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Abstract

Existing approaches for multi-view multi-person 3D

pose estimation explicitly establish cross-view correspon-

dences to group 2D pose detections from multiple camera

views and solve for the 3D pose estimation for each per-

son. Establishing cross-view correspondences is challeng-

ing in multi-person scenes, and incorrect correspondences

will lead to sub-optimal performance for the multi-stage

pipeline. In this work, we present our multi-view 3D pose

estimation approach based on plane sweep stereo to jointly

address the cross-view fusion and 3D pose reconstruction

in a single shot. Specifically, we propose to perform depth

regression for each joint of each 2D pose in a target cam-

era view. Cross-view consistency constraints are implic-

itly enforced by multiple reference camera views via the

plane sweep algorithm to facilitate accurate depth regres-

sion. We adopt a coarse-to-fine scheme to first regress the

person-level depth followed by a per-person joint-level rel-

ative depth estimation. 3D poses are obtained from a sim-

ple back-projection given the estimated depths. We evaluate

our approach on benchmark datasets where it outperforms

previous state-of-the-arts while being remarkably efficient.

Our code is available at the project website. 1

1. Introduction

3D human pose estimation has been an active research

area in the field of computer vision due to its large number

of real-world applications such as human-computer inter-

action, virtual and augmented reality, camera surveillance,

etc. However, 3D human pose estimation for multiple per-

sons from monocular images is an ill-posed and challenging

problem due to both the loss of depth information and se-

vere occlusions under a single camera viewpoint. On the

other hand, multi-view images captured by multiple cam-

eras provide complementary information of the scene that

can be used to effectively alleviate projective ambiguities.

Unlike its multi-view single person [15, 16, 20, 21, 26]

1https://github.com/jiahaoLjh/PlaneSweepPose
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Figure 1: Our method is based on plane sweep stereo to

regress depths for 2D pose detections. 2D poses are back-

projected to successive depth planes and warped to refer-

ence views for consistency measurement which is utilized

for depth regression.

counterpart, the fusion of information from multi-view im-

ages with multiple persons is more challenging since the

identity of the 2D poses from each camera view is unknown.

Previous works such as [5, 7, 11] address this problem in

three steps. The 2D poses are first estimated for each cam-

era view independently. Subsequently, the 2D poses from

different views that correspond to the same person are iden-

tified and grouped together. Finally, the 3D pose of each

person is estimated with triangulation or optimization-based

pictorial structure models using the set of grouped 2D pose

detections from multiple views.

The establishment of cross-view correspondences is crit-

ical for multi-view multi-person 3D pose estimation. Tradi-

tional methods use either greedy matching approach [11]

for fast inference speed, or optimization-based approach

[5, 7, 8] for better global consistency. Recently, Voxel-

Pose [25] is proposed to jointly solve the challenging cross-

view matching and 3D pose estimation problems in an

object-detection paradigm. Instead of explicitly search-

ing for 2D pose correspondences, VoxelPose projects the

2D pose heatmaps from multiple views to a common 3D
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space, and performs both 3D pose detection and estima-

tion in the 3D volumetric space. The 3D object detection

formulation avoids the explicit cross-view matching step,

thus effectively reduces the impact from incorrectly estab-

lished cross-view correspondences. Despite its effective-

ness, several limitations exist for the object-detection-based

pipeline: 1) Prior knowledge of the common 3D space di-

mension according to the multi-camera settings is needed

to define the volumetric space for 3D object detection. 2)

The back-projection of the 2D pose detections on each 3D

voxel is not scalable to larger scenes. 3) 3D convolution that

is applied to all voxel locations incurs unnecessary heavy

computations, especially for large sparse scenes.

In this work, we present our plane-sweep-based ap-

proach for multi-view multi-person 3D pose estimation.

