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Figure 1. Illustration of our proposed style transfer process. First we transfer global patterns in low resolution, then revise local patterns in

high resolution. For better visualization, we resize stylized images of different scale into the same size. Zoom in to have a better view.

Abstract

Artistic style transfer aims at migrating the style from an

example image to a content image. Currently, optimization-

based methods have achieved great stylization quality, but

expensive time cost restricts their practical applications.

Meanwhile, feed-forward methods still fail to synthesize com-

plex style, especially when holistic global and local patterns

exist. Inspired by the common painting process of draw-

ing a draft and revising the details, we introduce a novel

feed-forward method named Laplacian Pyramid Network

(LapStyle). LapStyle first transfers global style patterns in

low-resolution via a Drafting Network. It then revises the lo-

cal details in high-resolution via a Revision Network, which

hallucinates a residual image according to the draft and the

image textures extracted by Laplacian filtering. Higher reso-

lution details can be easily generated by stacking Revision

Networks with multiple Laplacian pyramid levels. The final

stylized image is obtained by aggregating outputs of all pyra-

mid levels. Experiments demonstrate that our method can

synthesize high quality stylized images in real time, where

holistic style patterns are properly transferred.

1. Introduction

Artistic style transfer is an attractive technique which can

create an art image with the structure of a content image and

the style patterns of an example style image. It has been

a prevalent research topic for both academy and industry.

Recently, there have been a lot of methods proposed for

neural style transfer, which can be roughly divided into two

types: image-optimization and model-optimization methods.

Image-optimization methods iteratively optimize stylized

image with fixed network. The seminal work of Gatys et

al. [6] achieves style transfer in an iterative optimization

process, where the style patterns are captured by correlation

of features extracted from a pre-trained deep neural network.

Following works improve [6] mainly in the form of different

loss functions [12, 24]. Although superior stylization results

are achieved, e.g., STROTSS [12], widespread applications

of these methods are still restricted by their slow online

optimization process. On the contrary, model-optimization

methods update neural networks by training and are feed-

forward in testing. There are mainly three subdivided types:

(1) Per-Style-Per-Model methods [10, 15, 29, 30, 31] are

trained to synthesize images with a single given style image;
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(2) Multi-Style-Per-Model methods [2, 5, 32, 17, 34] intro-

duce various network architectures to simultaneously han-

dle multiple styles; (3) Arbitrary-Style-Per-Model methods

[9, 18, 27, 16, 22] further adopt diverse feature modification

mechanisms to transfer arbitrary styles. Reviewing these

methods, we find that although local style patterns can be

transferred, complex style mixed with both global and local

patterns is still not properly transferred. Meanwhile, artifacts

and flaws appear in many cases. To this end, in this work,

our main goal is to achieve superior high-quality artistic style

transfer results with feed-forward network, where local and

global patterns can be reserved aesthetically.

How human painters handle the complex style patterns

while painting? A common process, especially for a begin-

ner, is to first draw a draft to capture global structure and then

revise the local details gradually, instead of directly finishing

the final painting part-by-part. Inspired by this, we propose a

novel neural network named Laplacian Pyramid Network

(LapStyle) for style transfer. Firstly, in our framework, a

Drafting Network is designed to transfer global style patterns

in low-resolution, since we observe that global patterns can

be transferred easier in low resolution due to larger receptive

field and less local details. A Revision Network is then used

to revise the local details in high-resolution via hallucinating

a residual image according to the draft and the textures ex-

tracted by Laplacian filtering over the 2× resolution content

image. Note that our Revision Network can be stacked in a

pyramid manner to generate higher resolution details. The

final stylized image is obtained by aggregating outputs of all

pyramid levels. Further, we adopt shallow patch discrimina-

tors to adversarially learn local style patterns. As illustrated

in Fig. 1, appealing stylization results are achieved by our

“Drafting and Revison” process. To summarize, the main

contributions are as follows:

• We introduce a novel framework “Drafting and Revi-

sion”, which simulates painting creation mechanism by

splitting style transfer process into global style pattern

drafting and local style pattern revision.

