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Abstract

We present a new method, called MEsh TRansfOrmer

(METRO), to reconstruct 3D human pose and mesh ver-

tices from a single image. Our method uses a transformer

encoder to jointly model vertex-vertex and vertex-joint in-

teractions, and outputs 3D joint coordinates and mesh ver-

tices simultaneously. Compared to existing techniques that

regress pose and shape parameters, METRO does not rely

on any parametric mesh models like SMPL, thus it can be

easily extended to other objects such as hands. We fur-

ther relax the mesh topology and allow the transformer

self-attention mechanism to freely attend between any two

vertices, making it possible to learn non-local relationships

among mesh vertices and joints. With the proposed masked

vertex modeling, our method is more robust and effective

in handling challenging situations like partial occlusions.

METRO generates new state-of-the-art results for human

mesh reconstruction on the public Human3.6M and 3DPW

datasets. Moreover, we demonstrate the generalizability of

METRO to 3D hand reconstruction in the wild, outperform-

ing existing state-of-the-art methods on FreiHAND dataset.

1. Introduction

3D human pose and mesh reconstruction from a single

image has attracted a lot of attention because it has many

applications including virtual reality, sports motion analy-

sis, neurodegenerative condition diagnosis, etc. It is a chal-

lenging problem due to complex articulated motion and oc-

clusions.

Recent work in this area can be roughly divided into two

categories. Methods in the first category use a parametric

model like SMPL [24] and learn to predict shape and pose

coefficients [12, 21, 34, 17, 19, 29, 39, 18]. Great success

has been achieved with this approach. The strong prior en-

coded in the parametric model increases its robustness to

environment variations. A drawback of this approach is that

the pose and shape spaces are constrained by the limited ex-

emplars that are used to construct the parametric model. To

overcome this limitation, methods in the second category do
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Figure 1: METRO learns non-local interactions among

body joints and mesh vertices for human mesh reconstruc-

tion. Given an input image in (a), METRO predicts hu-

man mesh by taking non-local interactions into consider-

ation. (b) illustrates the attentions between the occluded

wrist joint and the mesh vertices where brighter color indi-

cates stronger attention. (c) is the reconstructed mesh.

not use any parametric models [20, 7, 27]. These methods

either use a graph convolutional neural network to model

neighborhood vertex-vertex interactions [20, 7], or use 1D

heatmap to regress vertex coordinates [27]. One limitation

with these approaches is that they are not efficient in mod-

eling non-local vertex-vertex interactions.

Researchers have shown that there are strong correla-

tions between non-local vertices which may belong to dif-

ferent parts of the body (e.g. hand and foot) [50]. In

computer graphics and robotics, inverse kinematics tech-

niques [2] have been developed to estimate the internal joint

positions of an articulated figure given the position of an

end effector such as a hand tip. We believe that learning

the correlations among body joints and mesh vertices in-

cluding both short range and long range ones is valuable for

handling challenging poses and occlusions in body shape

reconstruction. In this paper, we propose a simple yet effec-

tive framework to model global vertex-vertex interactions.

The main ingredient of our framework is a transformer.

Recent studies show that transformer [48] significantly

improves the performance on various tasks in natural lan-

guage processing [3, 8, 35, 36]. The success is mainly at-

tributed to the self-attention mechanism of a transformer,
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which is particularly effective in modeling the dependen-

cies (or interactions) without regard to their distance in both

inputs and outputs. Given the dependencies, transformer is

able to soft-search the relevant tokens and performs predic-

tion based on the important features [3, 48].

In this work, we propose METRO, a multi-layer Trans-

former encoder with progressive dimensionality reduction,

to reconstruct 3D body joints and mesh vertices from a

given input image, simultaneously. We design the Masked

Vertex Modeling objective with a transformer encoder ar-

chitecture to enhance the interactions among joints and ver-

tices. As shown in Figure 1, METRO learns to discover both

short- and long-range interactions among body joints and

mesh vertices, which helps to better reconstruct the 3D hu-

man body shape with large pose variations and occlusions.