Our approach avoids explicit cross-view matching and ag-

gregates multiple views for 3D pose estimation in a single

shot. Specifically, we build our framework upon the con-

cept of plane sweep stereo [6] to estimate the depth for each

joint of each person in a target camera view. As illustrated

in Figure 1, 2D poses are first back-projected to successive

virtual depth planes, and then warped to the respective refer-

ence camera views. We measure the cross-view consistency

at each depth level, which is then used to regress the depths

from standard convolutional neural networks. Our depth re-

gression adopts a two-stage coarse-to-fine scheme. Person-

level depth is first estimated for each 2D pose. Joint-level

relative depth with respect to the person-level depth within

a much smaller depth range is then regressed for each joint.

The two stages can be trained together in an end-to-end

manner. During inference, we obtain the 3D poses by back-

projecting the 2D poses with the estimated depths. Multiple

3D poses of the same person from different views can be

easily merged via a simple distance-based clustering.

We evaluate our plane-sweep-based framework on three

benchmark datasets, i.e., the Campus and the Shelf datasets,

and CMU Panoptic dataset, where we outperform exist-

ing state-of-the-arts. In addition to the removal of explicit

cross-view matching and triangulation compared to the tra-

ditional three-step approaches, our method is also more ef-

ficient compared to VoxelPose in two aspects: 1) In contrast

to VoxelPose that builds voxels in the 3D space, we leverage

on the plane sweep algorithm that is proportional to only

the number of virtual depth planes. 2) Instead of perform-

ing 3D convolution on all voxel locations, we utilize the

much faster 1D convolutions for each 2D pose. Further-

more, our method is more generablizable to scenarios with

no prior knowledge of the multi-camera settings since only

the range of virtual depth planes needs to be pre-defined for

each camera view.

Our contributions in this work are:

• We present a plane-sweep-based approach to perform

multi-view multi-person 3D pose estimation without

the need for explicit cross-view matching.

• Our approach outperforms existing state-of-the-arts on

benchmark datasets, while being much more efficient

compared to existing works.

2. Related Work

In this section, we briefly review the related works that

utilize multiple camera views for 3D pose estimation.

2.1. Multi­view Single­person

3D human pose estimation from 2D images is an ill-

posed problem due to the loss of depth information in the

process of camera projection. Exploiting multi-view im-

ages is an effective way to alleviate projective ambiguities

since multiple camera viewpoints provide complementary

information of the 3D scene. Extensive research has been

done for the single-person 3D pose estimation task under

the multi-view setting. Qiu et al. [20] propose to fuse mul-

tiple views in the feature space with the epipolar geome-

try [9] for more accurate 2D pose estimates. A recursive

pictorial structure model is used to reconstruct the 3D pose

from the multi-view 2D detections. The idea of explicit fu-

sion is also adopted in [21] by Remelli et al. They trans-

form the latent features with the known camera extrinsics

into a canonical 3D space, where the transformed features

from multiple views are then stacked together for joint rea-

soning. Iskakov et al. [16] present a learnable triangulation

method that learns per-view confidence weights for the stan-

dard triangulation [9], and a volumetric-based method that

aggregates multi-view images and performs the 3D pose es-

timation in a 3D volumetric space. Weakly-supervised ap-

proach [15] and meta-learning approach [26] have also been

proposed to utilize the multi-view settings.

2.2. Multi­view Multi­person

Single-person 3D pose estimation with multi-camera set-

tings has achieved satisfying results on benchmark datasets

such as Human3.6M [14]. However, it is much more chal-

lenging for the multi-person case. The key difficulty lies in

the cross-view matching since the identity of 2D poses from

each view is unknown. Early approaches [1, 2, 8] create a

common state space shared by all persons via triangulation

of corresponding body joints in pairs of the camera views.