• We propose a novel feed-forward style transfer method

named LapStyle. It uses a Drafting Network to trans-

fer global style patterns in low-resolution, and adopts

higher resolution Revision Networks to revise local

style patterns in a pyramid manner according to outputs

of multi-level Laplacian filtering of the content image.

• Experiments demonstrate that our method can gener-

ate high-resolution and high-quality stylization results,

where global and local style patterns are both effec-

tively synthesized. Besides, the proposed LapStyle is

extremely efficient and can synthesize high resolution

stylized image of 512 pix in 110 fps.

2. Related Work

Style Transfer. Style transfer algorithms aim at migrating

the style from an example image to a content image. With

the initiation of the seminal work Gatys et al. [6], various

methods have been developed thereafter to address different

aspects of, including visual quality [14, 8], head portrait

[25], semantic control [1, 7] and so on. Kolkin et al. propose

STROTSS [12] and higher quality stylized images can be

generated by adopting Earth Movers Distance (rEMD) loss

for optimization, which deploys the style attributes with min-

imum distortion to content’s semantic layout. However, the

expensive computational cost of optimization-based meth-

ods hinder their practical applications. In order to improve

run-time efficiency, researchers have proposed to replace the

iterative optimization procedure with feed-forward networks.

Per-Style-Per-Model methods [10, 15, 29, 30, 31, 3] adopt

auto-encoder as style transfer network trained with variants

of content and style losses derived from [6]. Multi-Style-

Per-Model methods [2, 5, 32, 17, 34] embed learnable affine

transformation architectures in the middle of auto-encoder

to incorporate multiple styles. Recently, Arbitrary-Style-Per-

Model methods [9, 18, 27, 16, 22] achieve arbitrary style

transfer via style feature embedding networks.

Model-optimization based methods greatly improve com-

putation efficiency with visual quality compromises. AdaIN

[9], WCT [18] and linear transformation [16] adjust holistic

feature distributions so they all fail to preserve local style

patterns. SANet [22] embed local style patterns in content

feature map with the aid of style attention mechanism, but

they cannot perform well with large-scale textures such as

the swirls in The Starry Night. On the contrary, our pro-

posed LapStyle can capture the style statistics at different

scales, which greatly improves the visual quality over current

model-optimization based methods.

Multi-scale Learning. In image manipulation area, working

at multiple scales is a common technique to better capture a

wide range of image statistics [4, 13, 26, 28, 20, 32, 12]. Lai

et al. propose LapSRN [13] to progressively reconstruct the

high-resolution images by predicting high-frequency resid-

uals with cascaded convolutional networks. Shaham et al.

propose SinGAN [26] to train the network with single im-

age by capturing patch-level distribution at different image

scales with a pyramid of adversarial networks. WCT [18]

and PhotoWCT [19] also generate results coarse to fine grad-

ually, but they work at the original RGB domain and not

explicitly revise stylized details in the residual field as Lap-

Style does. WCT2 [33] also exploits residual information via

wavelet transform where the residual information is mainly

used to keep spatial details of original image. Differently,

LapStyle constructs the Revision Network in the residual

field to better transfer and enhance local stylization details.

STROTSS [12] also adopts a multi-scale scheme to apply

style transfer by minimizing EMD loss at increasing resolu-
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Figure 2. Overview of our framework. (a) We first generate image pyramid {x̄c, rc} from content image xc with the help of Laplacian filter.

(b) Rough low-resolution stylized image is generated by the Drafting Network. (c) Then the Revision Network generates stylized detail

image in high resolution. (4) Final stylized image is generated by aggregating the outputs pyramid. L, C and A in image represent Laplacian,

concatenate and aggregation operation separately.

tion and exhibits high visual quality. However, the iterative

optimization procedure suffers high computation cost and

needs several minutes to synthesize one image. Our pro-

posed LapStyle captures a wide range of style statistics from

global distribution to local patterns by adopting a multi-scale

network to better balance the trade-off between run-time

efficiency and visual quality.