Experimental results on multiple public datasets demon-

strate that METRO is effective in learning vertex-vertex and

vertex-joint interactions, and consequently outperforms the

prior works on human mesh reconstruction by a large mar-

gin. To the best of our knowledge, METRO is the first ap-

proach that leverages a transformer encoder architecture to

jointly learn 3D human pose and mesh reconstruction from

a single input image. Moreover, METRO is a general frame-

work which can be easily applied to predict a different 3D

mesh, for example, to reconstruct a 3D hand from an input

image.

In summary, we make the following contributions.

• We introduce a new transformer-based method, named

METRO, for 3D human pose and mesh reconstruction

from a single image.

• We design the Masked Vertex Modeling objective

with a multi-layer transformer encoder to model both

vertex-vertex and vertex-joint interactions for better re-

construction.

• METRO achieves new state-of-the-art performance on

the large-scale benchmark Human3.6M and the chal-

lenging 3DPW dataset.

• METRO is a versatile framework that can be easily re-

alized to predict a different type of 3D mesh, such as

3D hand as demonstrated in the experiments. METRO

achieves the first place on FreiHAND leaderboard at

the time of paper submission.

2. Related Works

Human Mesh Reconstruction (HMR): HMR is a task of

reconstructing 3D human body shape, which is an active

research topic in recent years. While pioneer works have

demonstrated impressive reconstruction using various sen-

sors, such as depth sensors [28, 43] or inertial measurement

units [15, 49], researchers are exploring to use a monocular

camera setting that is more efficient and convenient. How-

ever, HMR from a single image is difficult due to complex

pose variations, occlusions, and limited 3D training data.

Prior studies propose to adopt the pre-trained parametric

human models, i.e., SMPL [24], STAR [30], MANO [38],

and estimate the pose and shape coefficients of the para-

metric model for HMR. Since it is challenging to regress

the pose and shape coefficients directly from an input im-

age, recent works further propose to leverage various human

body priors such as human skeletons [21, 34] or segmenta-

tion maps [29], and explore different optimization strate-

gies [19, 17, 46, 12] and temporal information [18] to im-

prove reconstruction.

On the other hand, instead of adopting a parametric hu-

man model, researchers have also proposed approaches to

directly regress 3D human body shape from an input image.

For example, researchers have explored to represent human

body using a 3D mesh [20, 7], a volumetric space [47], or an

occupancy field [41, 42]. Each of the prior works addresses

a specific output representation for their target application.

Among the literature, the relevant study is GraphCMR [20],

which aims to regress 3D mesh vertices using graph convo-

lutional neural networks (GCNNs). Moreover, recent pro-

posed Pose2Mesh [7] is a cascaded model using GCNNs.

Pose2Mesh reconstructs human mesh based on the given

human pose representations.

While GCNN-based methods [7, 20] are designed to

model neighborhood vertex-vertex interactions based on a

pre-specified mesh topology, it is less efficient in model-

ing longer range interactions. In contrast, METRO models

global interactions among joints and mesh vertices with-

out being limited by any mesh topology. In addition, our

method learns with self-attention mechanism, which is dif-

ferent from prior studies [7, 20].

Attentions and Transformers: Recent studies [31, 23, 48]

have shown that attention mechanisms improve the per-

formance on various language tasks. Their key insight is

to learn the attentions to soft-search relevant inputs that

are important for predicting an output [3]. Vaswani et

al. [48] further propose a transformer architecture based

solely on attention mechanisms. Transformer is highly par-

allelized using multi-head self-attention for efficient train-

ing and inference, and leads to superior performance in

language modeling at scale, as explored in BERT [8] and

GPT [35, 36, 4].

Inspired by the recent success in neural language field,

there is a growing interest in exploring the use of trans-

former architecture for various vision tasks, such as learn-

ing the pixel distributions for image generation [6, 32] and

classification [6, 9], or to simplify object detection as a set

prediction problem [5]. However, 3D human reconstruction

has not been explored along this direction.

