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Abstract

We present a novel method for reliably explaining the

predictions of neural networks. We consider an explanation

reliable if it identifies input features relevant to the model

output by considering the input and the neighboring data

points. Our method is built on top of the assumption of

smooth landscape in a loss function of the model predic-

tion: locally consistent loss and gradient profile. A theoreti-

cal analysis established in this study suggests that those lo-

cally smooth model explanations are learned using a batch

of noisy copies of the input with the L1 regularization for

a saliency map. Extensive experiments support the analy-

sis results, revealing that the proposed saliency maps re-

trieve the original classes of adversarial examples crafted

against both naturally and adversarially trained models,

significantly outperforming previous methods. We further

demonstrated that such good performance results from the

learning capability of this method to identify input features

that are truly relevant to the model output of the input and

the neighboring data points, fulfilling the requirements of a

reliable explanation.

1. Introduction test

The recent progress of deep neural networks has led to

their adoption in various decision-critical applications, in-

cluding medical, finance, and legal fields and autonomous

vehicles. However, the high modeling capacity of deep

models renders the inner operations of the models mostly

uninterpretable and demands human-understandable expla-

nations for model predictions. For this purpose, the model

output attribution for input features is a popular idea. The

attribution aims to identify the importance of input features

using end-to-end relationships between inputs and model

predictions. We use a saliency map as the visual form of an

explanation. A saliency map is a common approach to vi-

sual tasks to implement pixel-level or regional attributions

for a given image [32, 25, 9, 37, 16, 22].

*Correspondence to: Sungchan Kim (s.kim@jbnu.ac.kr).

The susceptibility of neural networks can cause false

predictions for a given imperceptibly modified image [12],

which has emerged as a new challenge in explaining model

predictions [9, 3, 37, 10, 5, 14, 29, 33]. For instance, re-

cent work has demonstrated that input can be manipulated,

resulting in different saliency maps without damaging the

classification accuracy [10, 5, 14, 33]. Such a false explana-

tion is primarily due to the fragility of learned models that

have highly nonsmooth decision boundaries rather than due

to the explanation methods. Although adversarial training

has addressed these concerns [17, 39, 24, 7, 11, 36, 19], it

is not always applicable and still incomplete.

This discussion indicates the need to build a reliable

model explanation with two requirements if the goal is to

recover input features that are important in a local neigh-

borhood: first, a reliable explanation method should be ro-

bust so that it generates consistent explanations along with

neighboring (and thus similar) data points; second, expla-

nations generated by the method must have high fidelity for

model predictions.

We propose RelEx, a novel method to reliably explain

predictions of neural network-based classifiers. RelEx aims

to generate robust and yet accurate saliency maps of pixel-

level importance for a given image. Inspired by recent work

on adversarial training [18, 17, 19], we built RelEx on top

of an assumption on a locally smooth explanation for the

vicinity of the input.

Although substantial work has proposed creating

saliency maps based on gradient [28, 34, 30, 1, 27, 25] or

perturbation [20, 9, 37, 16, 22], researchers have hardly ad-

dressed both robustness and accuracy in a single method.

Existing methods often fail to find out essential features of

the input and neighborhood for the model predictions de-

spite being visually plausible, as shown in this study. More-

over, using either a random or adversarial perturbation of

data points can manipulate their explanations [10, 5]. Re-

cent work has addressed such an issue partially [3, 9, 37, 5].

In contrast to the existing methods, we construct an analy-

sis to characterize the behavior of the proposed explanation

method based on the assumption of the local explanation.

Specifically, the contributions of this paper are as follows.
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Figure 1. Comparison of saliency maps. Images on the top row depict adversarial examples created by a PGD attack [17] for given

perturbation distance in the ℓ1-norm on (a) naturally trained and (b) adversarially trained ResNet-50. Numbers below images represent its

softmax scores while ones below saliency maps indicate the scores of corresponding explanations. Our method generates saliency maps

that leads to the scores close to 1 consistently in the presence of perturbations. The saliency maps of other methods, SmGrad [30] and

IntGrad [34], are visually plausible but irrelevant to the score. (See the supp. S3.7 for more results)