3. Approach

In this section, we will introduce the proposed feed-

forward style transfer network LapStyle in detail. For ease

of understanding, in this section, we only describe the frame-

work with a 2-level pyramid. The base level is a Drafting

Network and a Revision Network is used for the 2nd level of

higher resolution, as shown in Fig. 2. It is quite straightfor-

ward to build more levels by stacking Revision Networks.

3.1. Network Architecture

Our proposed LapStyle takes a content image xc ∈
RHc×Wc and a pre-defined style image xs as inputs, and

eventually synthesizes a stylized image xcs. As shown in

Fig. 2, for pre-processing, we construct a 2-level image

pyramid {x̄c, rc}. x̄c is simply a 2× downsampled version

of xc. rc is obtained with the help of Laplacian filter, i.e.,

rc = xc − Up(L(x̄c)), where L denotes Laplacian filtering

and Up is 2× upsample operation. The style image xs is

also downsampled to a low-resolution version x̄s.

In the first stage, the Drafting Network first encodes con-

Figure 3. Illustration of the proposed Drafting Network.

text and style features from both x̄c and x̄s with a pre-trained

neural network, then it modulates content feature using style

feature in multiple granularities and finally generates the

stylized image x̄cs ∈ RHc/2·Wc/2 using a decoder. In the

second stage, the Revision Network first up-samples x̄cs to

x′

cs ∈ RHc·Wc , then it concatenates x′

cs and rc as the input

to generate stylized a detail image rcs ∈ RHc·Wc . Finally,

we obtain stylized image xcs ∈ RHc·Wc by aggregating the

pyramid outputs:

xcs = A(x̄cs, rcs), (1)

where A denotes the aggregation function. In the following,

we will introduce the configuration of Drafting Network and

Revision Network in detail.
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Figure 4. Illustration of the proposed Revision Network. C and A

here represent concatenate and aggregation operation separately.

3.2. Drafting Network

The Drafting Network aims at synthesizing global style

patterns in low resolution. Why low resolution? As demon-

strated in Section 4.3, we observe that global patterns can be

transferred easier in low resolution, due to large receptive

field and less local details. To achieve single style transfer,

earlier work [10] directly trains an encoder-decoder module,

where only content image is used as input. To better combine

the style feature and the content feature, we adopt AdaIN

module from recent arbitrary style transfer method [9].

The architecture of Drafting Network is shown in Fig

3, which includes an encoder, several AdaIN modules and

a decoder. (1) The encoder is a pre-trained VGG-19 net-

work, which is fixed during training. Given x̄c and x̄s, the

VGG encoder extracts features in multiple granularity at 2 1,

3 1 and 4 1 layers. (2) Then, we apply feature modulation

between the content and style feature using AdaIN mod-

ules after 2 1, 3 1 and 4 1 layers, respectively. (3) Finally,

in each granularity of decoder, the corresponding feature

from the AdaIN module is merged via a skip-connection.

Here, skip-connections after AdaIN modules in both low and

high levels are leveraged to help to reserve content structure,

especially for low-resolution image.

3.3. Revision Network

The Revision Network aims to revise the rough stylized

image via generating residual details image rcs, while the

final stylized image is generated by combining rcs and rough

stylized image x̄cs. This procedure ensures that the distri-

bution of global style pattern in x̄cs is properly kept. Mean-

while, learning to revise local style patterns with residual

details image is easier for the Revision Network.

As shown in Fig. 4, the Revision Network is designed as a

simple yet effective encoder-decoder architecture, with only

one down-sampling and one up-sampling layer. Further, we

introduce a patch discriminator to help Revision Network to

capture fine patch textures under adversarial learning setting.

We define the patch discriminator D following SinGAN [26],

where D owns 5 convolution layers and 32 hidden channels.