In this study, we present a multi-layer transformer archi-
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Figure 2: Overview of the proposed framework. Given an input image, we extract an image feature vector using a convo-

lutional neural network (CNN). We perform position encoding by adding a template human mesh to the image feature vector

by concatenating the image feature with the 3D coordinates (xi, yi, zi) of every body joint i, and 3D coordinates (xj , yj , zj)

of every vertex j. Given a set of joint queries and vertex queries, we perform self-attentions through multiple layers of a

transformer encoder, and regress the 3D coordinates of body joints and mesh vertices in parallel. We use a progressive di-

mensionality reduction architecture (right) to gradually reduce the hidden embedding dimensions from layer to layer. Each

token in the final layer outputs 3D coordinates of a joint or mesh vertex. Each encoder block has 4 layers and 4 attention

heads. H denotes the dimension of an image feature vector.

tecture with progressive dimensionality reduction to regress

the 3D coordinates of the joints and vertices.

3. Method

Figure 2 is an overview of our proposed framework. It

takes an image of size 224 × 224 as input, and predicts a

set of body joints J and mesh vertices V . The proposed

framework consists of two modules: Convolutional Neural

Network, and Multi-Layer Transformer Encoder. First, we

use a CNN to extract an image feature vector from an input

image. Next, Multi-Layer Transformer Encoder takes as

input the feature vector and outputs the 3D coordinates of

the body joint and mesh vertex in parallel. We describe each

module in details as below.

3.1. Convolutional Neural Network

In the first module of our framework, we employ a

Convolutional Neural Network (CNN) for feature extrac-

tion. The CNN is pre-trained on ImageNet classification

task [40]. Specifically, we extract a feature vector X from

the last hidden layer. The extracted feature vector X is typ-

ically of dimension 2048. We input the feature vector X to

the transformer for the regression task.

With this generic design, it allows an end-to-end train-

ing for human pose and mesh reconstruction. Moreover,

transformer can easily benefit from large-scale pre-trained

CNNs, such as HRNets [51]. In our experiments, we con-

duct analysis on the input features, and discover that high-

resolution image features are beneficial for transformer to

regress 3D coordinates of body joints and mesh vertices.

3.2. Multi­Layer Transformer Encoder with Pro­
gressive Dimensionality Reduction

Since we need to output 3D coordinates, we cannot

directly apply the existing transformer encoder architec-

ture [9, 5] because they use a constant dimensionality of the

hidden embeddings for all the transformer layers. Inspired

by [14] which performs dimentionality reduction gradually

with multiple blocks, we design a new architecture with a

progressive dimensionality reduction scheme. As shown in

Figure 2 right, we use linear projections to reduce the di-

mensionality of the hidden embedding after each encoder

layer. By adding multiple encoder layers, the model is

viewed as performing self-attentions and dimensionality re-

duction in an alternating manner. The final output vectors of

our transformer encoder are the 3D coordinates of the joints

and mesh vertices.

As illustrated in Figure 2 left, the input to the transformer

encoder are the body joint and mesh vertex queries. In the

same spirit as positional encoding [48, 20, 11], we use a

template human mesh to preserve the positional information

of each query in the input sequence. To be specific, we

concatenate the image feature vector X ∈ R
2048×1 with
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the 3D coordinates (xi, yi, zi) of every body joint i. This

forms a set of joint queries QJ = {qJ
1
, qJ

2
, . . . , qJn}, where

qJi ∈ R
2051×1. Similarly, we conduct the same positional

encoding for every mesh vertex j, and form a set of vertex

queries QV = {qV
1
, qV

2
, . . . , qVm}, where qVj ∈ R

2051×1.

3.3. Masked Vertex Modeling

Prior works [8, 44] use the Masked Language Model-

ing (MLM) to learn the linguistic properties of a training

corpus. However, MLM aims to recover the inputs, which

cannot be directly applied to our regression task.

To fully activate the bi-directional attentions in our trans-

former encoder, we design a Masked Vertex Modeling

(MVM) for our regression task. We mask some percentages

of the input queries at random. Different from recovering

the masked inputs like MLM [8], we instead ask the trans-

former to regress all the joints and vertices.