• We establish a quadratic approximation on a locally

smooth landscape from the model explanation per-

spective to identify a trade-off between the accuracy

and robustness of saliency maps. Our analysis reveals

that the robustness of an explanation method is bet-

ter achieved at the cost of the reduced accuracy of

the model explanation and that the curvature of a

loss function for learning a saliency map is inverse-

proportional to the ℓ1-norm of saliency maps to which,

however, the explanation accuracy is proportional. A

similar trace-off was investigated in adversarial train-

ing [36, 39]; but it was hardly addressed in the context

of an explanation method. Although the use of the ℓ1-

norm is not new this work is the first attempt to address

its effects on building a reliable explanation method to

the best of our knowledge.

• Our analysis leads to an easy-to-implement objective

function to learn a saliency map by using backpropa-

gation. We need only noisy copies of an input image as

a batch for the optimization that is regularized by the

ℓ1-norm of a saliency map.

• RelEx identifies input features relevant to a decision

for all points in a neighborhood over the existing meth-

ods when applying it to naturally and adversarially

trained models. We demonstrate that explanations by

the proposed method achieved a remarkably robust re-

trieval of the target classes from adversarial examples

created via strong white-box attacks (Figure 1). Exten-

sive evaluations indicate that such an advantage our

method is due to learning appropriate saliency maps

even with severe perturbations.

2. Related Work

We briefly review previous work related to the explana-

tion of neural networks to highlight the benefit of this ap-

proach. We first focus on methods to generate saliency maps

and then on the literature on robust model explanations.

Gradient-based methods. Existing explanation meth-

ods generate the importance of input features primarily

based on the gradient or perturbation of an input image.

Gradient-based approaches measure individual feature im-

portance as the sensitivity of input features concerning

changes in the model prediction by using standard back-

propagation [28, 30, 34, 1, 25]. The pixel-level gradient has

inherent limitations, such as being noisy and saturation, to

explain the model output [1, 30, 34, 27]. A method, called

SmoothGrad, generates explanations by averaging gradient-

based saliency maps of noisy copies of an input image [30],

partially addressing adversarial attacks [14, 5]. An approach

in [34] takes integrated gradients along with a straight path

from the baseline value to each of the input features as an

attribution of the particular feature. Layer-wise relevance

propagation and DeepLIFT back-propagate the model out-
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put by distributing it through a neural network according

to neuronal activation [1, 27]. Although these principled

approaches provide improved saliency maps, one can ma-

nipulate input images for the model to classify the images

correctly but result in their saliency maps differently from

original ones [10, 5, 14, 29, 33].

To summarize, because these methods merely react to

the interactions of the model with the input and thus are

unsupervised processes in nature, they are restricted to pre-

senting the reaction of the model to the change.

Perturbation- and activation-based methods. Another

approach generates saliency maps as a change in the model

output caused by perturbing the input image [3, 9, 20, 37,

16, 22]. These methods learn feature importance of an input

at the pixel-level [37] like the proposed or at the regional

basis [3, 9, 20, 16, 22]. Perturbation, such as occlusion and

masks, is queried to an image repeatedly to learn an optimal

saliency map. Some incorporated regularizers for adversar-

ial defense, unlike gradient-based methods [3, 9, 37]. We

demonstrate that these defenses are insufficient and can be

deceived by carefully crafted adversaries.

Activation-based approaches combine activations of

convolutional layers linearly to translate the spatial infor-

mation of features maps in different layers to saliency

maps [25, 3, 22]. However, their saliency maps are diffused

and are unreliable against the perturbation of input images.

Robust explanation. Recent work has indicated that the

susceptibility of neural networks is caused by a high mod-

eling capacity with numerous parameters and a kinky land-

scape of the gradient of the model output due to the non-

linearity of the models [10, 5]. The adversarial training of

models incorporating robustness into the model during the

training process is an active research area [23, 8, 21, 19].

Their main idea is to encourage robustness by enforcing a

locally linear landscape of the model prediction for neigh-

boring examples [26, 23, 19].