We choose to define a relatively shallow D to (1) avoid over-

fitting since we only have one style image and (2) control the

receptive field to ensure D can only capture local patterns.

3.4. Training

During training, the Drafting Network and the Revision

Network are both optimized with content and style loss,

while the Revision Network further adopts adversarial loss.

Thus, we first describe style and content losses, then intro-

duce the full objective of two networks separately. Since our

LapStyle is “Per-Style-Per-Model”, during training, we keep

a single xs, and a set of xc from content dataset Xc.

Style Loss. Following recent optimization-based method

STROTSS [12], we combine the relaxed Earth Mover Dis-

tance (rEMD) loss and the commonly used mean-variance

loss as style loss. To begin with, given an image, we can use

pre-trained VGG-19 encoder to extract a set of feature vec-

tors as F = {F 1 1, F 2 1, F 3 1, F 4 1, F 5 1}. The rEMD loss

aims at measuring the distance between the feature distribu-

tions of style image xs and stylized image xcs. For simplic-

ity, we omit the superscripts which indicate layer index in the

following. Supposing Fs ∈ Rhsws×c, Fcs ∈ Rhcswcs×c are

the features of xs and xcs, their rEMD loss can be calculated

as:

lr = max





1

hsws

hsws
∑

i=1

min
j

Cij ,
1

hcswcs

hcswcs
∑

j=1

min
i
Cij



 ,

(2)

where the cosine distance term Cij is defined as:

Cij = 1−
Fs,i · Fcs,j

‖Fs,i‖ ‖Fcs,j‖
(3)

To keep the magnitude of the feature vectors, we also adopt

the commonly used mean-variance loss as:

lm = ‖µ(Fs)− µ(Fcs)‖2 + ‖σ(Fs)− σ(Fcs)‖2 , (4)

where µ and σ calculate the mean and co-variance of the

feature vectors separately.

Content Loss. For content loss, we adopt the commonly

used normalized perceptual loss and the self similarity loss

between Fc ∈ Rhcwc×c and Fcs ∈ Rhcswcs×c proposed in

[12]. Note that hcs equals hc and wc equals wcs because of

xc and xcs are of the same resolution. The perceptual loss

is defined as:

lp = ‖norm(Fc)− norm(Fcs)‖2 , (5)

where norm denotes the channel-wise normalization for F .

The self-similarity loss aims to retain the relative relation in

content image to stylized image, which is defined as:
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Dcs
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i D
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∣

∣

∣

∣

∣

, (6)

here Dc
ij and Dcs

ij are the (i, j)th entry of self-similarity

matrices Dc and Dcs, respectively. Here Dij is pairwise

cosine similarity < Fi, Fj >.

Loss of Drafting Network. In training phase of Drafting

Network, low resolution images x̄c and x̄s are used as the

network input, and also are used to calculate the content

loss and style loss separately. The overall training objective

function of the Drafting Network is defined as:

LDraft = (lp + λ1 · lss) + α · (lm + λ2 · lr) (7)

where λ1, λ2 and α are weight terms. We control the balance

of content and style loss via adjusting α. Specifically, lr and

lss are defined on 3 1 and 4 1 layers, meanwhile lm and lp
are defined from 1 1 to 5 1 layers.

Loss of Revision Network. In training phase of Revision

Network, the parameters of Drafting Network are fixed and

the training loss is built upon xcs. To better learn local

fine-grain textures, except for base content and style loss

Lbase = LDraft, we introduce a discriminator and train

Revision Network with an adversarial loss term. The overall

optimization objective is defined as:

min
Rev

Lbase + β ·min
Rev

max
D

Ladv(Rev,D), (8)

where Rev denotes the Revision Network, D denotes the

discriminator, and β controls the balance between base style

transfer losses and adversarial loss. Ladv is standard adver-

sarial training loss.

4. Results

4.1. Dataset and Setup

Dataset. To train our model, we need a single style image

and a collection of content images. In this work, following

conventions, we use MS-COCO [21] as content images and

select style images from WikiArt [23]. Some copyright free

images from Pexels.com is also used as style images.