A 3D pictorial structure is defined as a graphical model with

unary and pairwise potentials, and 3D poses are obtained

from inference on the graph with the loopy belief propaga-

tion algorithm [4]. Recent works [5,7,11,18] adopt a multi-

stage pipeline for the multi-view multi-person 3D pose esti-

mation task. The pipeline consists of a cross-view matching

step to group 2D poses from different views that correspond

to the same person, and a 3D pose estimation step to recon-

struct the 3D pose from the clustered 2D poses for each
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Figure 2: Overview of our approach. 2D pose estimation is first performed for each camera view. We then use the plane

sweep algorithm to aggregate the cross-view consistency score for the target person highlighted with jet colormap. Person-

level depth is regressed first in (a). Joint-level relative depth is then estimated in (b) and combined with the person-level depth

to reconstruct the 3D pose.

person. Kadkhodamohammadi et al. [18] propose to com-

pute a distance between each pair of 2D poses from differ-

ent views based on the epipolar constraints, and then find

the cross-view correspondences with the lowest distance.

Instead of directly performing triangulation, the matched

2D poses from all camera views are stacked together and

passed into a regression neural network to estimate the 3D

pose. Dong et al. [7] enhance the cross-view consistency

with appearance features. They utilize a person Re-ID net-

work [27] to get the appearance features for each person.

These features are then used to compute the appearance-

based distance. They also formulate a convex optimiza-

tion problem to solve for the optimal correspondence ma-

trix, and use a rank constraint to enforce cycle-consistency.

Chen et al. [5] propose to match cross-view 2D poses by

applying the epipolar constraints on feet joints instead of

the entire 2D pose. They perform bipartite matching for

each pair of views on the pairwise affinities defined on feet

joints. A maximum a posteriori (MAP) estimator is adopted

for the 3D pose reconstruction. Huang et al. [11] propose a

greedy bottom-up matching approach for 2D pose grouping.

Candidate 3D poses are first obtained from triangulation of

each pair of 2D poses. These candidate 3D poses form a

3D pose subspace that are then used with a distance-based

greedy clustering approach to group the cross-view poses.

Triangulation with learnable weights inspired by [16] is ap-

plied for each group to obtain the 3D pose estimates.

The aforementioned methods are multi-stage pipelines,

where incorrect correspondences can cause large errors in

the subsequent 3D pose estimation step. A recent work,

VoxelPose [25], presents a novel pipeline that avoids the ex-

plicit cross-view matching and performs 3D pose estimation

directly from the multi-view input. This work is inspired by

the volumetric approach presented in [16] that generates 3D

volumes from 2D detections. To identify multiple persons

in the common 3D volumetric space, VoxelPose utilizes a

3D object detection formulation to localize each 3D pose,

followed by a per-person 3D pose estimation. VoxelPose

shows promising results since cross-view consistency is im-

plicitly enforced in the 3D pose estimation. However, the

3D convolution used on the volumetric space is computa-

tionally expensive, thus not scalable for larger scenes.

In this work, we present our multi-view 3D pose estima-

tion approach. Inspired by plane sweep stereo [6, 12] for

dense depth regression, our approach utilizes a pose-aware

geometric consistency metric to aggregate multi-view infor-

mation and performs depth regression for 2D poses with-

out explicitly establishing correspondences. Our approach

demonstrates higher 3D pose estimation precision, while

being much more efficient compared to previous works.
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3. Our Method

Our task is to estimate the 3D poses for all persons in a

common 3D space from multi-view images captured by a

set of synchronized and calibrated cameras. The overview

of our framework is shown in Figure 2. We first perform 2D

pose estimation for each camera view independently using a

top-down multi-person pose estimation approach, e.g., HR-

Net [23]. Subsequently, we perform depth regression for

each candidate 2D pose with J joints under a target cam-

era view by utilizing 2D pose detections from multiple ref-

erence views. Finally, the 3D poses can be reconstructed

from back-projections of the candidate 2D poses with the

estimated depths. In this section, we present our multi-view

depth regression approach based on plane sweep stereo. A

coarse person-level depth regression module is introduced

first in Section 3.1, followed by a per-person joint-level rel-

ative depth regression module in Section 3.2.