We regard the notion of a locally smoothing behavior

as a requirement of a reliable explanation. Thus, explana-

tions with saliency maps for the vicinity of an input should

be similar and lead to the same class. The authors in [5]

demonstrated that piece-wise nonlinearity due to a recti-

fied linear unit (ReLU) of neural networks might mislead to

a wrong explanation, even with a correct prediction. They

proposed to use SoftPlus instead of the ReLU in the model,

which is identical to using SmoothGrad [30], providing par-

tial tolerance to an adversarial attack [5, 14]. An analy-

sis established in [37] indicated that the robustness of the

model is degraded by numerous parameters and the largest

singular value of the Hessian regarding the parameters that

represents the curvature of the gradient landscape. Despite

previous efforts, no tangible realization of a robust expla-

nation method has been addressed. Some effort has been

made to improve the quality of saliency maps, considering

adversarial defense [3, 9, 37, 5] by reducing a total vari-

ation [3, 9] or modifying the activation function of neu-

rons [37, 5]. They, however, result in insufficient defense ca-

pability. RelEx exploits the analysis established in this work

to address the limitations above efficiently and effectively,

and non-intrusively through a simple optimization frame-

work.

3. Proposed Approach

This section describes the details of RelEx. We begin by

stating two assumptions that a reliable explanation method

should satisfy. Then, we analyze the bounds on the robust-

ness of the proposed method in response to these require-

ments in Section 3.1. A cost function of RelEx for learning

a saliency map is formulated in Section 3.2.

Notations. A neural network-based classification model

maps an input image x0 ∈ ❘d to an output y ∈ [0, 1]|C|,

where y is a vector representing the softmax scores of a

specified set of classes C. We define fc(x0) as the prob-

ability of x0 being classified as c ∈ C. A saliency map

mc ∈ [0, 1]d represents the importance of individual fea-

tures (i.e., pixels of x0) corresponding to the model predic-

tion fc(x0). For simplicity, we use m and f(x0) instead of

mcT and fcT (x0), respectively, when referring to the target

class cT of x0.

3.1. Local Smoothness for Robust Explanation

Suppose a local interpretation of the model prediction

refers to identify features relevant to x0 and its local neigh-

borhood. In that case, the interpretation implies that ex-

planations of data samples neighboring to x0 should vary

slowly, rendering a corresponding smooth landscape al-

though it holds locally. According to the notion of the local

interpretation, we expect data points in the vicinity of x0 to

be in the same class with similar saliency maps. We claim

that, in particular, two conditions should be met in the lo-

cal data points for the model explanation to be reliable by

ensuring the local smoothness.

Assumption 1 (Locally consistent model prediction). For

a given saliency map m of input x0 with a target class cT ,

we consider data samples D = {xi} where ‖xi − x0‖p ≦ ǫ

and ǫ is a small positive number, which we regard as the

perturbation of x0. Thus, m ⊙ xi for data points xi ∈ D
concerning m would be correctly classified as cT (i.e.,

f(m ⊙ xi) ≈ f(m ⊙ x0)), where ⊙ is an element-wise

product of vectors. We use the ℓ2-norm or ℓ∞-norm as the

perturbation distance.1

Assumption 2 (Locally consistent saliency maps). A

saliency map m(xi) for data point xi ∈ D is similar to that

of x0, m, which leads to ‖m − m(xi)‖ ≦ δ for a small

positive number δ.

1We represent the ℓ2-norm of vector a as ‖a‖.
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Local smoothness for label consistency. We consider a

simple analysis to elucidate how a saliency map is related

to the label consistency of an explanation method. As the

distance between the data points depends on the task, we

use cross-entropy in this study. Thus, given an input x and

a saliency map m, we denote a loss function of classifying

m⊙ x as its target class cT as L(x,m) = − log f(m⊙ x).
Inspired by the setting of the analysis established in [19],

we assume that L(·) is well approximated as a quadratic

form at a sufficiently small distance γ, which is given by

the following:

L(x0+γ,m) ≈ L(x0,m)+∇L(x0,m)T γ+
1

2
γTHγ (1)

where ∇L(x0,m) and H denote the gradient and Hessian

of L(·) at x0, respectively. The robustness of the explanation

method is represented by γ if we ensure that all samples in

the L2 ball of radius γ centered at x0 are classified correctly.