Implementation Details. In LapStyle, Drafting and Revi-

sion Networks are trained in sequence. The former one is

first trained with resolution of 128× 128, then the later one

is trained with 256 × 256. To achieve higher resolution,

we can consecutively train more Revision Networks using

resolution of 512 and 1024. For both networks, we use the

Adam optimizer [11] with a learning rate of 1e-4 and a batch

size of 5 content images. For both networks, the training

process consists of 30,000 iterations. The loss weight term,

λ1, λ2, α and β are set to 16, 3, 3 and 1, respectively. More

detailed network configurations of LapStyle is presented in

our supplementary material.

Figure 5. User preference results of five SOTA methods.

Method Time (256pix) Time(512pix)

Gatys et al. [6] 15.863 50.804

STROTSS [12] 163.052 177.485

Johnson et al. [10] 0.132 0.149

WCT [18] 0.689 0.997

AdaIN [9] 0.011 0.039

Linear [16] 0.007 0.039

SANet [22] 0.017 0.055

Ours 0.008 0.009

Table 1. Execution time comparison (in seconds).

4.2. Comparison with Prior Works

Qualitative Comparison. As shown in Fig. 6, we compare

our method with state-of-the-art feed-forward methods. Like

our LapStyle, Johnson et al. [10] is also a single style trans-

fer method. [10] can synthesize some local style patterns

with clear structure (e.g. row 8), however, the color distri-

butions and texture structures of content image are often

maintained (e.g. rows 2 and 8), resulting in insufficient styl-

ization. AdaIN [9], WCT [18] and SANet [22] are arbitrary

style transfer models, which have some common features:

(1) they mainly transfer the color distribution and simple

local patterns of style image; (2) the complex style patterns

with bigger size is basically not transferred (e.g. rows 2,

5 and 6); (3) the local patterns are usually not accurately

transferred, resulting in messy local textures (e.g. rows 2,

8). To be specific, the problem of retaining color distribution

of content is severe in AdaIN [9] (e.g. rows 2, 7 and 8).

WCT [18] discards too much context structure, resulting in

disordered and chaotic image. In contrast to these methods,

our method can simultaneously transfer simple local style

patterns and complex global style patterns, retaining clear

and clean structure of style patterns. The color distribution

is also completely transferred. Although LapStyle can not

transfer arbitrary style, we believe that improving the styl-

ization quality is most important for feed-forward method.

We leave arbitrary LapStyle for future work.
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Figure 6. Qualitative comparisons between our method and state-of-the-art feed forward methods.
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Figure 7. Qualitative comparisons between our method and optimization-based methods STROTSS [12] and Gatys et al. [6].

In Fig. 7, we show some stylization examples synthesized

by our method and two optimization-based style transfer

methods [12, 6], where zoom-in views are also demonstrated

for better comparison. Gatys et al. [6] synthesis stylized

image in single scale via optimizing gram matrix. As shown

in Fig. 7, although holistic style patterns are transferred, the

distribution of style patterns are often inappropriate (e.g. left-

down and right-down). Meanwhile, the color distribution

of stylized image is not accurate enough. STROTSS [12] is

the state-of-the-art optimization-based method, which syn-

thesizes stylized image in multiple scales sequentially (from

32 pix to 512 pix) with EMD loss. As shown in Fig. 7, the

stylized images have delicate texture and clear style pattern.

As a feed-forward method, our method achieves comparable

stylization results with STROTSS. In some cases (e.g. top-

right and bottom-left in Fig. 7), large scale patterns are better

synthesized by our method. The comparative advantage of

STROTSS is that style patterns and context structures are

combined better in some cases (e.g. bottom-right in Fig. 7),

due to its optimization process.