3.1. Person­Level Depth Regression

Our framework is inspired by the plane sweep stereo

for dense depth estimation. The basic idea of plane sweep

stereo is to back-project the target view image to a set of

successive virtual depth planes, and then warp these pro-

jections to the reference view images so that photometric

consistency can be measured to determine the depth of each

target view pixel. We adopt the concept of plane sweep

in our framework for the person- and joint-level depth re-

gression. In contrast to the dense depth estimation in the

standard plane sweep stereo that relies on photometric con-

sistency, we measure a pose-aware geometric consistency

for the depth regression of 2D human poses instead. In this

section, we present a person-level depth regression module

to coarsely localize the depth for each candidate 2D pose.

The person-level depth is defined to be the depth of the cen-

ter hip joint of each person in our implementation.

3.1.1 Multi-View Score Aggregation

We define a set of D virtual depth planes equally spaced in

[dmin, dmax] to represent depths in the target camera coordi-

nate frames. We set [dmin, dmax] such that the depth range is

reasonably large to cover the common 3D space shared by

multiple cameras. We empirically set D = 64 depth planes

from experiments (c.f . Section 4) in our implementation.

A candidate 2D pose p in the target view is first back-

projected to a virtual depth plane d, and then followed by

a projection to a reference view. The projected 2D pose

is denoted as q(d). We then search for the nearest 2D pose

r(d) from the set of candidate 2D poses {p′} in the reference

view by:

r(d) = argmin
p′

J
∑

j=1

τ(p′j , q
(d)
j ), (1)

where the function τ(·, ·) measures the distance between

two joints in the reference image plane. Subsequently, we

generate a score matrix S ∈ R
D×J for the target pose p.

The score of joint j at depth d measures the alignment of the

projected pose q(d) with the matched reference view pose

r(d) at joint j. It is computed as:

Sd,j = exp

{

−

[

τ(r
(d)
j , q

(d)
j )

]2

2 · σ2

}

. (2)

A small distance between joint r
(d)
j and joint q

(d)
j results in

a high score of Sd,j . This indicates a higher chance for the

depth of joint pj to be around d. σ is a hyper-parameter to

control the width of the bell curve.

Figure 2(a) shows an example of the score matrix. It is a

measurement of the pose-aware cross-view geometric con-

sistency and is used for the subsequent depth regression. In

cases when multiple reference views are available, we fuse

the score matrices computed from all reference views via a

weighted averaging, where the confidence of the matched

2D pose r(d) in each reference view obtained from the 2D

pose estimator is used as the weight.

Remark: Note that back-projecting all joints of a 2D pose

to the same depth plane and projecting the “flat” 3D pose to

the reference view for pose matching is an approximation.

However, it does not affect the retrieval of the nearest pose

from the reference view in most scenarios and works suffi-

ciently well in practice.

3.1.2 Depth Regression

We treat the score matrix S ∈ R
D×J of a target pose p as a

1D-signal of length D with J feature channels, and utilize a

1D Convolutional Neural Network (1D-CNN) to map it into

a depth vector D ∈ R
D. As illustrated in Figure 3(a), we

use a simple architecture with residual links that is sufficient

to coarsely estimate the person-level depth.

A soft-argmax operation can be applied on the output

depth vector D to obtain the scalar depth value d̂:

d̂ =

D
∑

i=1

di · Di, (3)

where di is the depth of the ith depth layer. Despite its effec-

tiveness on the single-person case [24], soft-argmax opera-

tion assumes uni-modality of the input distribution, which

can fail in multi-person scenarios. To overcome this lim-

itation, we propose to use an adapted “local” soft-argmax

instead:

d̂ =

∑i′+δ−1
i=i′ di · Di
∑i′+δ−1

i=i′ Di

, where i′ = argmax
i′′

i′′+δ−1
∑

i=i′′

Di.