The second-order derivative term in Eq. (1) enables the in-

vestigation of the divergent curvature of the loss function

from the perspective of the optimization landscape.

If all data points in the L2 ball are classified correctly, it

holds that L(x0 + γ,m) ≦ τ and L(x0,m) ≦ τ where τ

is the threshold for the input to be classified correctly. For

example, in the case of binary classification, τ = − log 1
2 .

We measure the robustness γ by evaluating its maximum

γ+ as follows:

γ+ = argmax
γ

‖γ‖ s.t. L(x0 + γ,m) ≦ τ. (2)

For the ease of calculation, we convert Eq. (2) to an equiva-

lent minimization problem as follows:

γ+ = argmin
γ

‖γ‖ s.t. L(x0 + γ,m) ≧ τ. (3)

Let c = τ−L(x0,m) ≧ 0. Substituting c into Eq. (3) yields

γ+ = argmin
γ

‖γ‖ s.t. ∇L(x0,m)T γ+
1

2
γTHγ ≧ c. (4)

The introduction of Eq. (4) is not to calculate γ+ but to de-

rive the lower bound of the robustness and the upper bound

of the loss function as a function of m. This analysis also

holds when we use the ℓ∞-norm for the perturbation dis-

tance metric.

Theorem 1 (Local explanations with respect to label con-

sistency). Let γ = α · v where ‖γ‖ = α and ‖v‖ = 1. Let

D = {xi} be a set of data samples where ‖xi − x0‖ ≦ ǫ.

For a given saliency map m calculated from x0, it holds that

α ≧
c

‖m‖1
·

2

‖ − g(x0 + αv) + g(x0)‖+ 2‖g(x0)‖
(5)

𝑥0 𝑥0 ass

Figure 2. Kinky gradient landscape. Two landscapes on the clas-

sification loss lead to the identical classification accuracy. Given

that a saliency map is dependent on the negative gradient of the

loss function, the saliency map varies according to the landscape

geometry. (a) Landscape is kinky. This results in divergent gradi-

ent profile of the neighboring data points and, thus, their inconsis-

tent saliency maps, violating Assumption 2. (b) Ensuring a smooth

landscape provides similar saliency maps for the data points.

where

g(x) = −∇L(x,m) = ∇ log f(m⊙ x). (6)

It also holds that the loss function in Eq. (1) with respect to

x0 + γ is upper-bounded as follows:

L(x0 + γ,m) ≦

α‖m‖1

(

‖ − g(x0 + αv) + g(x0)‖

2
+ ‖g(x0)‖

)

.
(7)

Theorem 1 has two implications. First, the label consis-

tency of the proposed explanation method is inversely pro-

portional to the complexity of the saliency map that is rep-

resented as ‖m‖1 in Eq. (5). Intuitively, images far from

x0 can be viewed as significantly perturbed copies of x0.

Thus, a robust explanation applicable along with these data

points is likely to contain a small number of features that are

invariant to the perturbation. Previous work on adversarial

training has addressed this issue to explain the trade-off be-

tween robustness and accuracy, arguing that the high predic-

tion performance of models is due to subtle features that are

susceptible to perturbation [36]. Our analysis reveals simi-

lar concerns in the context of the model explanation with the

explanation complexity notion. Figure 1 illustrates two ex-

amples where saliency maps become more sparse (i.e., de-

creasing ‖m‖1) to maintain the classification performance

of the explanations as the images undergo further perturba-

tions. We further validate this observation using extensive

experiments in Section 4.1.

Second, in contrast to the behavior of the robustness in

the explanation, the classification accuracy for the neighbor-

ing data points is proportional to ||m||1 as shown in Eq. (7).

This equation is another representation of Eq. (5) that agrees

with the aforementioned trade-off of adversarial training.
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Local smoothness for consistency of saliency maps.

We demonstrated the effects of the explanation complexity

given by ‖m‖1 on the robustness in terms of the classifica-

tion accuracy. However, it is still unclear how the explana-

tion complexity affects the saliency map consistency among

the adjacent data points. Figure 2 motivates this investiga-

tion, where two landscapes in the classification loss have

identical accuracy but the explanations of the data points at

the landscapes are quite different.