In order to predict an output corresponding to a missing

query, the model will have to resort to other relevant queries.

This is in spirit similar to simulating occlusions where par-

tial body parts are invisible. As a result, MVM enforces

transformer to regress 3D coordinates by taking other rel-

evant vertices and joints into consideration, without regard

to their distances and mesh topology. This facilitates both

short- and long-range interactions among joints and vertices

for better human body modeling.

3.4. Training

To train the transformer encoder, we apply loss functions

on top of the transformer outputs, and minimize the errors

between predictions and ground truths. Given a dataset

D = {Ii, V̄ i
3D, J̄ i

3D, J̄ i
2D}Ti=1

, where T is the total num-

ber of training images. I ∈ R
w×h×3 denotes an RGB im-

age. V̄3D ∈ R
M×3 denotes the ground truth 3D coordi-

nates of the mesh vertices and M is the number of vertices.

J̄3D ∈ R
K×3 denotes the ground truth 3D coordinates of

the body joints and K is the number of joints of a person.

Similarly, J̄2D ∈ R
K×2 denotes the ground truth 2D coor-

dinates of the body joints.

Let V3D denote the output vertex locations, and J3D is

the output joint locations, we use L1 loss to minimize the

errors between predictions and ground truths:

LV =
1

M

M
∑

i=1

∣

∣

∣

∣V3D − V̄3D

∣

∣

∣

∣

1
, (1)

LJ =
1

K

K
∑

i=1

∣

∣

∣

∣J3D − J̄3D
∣

∣

∣

∣

1
. (2)

It is worth noting that, the 3D joints can also be cal-

culated from the predicted mesh. Following the common

practice in literature [7, 17, 20, 19], we use a pre-defined

regression matrix G ∈ R
K×M , and obtain the regressed 3D

joints by J
reg
3D = GV3D. Similar to prior works, we use L1

loss to optimize J
reg
3D :

Lreg
J =

1

K

K
∑

i=1

∣

∣

∣

∣J
reg
3D − J̄3D

∣

∣

∣

∣

1
. (3)

2D re-projection has been commonly used to enhance

the image-mesh alignment [17, 20, 19]. Also, it helps visu-

alize the reconstruction in an image. Inspired by the prior

works, we project the 3D joints to 2D space using the esti-

mated camera parameters, and minimize the errors between

the 2D projections and 2D ground truths:

Lproj
J =

1

K

K
∑

i=1

∣

∣

∣

∣J2D − J̄2D
∣

∣

∣

∣

1
, (4)

where the camera parameters are learned by using a linear

layer on top of the outputs of the transformer encoder.

To perform large-scale training, it is highly desirable to

leverage both 2D and 3D training datasets for better gen-

eralization. As explored in literature [29, 17, 20, 19, 18,

7, 27], we use a mix-training strategy that leverages differ-

ent training datasets, with or without the paired image-mesh

annotations. Our overall objective is written as:

L = α× (LV + LJ + Lreg
J ) + β × Lproj

J , (5)

where α and β are binary flags for each training sample,

indicating the availability of 3D and 2D ground truths, re-

spectively.

3.5. Implementation Details

Our method is able to process arbitrary sizes of mesh.

However, due to memory constraints of current hardware,

our transformer processes a coarse mesh: (1) We use a

coarse template mesh (431 vertices) for positional encod-

ing, and transformer outputs a coarse mesh; (2) We use

learnable Multi-Layer Perceptrons (MLPs) to upsample the

coarse mesh to the original mesh (6890 vertices for SMPL

human mesh topology); (3) The transformer and MLPs are

trained end-to-end; Please note that the coarse mesh is ob-

tained by sub-sampling twice to 431 vertices with a sam-

pling algorithm [37]. As discussed in the literature [20],

the implementation of learning a coarse mesh followed by

upsampling is helpful to reduce computation. It also helps

avoid redundancy in original mesh (due to spatial locality

of vertices), which makes training more efficient.