(4)

11889



…

𝐷 Conv - 1 Conv - 3 Conv – 3

𝐽 → 128 128 → 128 128 → 128

Conv - 1

128 → 1

softmax

…

𝐷("#$) Conv - 1
Dilated

Conv

Dilated

Conv

𝐶 = 𝐽 𝐽 → 128 128 → 128 128 → 128

Conv - 1

128 → 𝐽

softmax
…

(a) Person-level depth regression

(b) Joint-level relative depth regression

Conv – 3

Dilation = 1
𝐶&' → 128

Conv – 3

Dilation = 2

Conv – 3

Dilation = 4

Conv – 3

Dilation = 8

Conv – 3

Dilation = 16

Conv – 3

Dilation = 32

Conv – 3

Dilation = 1

128 → 128

128 → 128

128 → 128

128 → 128

128 → 128

128 → 𝐶()*

(c) Dilated Conv

𝒮 ∈ ℝ
!×# 𝒟 ∈ ℝ

!

𝐶 = 𝐽

𝒮
(%&')

∈ ℝ
!("#$)×# 𝒟

(%&')
∈ ℝ

!("#$)×#

Figure 3: Network structure of (a) the person-level depth regression network, (b) the joint-level depth regression network,

and (c) the dilated convolution module used in (b). Each block “Conv - k” consists of a 1D convolution with kernel size k
followed by the batch normalization [13] and ReLU operations. The numbers in A → B denote the channel size. Residual

links are used in both networks.

A window of size δ slides over D to search for the window

with the largest response from D. Standard soft-argmax is

then computed within the window to obtain d̂. We use a

window size δ = D/4 = 16 in our implementation. Note

that when the window size is equal to the length of the input

signal, i.e., δ = D, Equation 4 degenerates to the standard

soft-argmax operation.

The network is trained by minimizing the L1 loss be-

tween the regressed depth d̂ and the ground truth person-

level depth d∗ over all 2D poses {p} in the target view:

Lpose =
∑

p

||d̂(p)− d∗(p)||1. (5)

Remark: Although we aggregate the scores at each depth

layer independently, the scores at successive depth layers

exhibit smooth variation (see the score matrix in Figure 2(a)

for an illustration). 1D-CNN across the depth dimension ef-

fectively aggregates local features over all J joints at suc-

cessive depth layers, facilitating the regression of the coarse

person-level depth.

3.2. Joint­Level Relative Depth Regression

3.2.1 Score Aggregation

After the coarse localization of each 2D pose with the re-

gressed person-level depth, we adopt a fine-grained joint-

level relative depth regression module to estimate the per-

joint relative depth with respect to the person-level depth.

Similar to the person-level depth regression module in Sec-

tion 3.1.1, a score matrix S(rel) is aggregated from the ref-

erence views for each joint j at each relative depth layer

d(rel):

S
(rel)

d(rel),j
= exp

{

−

[

τ(r
(d̂+d(rel))
j , q

(d̂+d(rel))
j )

]

2

2 · σ2

}

. (6)

The key difference is that we use a different set of D(rel)

virtual depth planes in the range of [−1000,+1000]mm,

which is sufficient to cover the depth range of arbitrary pose

variation. D(rel) is also set to 64 in our implementation.

Note that d̂ is the estimated person-level depth from Equa-

tion 4. During training, we use the ground truth person-level

depth d∗ in place of d̂ in Equation 6 to stabilize the training

process.

3.2.2 Depth Regression

We use another 1D-CNN to regress the per-joint relative

depth from the score matrix S(rel). The network structure

is shown in Figure 3(b). Since the joint-level depth planes

compactly surround each target person, it is expected to see

more widely-spread peaks in the score matrix (See Figure

2(b) for an illustration of the score matrix). Consequently,

compared to the person-level depth regression, a larger re-

ceptive field along the depth dimension is needed for the

joint-reasoning of the depths for all body joints. To this

end, we use a series of 1D dilated convolutions to effec-

tively increase the receptive field as illustrated in Figure
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3(c). The output of the network is the relative depth ma-

trix D(rel) ∈ R
D(rel)

×J . The relative depth of each joint is

obtained by the standard soft-argmax operation:

d̂
(rel)
j =

D(rel)
∑

i=1

d
(rel)
i · D

(rel)
i,j , (7)

where d
(rel)
i is the relative depth of the ith depth layer.