Given the assumption of the local consistency in model

prediction, it holds that f(m(xi) ⊙ xi) ≈ f(m ⊙ x0), and,

thus, L(xi,m
(xi)) ≈ L(x0,m), where m(xi) and m are

saliency maps for xi and x0, respectively. Then, it is pos-

sible to approximate L(xi,m
(xi)) using L(x0,m). The fol-

lowing result reveals the relationship between ‖m‖1 and the

saliency map consistency along with the data points around

the input data.

Theorem 2 (Local explanations with respect to saliency

map consistency). Let D = {xi} be the vicinity of the input

data x0 such that ‖xi − x0‖ ≦ ǫ where ǫ being a small

positive number. Then, the distance between the gradients

of explanations of xi and x0 is lower-bounded as follows:

‖∇L(xi,m)−∇L(x0,m)‖ ≦ ‖m‖1·‖−g(x0+αv)+g(x0)‖.
(8)

The distance between corresponding gradients repre-

sents similarity of saliency maps by referring to Eq. (6).

Therefore, Theorem 2 indicates that the proposed method

prefers a smaller value of ‖m‖1 for the saliency maps to be

consistent, as is the classification robustness case.

The results of Theorem 1 suggest formulating RelEx as

an optimization problem to consider the trade-off repre-

sented by Eq. (5) and (7). We denote an objective function

J (·) for the data points in the ℓp ball centered at the input

image x0 as follows:

J (D,m) = −
1

|D|

∑

i

log f(m⊙ xi). (9)

RelEx learns a saliency map m+ given D = {xi},

m+ = argmin
m

J (D,m) + λ1‖m‖1 (10)

where λ1 a regularization strength of ‖m‖1 following

the results of Eq. (5) and (8). The use of ‖m‖1 coin-

cides with previous work that generated perceptually im-

proved images [15, 40, 38], which also applies to the pro-

posed method. The previous explanation methods have also

learned a saliency map using ‖m‖1 like our method [9, 37,

3]. However, we demonstrated that using a batch D in con-

junction with the regularizer increases the robustness con-

siderably. See the supp. S1 for proofs of the theorems.

3.2. Optimization of the Proposed Method

Fidelity of saliency maps and faithful explanations.

Another critical aspect of a reliable explanation method is

that a saliency map should represent essential regions of

the input [9, 18, 3, 37]. While it is difficult to quantify the

fidelity of a saliency map in general, we consider two defi-

nitions: the smallest susceptive region and smallest eviden-

tial region [9, 3, 2, 6]. The smallest susceptive region is the

minimum area of an image that changes the model predic-

tion when the region is altered. The smallest evidential re-

gion refers to the minimum area to be preserved to maintain

the model prediction. Although these concepts appear simi-

lar, they are different, for example, in an image classified as

“dog” containing two dogs. From the smallest evidential re-

gion viewpoint, as long as the model explanation covers any

of the dogs, it may lead to correct classification. However,

the explanation is not the smallest susceptive region because

the part untapped by the explanation still has information

concerning the target class. Determining the smallest sus-

ceptive region can be viewed as identifying a background.

The objective function in Eq. (10) is likely to determine

the smallest evidential region because it is advantageous in

terms of reducing ||m||1. Inspired by the above discussion,

we incorporated an additional regularization term into the

objective function to improve our explanation in the small-

est susceptive region. Given the batch of D, we considered

an additional loss, B(D,m), a classification loss for the

counterpart region in x0 with respect to m. Thus, the ob-

jective function is given by the following:

B(D,m) = −
1

|D|

∑

xi∈D

log (1− f((1−m)⊙ xi)) ,

m+ = argmin
m

J (D,m) + λ1||m||1 + λ2B(D,m)

(11)

where λ2 is the coefficient of B(D,m).

4. Experimental Results

We validate the proposed method through extensive ex-

periments to answer the following questions:

• Are explanations using RelEx robust to retrieve the

original target classes of input images against various

adversarial attacks?

• If it is the case, how do saliency maps learned by

RelEx represent relevant evidence for model predic-

tions compared with previous work?

The supp. S2.1 presents the implementation details. The

code of RelEx is available at https://github.com/

JBNU-VL/RelEx.

