 13.9 17.0 16.9 9.9 20.6 12.5

Table 2: Single Image Results on DiLiGenT Comparison of [10], SDPS-Net retrained with 1 image (fully calibrated), [37] and our

method on DiLiGenT using a single input image with light approximately co-directional with the camera. MAE (in degrees) is reported.

Algorithm ball cat pot1 bear pot2 buddha goblet reading cow harvest mean

SDPS-Net [10] 36.0 35.4 36.3 34.2 36.7 44.3 43.2 43.4 35.4 42.0 38.7

SDPS-Net (1 image retrained) 6.0 21.0 17.8 11.2 18.1 26.7 27.8 29.0 17.3 34.1 20.9

Li’18 [37] 20.4 29.7 19.5 27.2 20.2 32.1 22.6 32.3 21.4 37.1 26.3

ResNet (ablation) 5.4 22.8 16.4 9.2 15.1 23.6 27.8 24.6 15.5 30.5 19.1

Ours 7.1 21.1 12.7 8.3 12.7 20.7 20.3 22.3 11.7 29.9 16.7

Figure 6: Comparison of normal estimation with Li’18 [37],

Boss’20 [7] and SDPS-Net retrained on a single image [10].

approximately 16M parameters. Both our recursive net-

work, RecNet, and ResNet are trained at 256×256 reso-

lution and tested on 1024×1024. Tables 1 and 2 show

quantitatively that our recursive architecture outperforms

the ResNet on DiLiGenT in the 3 image and 1 image cases,

respectively. Figure 9 demonstrates ResNet introducing ar-

tifacts when tested at 1024×1024.

Training with a Fixed Number of Inputs. We also

trained specific variants of our network that only use a fixed

number of images as input, either one or three, rather than a

random number of inputs during training. This means that

instead of having one network that can handle any number

Figure 7: Comparison of albedo estimation between Li’18 [37],

Boss’20 [7], our method with one image (ours single) and our

method with six images (ours six).

of inputs, we obtain separate network weights for different

numbers of input images. We found that our proposed train-

ing method is only slightly worse (< 2◦) on DiLiGenT than

networks trained separately for 1 and 3 image inputs. This

is shown in Table 3. However, we felt that having a single

network that performs well across different numbers of in-

put images is more desirable than having different networks

for different numbers of input images.

Robustness to Angle and Intensity Variation. Al-

though we need lighting to be weakly calibrated, our

method is quite robust to variation in capture directions. We
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Figure 8: Comparison of roughness estimation between Li’18

[37], Boss’20 [7], our method with one image and our method

with six images. Brighter indicates rougher (less specular).

Figure 9: Illustration of artifacts produced by ResNet when trained

at 256×256 and tested at 1024×1024 compared to RecNet.

3 image input 1 image input

Ours Ours-3 Ours Ours-1

MAE (in degrees) 12.5 10.7 16.7 16.1

Table 3: Our network can handle any number of input images (1-

6), and performs comparable to training separate networks with a

fixed number of input images; Ours-3 for 3 image input network

and Ours-1 for single image input network.

test this by computing the MAE on DiLiGenT, as the input

lighting directions move further away from our prescribed

directions. Since our front-right and front-left directions are

at the extremes of the range present in DiLiGenT, we start

from these extremes and move progressively inward. We

leave the center image fixed for this experiment. Table 4

shows a minimal increase in error while the lights are within

about 12.5◦ of the optimal.

We also demonstrate our method’s robustness to inten-

sity variation using DiLiGenT. To simulate variation in in-

tensity, we multiply each HDR image in DiLiGenT by a

random scalar sampled from a Gaussian with unit mean and

various standard deviations before tonemapping and clamp-

ing between 0 and 1. We repeat the experiment five times

at each standard deviation. Table 5 shows the error at each

standard deviation averaged over the five runs. We see that

only at a high standard deviation, above about 0.8, when

many pixel values are equal to 0 and 1, do we get a signifi-

cant increase in normal prediction error.

Effect of Number of Input Images. Figure 10 shows

Deviation (degrees) 4.8 8.2 12.2 16.7 21.6

MAE 12.5 12.4 12.7 13.4 15.0

Table 4: Error (MAE in degrees) on the DiLiGenT dataset as the

direction of the light deviates from the optimal.

s.d. scaling 0 0.1 0.2 0.4 0.8 1.2

MAE 12.5 12.5 12.5 12.9 14.6 16.2

Table 5: Error (MAE in degrees) on the DiLiGenT dataset as the

intensity changes based on standard deviation (s.d.) of a unit mean

gaussian.

Figure 10: Results of our network with 1, 3 and 6 input images.

how normal quality improves with more input images.

6. Conclusion

Shape and reflectance capture is a fundamental research

problem in Computer Vision and Graphics, with applica-

tions in AR/VR, e-commerce etc. Our goal is to create a

technique that allows users to capture high-quality shape

and reflectance of an object in a household setting, with a

camera, a flashlight, and ideally a tripod. Our technique

relies on weakly calibrated capture done with a handheld

flashlight. Our method is robust up to 10-15◦ error in light-

ing direction. Weakly calibrated photometric stereo, even

with error in lighting direction, appears to produce better

reconstruction than uncalibrated Photometric Stereo.

Our main technical novelty is the recursive neural net-

work RecNet, which can predict geometry and reflectance

at 2k × 2k resolution given an input image at 2k × 2k and

estimated geometry and reflectance from the previous step

at 2k−1
× 2k−1. This allows us to train at 256×256 and test

at higher resolution, such as 1024×1024. Training a neu-

ral network directly on higher resolution data is extremely

difficult due to computational bottlenecks such as memory

and training time and lack of large scale high-resolution

synthetic data. Previous architectures suffer poor general-

ization when they train at low-resolution and perform in-

ference at higher resolution due to a limited receptive field

that does not capture global context. Our recursive archi-

tecture has a unique property in which the receptive field is

doubled at each step, thus effectively allowing it to capture

global information even with high-resolution images.
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