Similarly, the L1 loss between the regressed relative

depth d̂(rel) and the ground truth relative depth d
(rel)
∗ is min-

imized:

Ljoint =
∑

p

∑

j

||d̂(p)
(rel)
j − d∗(p)

(rel)
j ||1. (8)

During inference, the absolute depth of each joint is com-

puted by:

d̂
(abs)
j = d̂+ d̂

(rel)
j , (9)

which is then used to back-project the 2D pose to produce

the final 3D pose estimate.

Remark: Our framework adopts a coarse-to-fine scheme

to decouple the task into a person-level depth regression and

a per-person joint-level relative depth regression. The ben-

efit of utilizing a two-stage scheme is that we can reduce

the computational cost by using a sparse set of virtual depth

layers in the first stage for a coarse depth regression from

a larger depth range. Since the joint-level relative depth re-

gression is able to compensate for small person-level depth

offsets, the person-level depth in the first stage does not

need to be very precise to achieve an accurate final 3D pose

estimation. The two-stage practice is also widely used in

object detection pipelines such as [10, 22].

3.3. Training Details

In view of the limited availability of multi-view multi-

person 3D pose annotations, we follow the practice in [25]

to use synthesized data in training both the person-level and

joint-level depth regression modules. Specifically, we uti-

lize 3D pose skeletons from a MoCap dataset and randomly

place them in a pre-defined 3D space. The 3D poses are

projected to 2D poses under each camera view which serve

as the input to our depth regression modules. We randomly

perturb the image coordinates of 2D poses in different views

to simulate the scenario of in-precise 2D pose estimation.

Confidence score is assigned to each 2D joint based on the

level of random perturbation.

During inference, we use the 2D pose estimator HRNet

[23] to obtain candidate 2D poses. We take each camera

view as the target view in turn to generate 3D pose estimates

given the depth estimation under that particular view. 3D

poses from all camera views are fused into the same global

coordinate space. Duplicates can be effectively removed by

clustering and averaging nearby 3D poses given a distance

threshold.

Campus Actor 1 Actor 2 Actor 3 Average

standard soft-argmax 98.0 93.2 97.7 96.3

“local” soft-argmax 98.4 93.7 99.0 97.0

Shelf Actor 1 Actor 2 Actor 3 Average

standard soft-argmax 99.1 95.7 98.0 97.6

“local” soft-argmax 99.3 96.5 98.0 97.9

Table 1: Comparison of PCP between the soft-argmax oper-

ations used in the person-level depth regression on the Cam-

pus and the Shelf datasets.

4. Experiments

4.1. Datasets and Metrics

Campus [1]. The Campus dataset captures an outdoor en-

vironment with three persons interacting with each other us-

ing three cameras. Due to the incomplete annotation of 3D

ground truth poses, we directly use HRNet [23] pre-trained

on COCO [19] to estimate the 2D poses and train our depth

regression modules with synthesized 3D MoCap poses. We

follow previous works [7,11,25] and perform evaluation on

the test set frames: 350-470, 650-750.

Shelf [1]. The Shelf dataset captures an indoor environ-

ment with four persons interacting with each other using

five cameras. Similar to the Campus dataset, we use pre-

trained HRNet to estimate 2D poses and only train our depth

regression modules with synthesized data. We follow pre-

vious works [7, 11, 25] in evaluating only three of the four

persons on the test set frames: 300-600 since one person is

occluded in majority of the frames.

CMU Panoptic [17] The dataset captures an indoor en-

vironment with multiple actors performing social activities.

Following [25], we use HRNet pre-trained on COCO and

fine-tuned on Panoptic to obtain 2D poses. We use the same

set of training and testing sequences captured by the same

set of HD cameras (3, 6, 12, 13, 23) as in [25] for evaluation.