4.1. Robustness Evaluations with Class Retrieval

We first demonstrate the robustness of this approach by

evaluating the retrieval of the original target classes for
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(a) Natural ResNet-50

(b) Robust ResNet-50

Figure 3. Target class retrieval against the untargeted attacks on (a) the natural and (b) robust ResNet-50. The inputs are presented

below each of plots. Our method has three variants without using the batch (w/o batch) or different epochs to iterate (50 and 100) when

learning saliency maps. (Top-right) Plots present the average ℓ1-norms of saliency maps of the adversarial examples by the methods on the

natural model. The norms of the saliency maps are normalized to those of the clean images for each method.

given images against adversarial attacks [35, 12] as per-

formed in previous work [9]. Because the adversarial at-

tacks fool models with only small perturbations to images,

we use the attacks to validate the advantage of the proposed

method. We applied untargeted and targeted attacks based

on a white-box threat model to the classifiers to create ad-

versarial copies of the images.

We denote sampled clean images by X0 and their ad-

versarial counterparts by Xadv for a given adversarial at-

tack, respectively. Also, madv denotes a saliency map of

xadv ∈ Xadv . Then, we measure the rate of the success-

ful retrieval of the target class of x0 as the most likely

class of xadv for a given input, madv ⊙ xadv , which is

❊ [■{argmaxc fc(madv ⊙ xadv) = cx0
}] where cx0

is the

target class of x0, and ■(·) is an indication function.

We evaluate two types of inputs: one is what is described

above (i.e., madv⊙xadv) and the other using a saliency map

of a clean image (i.e., m0⊙xadv). The evaluation of the for-

mer reveals whether a method extracts a saliency map accu-

rately in the presence of perturbation. The latter evaluates

the robustness of saliency maps of clean images.

Adversarial attack methods. The untargeted attack ma-

nipulates an input image to lead model predictions to arbi-

trary false labels. We applied RelEx to pretrained ResNet-

50 [13] using ImageNet [4]. We also considered a robust

counterpart of the model that was adversarially trained [36].

We denote them as natural and robust models, respectively.

We expect that adversarial examples crafted against the ro-

bust model are more difficult to defend than those from the

natural model and, therefore, can better evaluate explana-

tion methods.

The targeted attack aims to change an image to mislead

to a specified false class or saliency map. We chose to create

false saliency maps of given images against a given expla-

nation method with their classes kept comparing with pre-

vious work [5, 10]. We used two strategies for manipulat-

ing saliency maps: unstructured and structured attacks. The

former aims to create uninformative saliency maps whereas

the latter misleads to the saliency map of a specified class.

Setups for evaluation using the untargeted attack. For

the natural ResNet-50, we randomly sampled 4000 images

from the validation set of ImageNet. The robust ResNet was

trained on the Restricted ImageNet, a customized subset of

ImageNet [36]. We additionally sampled 1000 random im-

ages from the validation set of the dataset for the robust

model. Then, we created corresponding adversarial images

using the projected gradient descent (PGD), one of the best

universal first-order adversarial attacks [17] with the config-

uration for the MNIST dataset. We varied the ℓ∞-norm of

the perturbation distance to {0.07, 0.1, 0.3, 1, 2, 4, 8}. We

compared our approach with the followings: SimGrad [28],

SmGrad [30], IntGrad [34], DeepLIFT [27], RT-Sal [3], and

GradCam [25]. See the supp. S2.2 for the details on the ad-

versarial example generations.

Results of the untargeted attack. We present the results

in Figure 3. First, our explanations successfully retrieve the
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(a) Structured attack

(b) Unstructured attack

Figure 4. Target class retrieval performance against the tar-

geted attacks on the natural ResNet-50. The explanation types

are presented below each plot. (a) The horizontal axis represents

the explanation methods to compare with each other. Each colored

bar in the plots indicates a method to which the attack is applied.