User Study. We choose 15 style images and 15 content im-

ages to synthesize 225 images in total using our method and

5 competitive SOTA methods. Then, we randomly sample

20 content-style pairs. For each pair, we display stylized

images side-by-side in a random order to subjects and ask

them to select their most favorite one. As shown in Fig 5,

we collect 2000 votes from 100 users and show the percent-

age of votes for each method in the form of pie chart. The

comparison results demonstrate that our stylized results are

significantly more appealing than competitors.

Efficiency Analysis. We compare the efficiency of our pro-

posed method and other optimization methods and feed-

forward methods. Two image scales are used during evalua-

tion: 256 and 512 resolution. For 512-pixel inference, two

Revision Networks are used. All experiments are conduct

using a single Nvidia Titan X GPU. The comparison results

are shown in Table. 1, where we can find our method runs

in real-time and achieves 120 fps and 110 fps with 256-pix

and 512-pix, respectively. There are three reasons for the

fast inference speed: (1) The Drafting Network is build upon

low-resolution; (2) AdaIN module is efficient and (3) the

Revision Network is shallow. As shown in Fig. 6 and Fig.

7, the quality of stylized image generated by our methods

is comparable with optimization-based method, and is sig-

nificantly better than feed-forward methods. To conclude,

Table. 1 demonstrates that our method achieves the SOTA

inference speed among feed-forward methods, and is much

more faster than optimization methods.

4.3. Ablation Study

Loss Function. We conduct ablation experiments to verify

the effectiveness of each loss term used for training LapStyle,

the results are shown in Fig. 8. (1) Without rEMD loss lr,

the style patterns of yellow circle disappear and the overall

stylization degree is decreased. This result demonstrates

the effectiveness of rEMD loss, and we are the first to train
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Figure 8. Ablation study of effects of loss function used during training. Here, lr , lss and lp are used in both networks, while ladv only used

in the Revision Network. lm is used in all ablation settings to keep style transferred. Best viewed zoomed-in on screen.

Figure 9. Ablation study of effectiveness of the Revision Network.

(a) Drafting Network trained on 128 pix (result image is up-sampled

to 256 pix). (b) Drafting Network directly trained on 256 pix. In

(a) and (b), Revision Network is not used. (c) Revision Network

is directly built upon RGB image instead of difference image. (d)

Revision Network is trained without Drafting Network.

feed-forward network with rEMD loss; (2) Without self-

similarity loss lss, some inappropriate black style patterns

appear in the bottom-left corner. (3) Without perceptual loss

lp, the structure of content image is totally discarded and the

LapStyle directly re-builds the style image. These results

suggest that lp is necessary for our method, meanwhile lss
can further constrain the content consistency to achieve bet-

ter style distribution. (4) Without adversarial loss ladv, the

texture quality and color distribution become worse than full

model. This comparison demonstrates that the adversarial

learning in revision phase can effectively improve the styliza-

tion quality, especially local texture and color distribution.

Effectiveness of Revision Network. The results of ablation

experiments are shown in Fig. 9. Before revision, the result

of Drafting Network is blur in Fig. 9 (a), due to low reso-

lution. If we directly train Drafting Network on 256 pix, as

Fig. 9 (b) shows, the result is clear but its stylization degree

is limited. These results demonstrate the effectiveness and

Figure 10. Trade-off of content-style losses.

necessary of our “Drafting and Revison” framework. An-

other question is whether it is necessary to revise the rough

stylized image with the help of Laplacian difference image?

The image of Fig. 9 (c) is directly generated by the Revision

network in RGB space. We can see the style distribution of

revision result is divorced from the drafting image (a) and it

seems less harmony than the original result. This observation

suggests revising stylized image in a residual form is more

controllable and can generate better results.

Effectiveness of Drafting Network. As shown in Fig. 9,

without DraNet, the RevNet can still capture style patterns

to some extend, but significantly worse than full model.

Content-style Tradeoff. In the training phase, we can con-

trol the stylization degree by adjusting the weight term α. As

shown in Fig. 10, the network tends to preserve more details

and structures of the content image with low style loss, and

synthesize excess style patterns with high style loss.