Evaluation metrics. Following [7,11,25], we use the Per-

centage of Correctly estimated Parts (PCP) to evaluate the

accuracy of the estimated 3D poses for the Campus and the

Shelf datasets. Specifically, the closest estimated 3D pose

is selected to evaluate the correctness of each body part for

each ground truth pose. To better understand the perfor-

mance of the person-level depth regression module, we also

evaluate the recall rate of the person-level depth at various

error thresholds. Since previous works share no common

evaluation protocol on the Panoptic dataset, we follow the

evaluation process in VoxelPose [25] and report the Average

Precision (AP) and Mean Per Joint Position Error (MPJPE).
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# Cameras D D(rel) PCP (%)

(a) 5 64 64 97.9

(b) 5 16 64 97.5

(c) 5 64 16 97.2

(d) 4 64 64 97.5

(e) 3 64 64 95.1

(f) 2 64 64 92.5

(g)+ 5 64 64 97.7

Table 2: Ablation study on the Shelf dataset. D and D(rel)

are the number of depth layers in the person-level and joint-

level depth regression modules, respectively. + means dif-

ferent sets of cameras are used for training and evaluation.

Figure 4: Comparison of person-level recall when different

number of depth planes is used.

4.2. Ablation Study

“Local” Soft-argmax. We first justify the use of a “local”

soft-argmax operation (c.f . Equation 4). A direct compar-

ison between using a standard soft-argmax and our “local”

soft-argmax is shown in Table 1. The “local” soft-argmax is

able to focus on the mode with the highest response without

being interfered by other modes in a multi-modality distri-

bution. From Table 1, we see obvious improvement when

using our “local” soft-argmax operation on both the Cam-

pus and the Shelf datasets. The performance gap is large

especially for the Campus dataset, where each camera view

typically consists of 2 to 3 persons.

We then conduct ablation studies to evaluate our ap-

proach under various settings. The performance of 3D pose

estimation on the Shelf dataset measured in PCP is reported

in Table 2.

Number of virtual depth planes. We use D = 64
person-level depth planes and D(rel) = 64 joint-level depth

planes in our implementation by default. In this ablation

study, we examine the results when fewer depth planes are

used in each stage.

Method Campus (fps) Shelf (fps)

VoxelPose [25] 5.5 3.0

Ours 110.0 42.8

Table 3: Comparison of inference speed (frames per sec-

ond) with [25] on the Campus and the Shelf datasets.

We first compare the person-level depth regression per-

formance by evaluating the recall rate of the center hip joint

with respect to various distance thresholds. The results of

D = 16 and 64 are shown in Figure 4. Using more virtual

depth planes in general increases the person-level depth es-

timation precision. Table 2(a) and (b) also show that the 3D

pose estimation accuracy drops by 0.4% when reducing D
from 64 to 16.

The impact from using fewer depth layers is small in

the person-level stage since regressing a coarse person-level

depth is sufficient for rough 3D localization. In comparison,

the joint-level stage requires more precise depth regression

in order to estimate the 3D pose accurately. Table 2(a) and

(c) show the comparison between using 16 and 64 joint-

level depth planes. Reducing D(rel) from 64 to 16 leads to

a larger 0.7% performance drop, which is due to that using

fewer depth planes increases the quantization error.

Number of cameras. In Table 2(a) and (d)-(f), we com-

pare the performance of our approach when different num-

ber of cameras is used. The performance drops with reduc-

ing number of cameras. This is as expected since the indoor

dataset exhibits severe occlusions, which can be ambiguous

even for multi-camera settings. Nonetheless, our approach

still achieves over 92% accuracy in the extreme cases of us-

ing only two cameras.

Generalization to different camera settings. In this set-

ting, we use randomly sampled camera viewpoints during

training and use the 5 cameras from the dataset for eval-

uation. We can see from the result in Table 2(g) that our

method is able to perform equally well compared to (a)

when trained and evaluated on different sets of cameras.

This demonstrates the generalization ability of our method.