(b) Plots correspond to the adversarial images against RT-Sal [3].

original target classes along with the entire perturbation dis-

tance. This result shows that our approach extracts mean-

ingful evidence robustly in the presence of severe perturba-

tions. Other methods encountered significant performance

decrease even at the smallest perturbation, ǫ = 0.07, which

is visually imperceptible. This is probably because the sub-

tle features in the clean images were mostly perturbed even

with such a small value of ǫ; thus, the methods failed to de-

termine robust features invariant to the perturbations. Sec-

ond, our explanation learned from the clean images contains

robust features such that it applies to the adversaries up to

ǫ = 1.0. This allows a model to be tolerant against such

an attack without adversarial training when combined with

RelEx. In contrast, other approaches performed poorly, sim-

ilar to the previous case.

For the ablation study, we considered four variants of our

method without the batch or varying the number of epochs

to iterate for solving Eq. (11). The benefit of the batch and

iterating more epochs increased the robustness of explana-

tions on clean images against the attack, which is more sig-

nificant on the robust model.

Figure 3 also depicts that the higher perturbation results

in the smaller ℓ1-norms of our saliency maps. Although

we observe a similar behavior with the gradient-based ap-

proaches, they failed to determine relevant features, per-

forming poorly in the class retrieval. These results demon-

strate the benefit of smoothing the local explanation as dis-

cussed in Section 3.1.

Setups for evaluation using the targeted attacks. We

created 1000 adversarial examples of the sampled input im-

ages by applying the targeted attacks to each method on

the natural ResNet-50 as proposed in [5] and [10] for the

structured and unstructured attacks, respectively. However,

we observed that no adversarial examples were generated

(a) Untargeted attack

(b) Targeted attacks

Figure 5. Similarity of the saliency maps in the rank order cor-

relation for (a) untargeted and (b) structured attacks. (Bottom-

left) See Figure 4(a) for the axis labels. (Bottom-right) The adver-

sarial images were created against RT-Sal [3].

against our method. Although a correct analysis of this ob-

servation is beyond the scope of this study, we propose that

it is because of the insufficient perturbations of the targeted

attacks to mislead our method. We empirically validated

the assumption that the ℓ2-norm of saliency maps due to

the targeted attacks belongs to the region where RelEx is

reliable in the untargeted attack. (See the supp. S3.1) In-

stead, we evaluated our method using the adversarial exam-

ples against other methods by assuming that the adversarial

attack is transferable [14].

Results of the targeted attacks. Overall, the results of

the targeted attacks are similar to those of the untargeted at-

tack, as depicted in Figure 4. As expected, we observed that

the attacks are transferable. RelEx achieved an outstanding

retrieval rate of close to 1 over all the settings. Unlike the re-

sults of the untargeted attacks, the retrieval rates with Grad-

CAM and RT-Sal, which are about 0.83 and 0.60, respec-

tively, are comparable to the rate of the proposed method.

This suggests that the PGD-based untargeted attack is more

effective than the targeted attacks. Although Figure 4 pro-

vides the results against RT-Sal in the unstructured attack,

we found similar observations in the attacks against other

methods. See the supp. S3.4 for more results.

4.2. Evaluations of the Fidelity of Saliency Maps

Metrics for the similarity of saliency maps. The eval-

uations of the target class retrieval demonstrated the robust-

ness of the learned explanations by RelEx. To understand

why, we delved into the fidelity of the saliency maps. In

particular, we quantified the quality of the saliency maps of

adversarial examples by measuring 1) their spatial similar-

ity to those of their clean counterparts and 2) the relevance

of features identified by an explanation to a class score.

In the similarity evaluation, we use a metric, Spearman’s
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Table 1. Comparison of the feature relevance, R, of saliency

maps for given ℓ∞-norm of perturbation, ǫ, against the untar-

geted attack.
Natural ResNet-50 Robust ResNet-50

ǫ 0.07 0.1 0.3 1.0 0.07 0.1 0.3 1.0

SimGrad 0.03 0.03 0.04 0.03 0.40 0.37 0.22 0.14

IntGrad 0.07 0.07 0.06 0.03 0.35 0.30 0.13 0.07

SmoothGrad 0.18 0.17 0.12 0.04 0.38 0.33 0.15 0.10

DeepLIFT 0.04 0.04 0.04 0.04 0.48 0.43 0.20 0.12

GradCAM 0.14 0.11 0.08 0.03 0.58 0.45 0.39 0.16

RT-Sal 0.12 0.10 0.06 0.02 N/A N/A N/A N/A

MASK 0.05 0.04 0.03 0.01 0.40 0.32 0.15 0.14

RelEx 0.94 0.95 0.96 0.97 0.78 0.66 0.60 0.56

Class chosen to explain Class chosen to explain
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Figure 6. Comparison of explanations for arbitrarily chosen

classes on CIFAR-10. (a) Plots show the softmax scores of expla-

nations corresponding to all 10 classes for given natural images of

class 8. (b) Plots correspond to adversarial counterparts.