4. Experimental Results

We first show that our method outperforms the previous

state-of-the-art human mesh reconstruction methods on Hu-

man3.6M and 3DPW datasets. Then, we provide ablation

study and insights for the non-local interactions and model

design. Finally, we demonstrate the generalizability of our

model on hand reconstruction.
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3DPW Human3.6M

Method MPVE ↓ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

HMR [17] − − 81.3 88.0 56.8
GraphCMR [20] − − 70.2 − 50.1
SPIN [19] 116.4 − 59.2 − 41.1
Pose2Mesh [7] − 89.2 58.9 64.9 47.0
I2LMeshNet [27] − 93.2 57.7 55.7 41.1
VIBE [18] 99.1 82.0 51.9 65.6 41.4

METRO (Ours) 88.2 77.1 47.9 54.0 36.7

Table 1: Performance comparison with the state-of-the-art methods on 3DPW and Human3.6M datasets.

4.1. Datasets

Following the literature [29, 17, 20, 19, 18, 7, 27], we

conduct mix-training using 3D and 2D training data. We

describe each dataset below.

Human3.6M [16] is a large-scale dataset with 2D and 3D

annotations. Each image has a subject performing a differ-

ent action. Due to the license issue, the groundtruth 3D

meshes are not available. Thus, we use the pseudo 3D

meshes provided in [7, 27] for training. The pseudo labels

are created by model fitting with SMPLify-X [33]. For eval-

uation, we use the groundtruth 3D pose labels provided in

Human3.6M for fair comparison. Following the common

setting [45, 20, 17], we train our models using subjects S1,

S5, S6, S7 and S8. We test the models using subjects S9

and S11.

3DPW [49] is an outdoor-image dataset with 2D and 3D

annotations. The training set consists of 22K images, and

the test set has 35K images. Following the previous state-

of-the-arts [18], we use 3DPW training data when conduct-

ing experiments on 3DPW.

UP-3D [21] is an outdoor-image dataset. Their 3D annota-

tions are created by model fitting. The training set has 7K
images.

MuCo-3DHP [26] is a synthesized dataset based on MPI-

INF-3DHP dataset [25]. It composites the training data with

a variety of real-world background images. It has 200K
training images.

COCO [22] is a large-scale dataset with 2D annotations.

We also use the pseudo 3D mesh labels provided in [19],

which are fitted with SMPLify-X [33].

MPII [1] is an outdoor-image dataset with 2D pose labels.

The training set consists of 14K images.

FreiHAND [53] is a 3D hand dataset. The training set

consists of 130K images, and the test set has 4K images.

We demonstrate the generalizability of our model on this

dataset. We use the provided set for training, and conduct

evaluation on their online server.

4.2. Evaluation Metrics

We report results using three standard metrics as below.

The unit for the three metrics is millimetter (mm).

MPJPE: Mean-Per-Joint-Position-Error (MPJPE) [16] is a

metric for evaluating human 3D pose [17, 19, 7]. MPJPE

measures the Euclidean distances between the ground truth

joints and the predicted joints.

PA-MPJPE: PA-MPJPE, or Reconstruction Error [52], is

another metric for this task. It first performs a 3D align-

ment using Procrustes analysis (PA) [10], and then com-

putes MPJPE. PA-MPJPE is commonly used for evaluating

3D reconstruction [52] as it measures the errors of the re-

constructed structure without regard to the scale and rigid

pose (i.e., translations and rotations).

MPVE: Mean-Per-Vertex-Error (MPVE) [34] measures

the Euclidean distances between the ground truth vertices

and the predicted vertices.

4.3. Main Results

We compare METRO with the previous state-of-the-art

methods on 3DPW and Human3.6M datasets. Following

the literature [18, 19, 17, 20], we conduct mix-training us-

ing 3D and 2D training data. The results are shown in

Table 1. Our method outperforms prior works on both

datasets.