4.3. Inference Speed

We compare the computational efficiency of our work

with VoxelPose [25] since both works address the multi-

view 3D pose estimation problem in a learning-based

framework without explicit cross-view matching. We per-

form inference for both methods using the same set of 2D

pose estimates on a single GTX 1080 Ti graphics card. The

inference runtime for the evaluation on both the Campus

and the Shelf datasets is reported in Table 3. Note that

the runtime for 2D pose estimation is not included. Our

method achieves a frame rate that is up to 20x faster than the
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Campus Shelf

Method Actor 1 Actor 2 Actor 3 Average Actor 1 Actor 2 Actor 3 Average

Belagiannis et al. [1] 82.0 72.4 73.7 75.8 66.1 65.0 83.2 71.4

Belagiannis et al. [3] 83.0 73.0 78.0 78.0 75.0 67.0 86.0 76.0

Belagiannis et al. [2] 93.5 75.7 84.4 84.5 75.3 69.7 87.6 77.5

Ershadi-Nasab et al. [8] 94.2 92.9 84.6 90.6 93.3 75.9 94.8 88.0

Dong et al. [7] 97.6 93.3 98.0 96.3 98.8 94.1 97.8 96.9

Huang et al. [11] 98.0 94.8 97.4 96.7 98.8 96.2 97.2 97.4

VoxelPose - Tu et al. [25] 97.6 93.8 98.8 96.7 99.3 94.1 97.6 97.0

Ours 98.4 93.7 99.0 97.0 99.3 96.5 98.0 97.9

Table 4: Comparison of PCP with existing multi-view multi-person 3D pose estimation methods on the Campus and the Shelf

datasets.

Figure 5: Qualitative results on the Shelf dataset. (Left) Images with projections of the estimated 3D poses in each camera

view. (Right) 3D pose estimates in solid lines and 3D ground truth poses in dashed lines.

Method AP25 AP50 AP100 AP150 MPJPE

VoxelPose [25] 83.59 98.33 99.76 99.91 17.68mm

Ours 92.12 98.96 99.81 99.84 16.75mm

Table 5: Comparison with [25] on CMU Panoptic dataset.

VoxelPose method, which can be used to fully support real-

time inference. Our advantage in computational efficiency

is mainly due to our method focusing on only the target 2D

poses and uses more computationally affordable 1D con-

volutions. In contrast, VoxelPose performs expensive 3D

convolutions for each voxel in the 3D space that incurs un-

necessary computations in regions without any person.

4.4. Comparison to the State­of­the­arts

We report the 3D pose estimation accuracy on the Cam-

pus and the Shelf datasets in Table 4. The average accuracy

improves from 96.7% to 97.0% on the Campus dataset, and

from 97.4% to 97.9% on the Shelf dataset. Table 5 fur-

ther shows that our method decreases the error by ∼1mm

on Panoptic dataset when compared to VoxelPose [25]. Our

method shows decent performance improvement in addition

to being able to implicitly solve the challenging multi-view

matching problem neatly. Note that among the existing

works shown in Table 4, VoxelPose [25] and our method uti-

lize only geometric consistency based on multi-view epipo-

lar geometry. Although photometric consistency is not con-

sidered, robust performance can still be achieved with 2D

poses from the current top-performing 2D pose estimator.

Examples of qualitative results are shown in Figure 5.

5. Conclusion

In this work, we present our plane-sweep-based ap-

proach to regress 2D pose depths for the task of multi-

view multi-person 3D pose estimation. Our method uses

the plane sweep algorithm to aggregate multi-view infor-

mation based on a pose-aware geometric consistency and

effectively estimates the depths for each 2D pose in a target

camera view without explicitly establishing cross-view cor-

respondences. Depth regression is performed in a coarse-to-

fine scheme, where we first regress the person-level depth

followed by the joint-level relative depth estimation. Our

framework is computationally more efficient and shows su-

perior performance compared to previous state-of-the-arts.
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