rank-order correlation [31], to evaluate the similarity of

saliency maps as in [10, 5]. The Spearman’s rank-order cor-

relation inherently ranks the importance of input features

according to a saliency map and enables us to naturally cor-

relate feature ranks between saliency maps.

Results of the similarity of saliency maps. Figure 5 in-

dicates that the spatial similarity of RelEx is analogous to

those of other methods, unlike the case of the class retrieval.

Worse, all other methods in the case of the untargeted at-

tack outperform our method without the batch. The results

suggest that the similarity metric is inadequate to explain

the outstanding performance of RelEx in the class retrieval.

The performance mismatch between the class retrieval and

the similarity of saliency maps by existing methods is due

to the incorrect attribution of input features. We observed

that RelEx learned a saliency map adapting to the degree of

perturbations. In contrast, the existing methods failed to at-

tribute relevant input features to the neighboring data points,

and their saliency maps remain fixed, as illustrated in Fig-

ure 1(b). See the supp. S3.2 for results of another metric.

Metrics for feature relevance evaluation. We use two

metrics to evaluate the pixel-level relevancy for a given

saliency map: deletion and preservation. Deletion quanti-

fies the accuracy of finding the smallest susceptive region,

whereas preservation corresponds to the smallest evidential

region, discussed in Section 3.2. See the supp. S3.3 for the

details on the metrics. The sole use of deletion is discour-

aged because, for instance, two extreme cases of the accu-

rate and completely wrong smallest susceptive regions may

have an identical deletion score. Therefore, similar to the

F1 score, we use the harmonic mean of the deletion and

preservation, R, as a metric of feature relevance; in partic-

ular, 1
R

= 1
2

(

1
P
+ 1

1−D

)

, where P and D are the preser-

vation and deletion scores. We used 1−D because a lower

score results in better deletion.

Results of the feature relevancy. Table 1 indicates that

RelEx outperforms other methods in terms of the pixel-level

relevancy, R. The results confirm the evaluations of the tar-

get class retrieval, and visually plausible saliency maps do

not necessarily present true evidence for explaining model

predictions. See the supp. S3.5 for more results.

Extracting explanations conditioned on arbitrary

classes. Finally, we investigate whether our method can

extract explanations conditioned on arbitrary non-target

classes for a given input. We sampled 400 images annotated

as class 8 from the test set of CIFAR-10. Then, we drew ex-

planations of classes from the samples and their adversaries

on natural ResNet-18 with the ℓ∞-norm of perturbation set

to 8 out of 255 [36], and compared the softmax scores of

our explanations to those of the existing methods. Figure 6

illustrates that the scores of our explanations are close to 1

consistently through all classes on both the natural samples

and their adversarial examples, outperforming others. The

results indicate that RelEx can extract explanations as long

as relevant evidence exists in the input. The explanations

represent the specified classes faithfully, effectively exclud-

ing information on irrelevant classes. We provide more re-

sults in the supp. S3.6.

5. Conclusion

We introduced a reliable explanation of neural networks

that requires consistency on model outputs and the corre-

sponding saliency maps along with neighboring data points.

The proposed method, RelEx, addresses the concern by in-

terpreting the model explanations via a locally smooth land-

scape with respect to the loss function of the model out-

put. Our analysis demonstrated that the smoothness in the

landscape improves as we reduce the ℓ1-norm of a saliency

map. The experimental results demonstrated that the pro-

posed method based on the analysis identifies features rel-

evant to the target class retrieval against the strong white-

box attacks. We also demonstrated that causal evidence for

model predictions does not always coincide with visually

appealing saliency maps as in previous methods.
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