5. Conclusion

In conclusion, we propose a new feed-forward style trans-

fer algorithm LapStyle which synthesizes stylized image in

a progressive procedure. In LapStyle, we propose the novel

framework “Drafting and Revision”, which first synthesizes

a rough drafting with global pattern and then revises local

style patterns according to residual image generated with the

help of Laplacian filtering. Experiments demonstrate that our

method is effective and efficient. It can synthesize images

that are preferred over other state-of-the-art feed-forward

style transfer algorithms and can run in real-time. Currently,

our LapStyle is designed following the Per-Style-Per-Model

fashion, arbitrary style transfer is left to be our future work.

5148



References

[1] Alex J Champandard. Semantic style transfer and turn-

ing two-bit doodles into fine artworks. arXiv preprint

arXiv:1603.01768, 2016. 2

[2] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang

Hua. Stylebank: An explicit representation for neural image

style transfer. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1897–1906,

2017. 2

[3] Tian Qi Chen and Mark Schmidt. Fast patch-based style

transfer of arbitrary style. arXiv preprint arXiv:1612.04337,

2016. 2

[4] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep

generative image models using a laplacian pyramid of adver-

sarial networks. In Advances in neural information processing

systems, pages 1486–1494, 2015. 2

[5] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. arXiv preprint

arXiv:1610.07629, 2016. 2

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2414–2423, 2016. 1, 2, 5, 7

[7] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron

Hertzmann, and Eli Shechtman. Controlling perceptual fac-

tors in neural style transfer. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3985–3993, 2017. 2

[8] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. Ar-

bitrary style transfer with deep feature reshuffle. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8222–8231, 2018. 2

[9] Xun Huang and Serge Belongie. Arbitrary style transfer

in real-time with adaptive instance normalization. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1501–1510, 2017. 2, 4, 5

[10] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016. 1, 2, 4, 5

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[12] Nicholas Kolkin, Jason Salavon, and Gregory Shakhnarovich.

Style transfer by relaxed optimal transport and self-similarity.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10051–10060, 2019. 1, 2, 4,

5, 7

[13] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

624–632, 2017. 2

[14] Chuan Li and Michael Wand. Combining markov random

fields and convolutional neural networks for image synthesis.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2479–2486, 2016. 2

[15] Chuan Li and Michael Wand. Precomputed real-time texture

synthesis with markovian generative adversarial networks.

In European conference on computer vision, pages 702–716.

Springer, 2016. 1, 2

[16] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.

Learning linear transformations for fast image and video style

transfer. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3809–3817, 2019. 2, 5

[17] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Diversified texture synthesis with

feed-forward networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3920–3928, 2017. 2

[18] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In Advances in neural information processing

systems, pages 386–396, 2017. 2, 5

[19] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and

Jan Kautz. A closed-form solution to photorealistic image

stylization. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 453–468, 2018. 2

[20] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing

Kang. Visual attribute transfer through deep image analogy.

arXiv preprint arXiv:1705.01088, 2017. 2

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 5

[22] Dae Young Park and Kwang Hee Lee. Arbitrary style transfer

with style-attentional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5880–5888, 2019. 2, 5

[23] Fred Phillips and Brandy Mackintosh. Wiki art gallery, inc.:

A case for critical thinking. Issues in Accounting Education,

26(3):593–608, 2011. 5

[24] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and

controllable neural texture synthesis and style transfer using

histogram losses. arXiv preprint arXiv:1701.08893, 2017. 1

[25] Ahmed Selim, Mohamed Elgharib, and Linda Doyle. Painting

style transfer for head portraits using convolutional neural

networks. ACM Transactions on Graphics (ToG), 35(4):1–18,

2016. 2

[26] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan:

Learning a generative model from a single natural image. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 4570–4580, 2019. 2, 4

[27] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-

net: Multi-scale zero-shot style transfer by feature decoration.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8242–8250, 2018. 2

[28] YiChang Shih, Sylvain Paris, Connelly Barnes, William T
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