First of all, we are interested in how transformer works

for in-the-wild reconstruction of 3DPW. As shown in the

left three columns of Table 1, our method outperforms

VIBE [18], which was the state-of-the-art method on this

dataset. It is worth noting that, VIBE is a video-based ap-

proach, whereas our method is an image-based approach.

In addition, we evaluate the performance on the in-door

scenario of Human3.6M. We follow the setting in the prior

arts [19, 27], and train our model without using 3DPW data.

The results are shown in the right two columns of Table 1.

Our method achieves better reconstruction performance, es-

pecially on PA-MPJPE metric.

The two datasets Human3.6M and 3DPW have different
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Input R-Wrist R-Elbow L-Knee L-Ankle Head Output

Figure 3: Qualitative results of our method. Given an input image (left), METRO takes non-local interactions among joints

and vertices into consideration for human mesh reconstruction (right). We visualize the self-attentions between a specified

joint and all other vertices, where brighter color indicates stronger attention. We observe that METRO discovers rich, input-

dependent interactions among the joints and vertices.

challenges. The scenes in 3DPW have more severe occlu-

sions. The scenes in Human3.6 are simpler and the chal-

lenge is more on how to accurately estimate body shape.

The fact that METRO works well on both datasets demon-

strates that it is both robust to occlusions and capable of

accurate body shape regression.

4.4. Ablation Study

Effectiveness of Masked Vertex Modeling: Since we de-

sign a Masked Vertex Modeling objective for transformer,

one interesting question is whether the objective is useful.

Table 2 shows the ablation study on Human3.6M. We ob-

serve that Masked Vertex Modeling significantly improves

the results. Moreover, we study how many percentage of

query tokens should be masked. We vary the maximum

masking percentage, and Table 3 shows the comparison. As

we increase the number of masked queries for training, it

improves the performance. However, the impact becomes

less prominent if we mask more than 30% of input queries.

This is because large numbers of missing queries would

make the training more difficult.

MPJPE ↓ PA-MPJPE ↓

w/o MVM 61.0 39.1
w/ MVM 54.0 36.7

Table 2: Ablation study of the Masked Vertex Modeling

(MVM) objective, evaluated on Human3.6M.

Max Percentage 0% 10% 20% 30% 40% 50%

PA-MPJPE 39.1 37.6 37.5 36.7 38.2 37.3

Table 3: Ablation study of the Masked Vertex Modeling ob-

jective using different percentages of masked queries, eval-

uated on Human3.6M. The variable n% indicates we mask

randomly from 0% to n% of input queries.

Non-local Interactions: To further understand the effect

of METRO in learning interactions among joints and mesh

vertices, we conduct analysis on the self-attentions in our

transformer.
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Method PA-MPVPE ↓ PA-MPJPE ↓ F@5 mm ↑ F@15 mm ↑

Hasson et al [17] 13.2 − 0.436 0.908
Boukhayma et al. [20] 13.0 − 0.435 0.898
FreiHAND [19] 10.7 − 0.529 0.935
Pose2Mesh [7] 7.8 7.7 0.674 0.969
I2LMeshNet [27] 7.6 7.4 0.681 0.973

METRO (Ours) 6.3 6.5 0.731 0.984

Table 4: Performance comparison with the state-of-the-art methods, evaluated on FreiHAND online server. METRO outper-

forms previous state-of-the-art approaches by a large margin.

Figure 3 shows the visualization of the self-attentions

and mesh reconstruction. For each row in Figure 3, we show

the input image, and the self-attentions between a specified

joint and all the mesh vertices. The brighter color indicates

stronger attention. At the first row, the subject is severely

occluded and the right body parts are invisible. As we

predict the location of right wrist, METRO attends to rel-

evant non-local vertices, especially those on the head and

left hand. At the bottom row, the subject is heavily bended.

For the head position prediction, METRO attends to the feet

and hands (6th column at the bottom row). It makes sense

intuitively since the hand and foot positions provide strong

cues to the body pose and subsequently the head position.

Moreover, we observe the model performs self-attentions

in condition to the input image. As shown in the second

row of Figure 3, when predicting the location of right wrist,

METRO focuses more on the right foot which is different

from the attentions in the other three rows.

We further conduct quantitative analysis on the non-

local interactions. We randomly sample 5000 images from

3DPW test set, and estimate an overall self-attention map.

It is the average attention weight of all attention heads at the

last transformer layer. We visualize the interactions among

14 body joints and 431 mesh vertices in Figure 4. Each pixel

shows the intensity of self-attention, where darker color in-

dicates stronger attention. Note that the first 14 columns

are the body joints, and the rest of them represent the mesh

vertices. We observe that METRO pays strong attentions to

the vertices on the lower arms and the lower legs. This is

consistent with the inverse kinematics literature [2] where

the interior joints of a linked figure can be estimated from

the position of an end effector.

Input Representations: We study the behaviour of our

transformer architecture by using different CNN backbones.

We use ResNet50 [13] and HRNet [51] variations for this

experiment. All backbones are pre-trained on the 1000-

class image classification task of ImageNet [40]. For each

backbone, we extract a global image feature vector X ∈
R

2048×1, and feed it into the transformer. In Table 5, we

observe our transformer achieves competitive performance

Figure 4: Visualization of self-attentions among body joints

and mesh vertices. The x-axis and y-axis correspond to the

queries and the predicted outputs, respectively. The first 14

columns from the left correspond to the body joints. The

rest of columns correspond to the mesh vertices. Each row

shows the attention weight wi,j of the j-th query for the i-th

output. Darker color indicates stronger attention.

Backbone MPJPE ↓ PA-MPJPE ↓

ResNet50 56.5 40.6
HRNet-W40 55.9 38.5
HRNet-W64 54.0 36.7

Table 5: Analysis on different backbones, evaluated on Hu-

man3.6M. All backbones are pre-trained on ImageNet. We

observe that increasing the number of filters in the high res-

olution feature maps of HRNet is beneficial to mesh regres-

sion.
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Input Wrist Thumb Index Middle Ring Pinky Output

Figure 5: Qualitative results of our method on FreiHAND test set. We visualize the self-attentions between a specified joint

and all the mesh vertices, where brighter color indicates stronger attention. METRO is a versatile framework that can be

easily extended to 3D hand reconstruction.

when using a ResNet50 backbone. As we increase the chan-

nels of the high-resolution feature maps in HRNet, we ob-

serve further improvement.

Generalization to 3D Hand in-the-wild: METRO is ca-

pable of predicting arbitrary joints and vertices, without the

dependencies on adjacency matrix and parametric coeffi-

cients. Thus, METRO is highly flexible and general for

mesh reconstruction of other objects. To demonstrate this

capability, we conduct experiment on FreiHAND [53]. We

train our model on FreiHAND from scratch, and evaluate

results on FreiHAND online server. Table 4 shows the com-

parison with the prior works. METRO outperforms previ-

ous state-of-the-art methods by a large margin. Without us-

ing any external training data, METRO achieved the first

place on FreiHAND leaderboard at the time of paper sub-

mission1.

Figure 5 shows our qualitative results with non-local in-

teractions. In the supplementary material, we provide fur-

1According to the official FreiHAND leaderboard in November 2020:

https://competitions.codalab.org/competitions/21238

ther analysis on the 3D hand joints, and show that the self-

attentions learned in METRO are consistent with inverse

kinematics [2].

5. Conclusion

We present a simple yet effective mesh transformer

framework to reconstruct human pose and mesh from a sin-

gle input image. We propose the Masked Vertex Model-

ing objective to learn non-local interactions among body

joints and mesh vertices. Experimental results show that,

our method advances the state-of-the-art performance on

3DPW, Human3.6M, and FreiHAND datasets.

A detailed analysis reveals that the performance im-

provements are mainly attributed to the input-dependent

non-local interactions learned in METRO, which enables

predictions based on important joints and vertices, regard-

less of the mesh topology. We further demonstrate the gen-

eralization capability of the proposed approach to 3D hand

reconstruction.
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