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Abstract

We introduce Point2Skeleton, an unsupervised method

to learn skeletal representations from point clouds. Exist-

ing skeletonization methods are limited to tubular shapes

and the stringent requirement of watertight input, while our

method aims to produce more generalized skeletal represen-

tations for complex structures and handle point clouds. Our

key idea is to use the insights of the medial axis transform

(MAT) to capture the intrinsic geometric and topological

natures of the original input points. We first predict a set of

skeletal points by learning a geometric transformation, and

then analyze the connectivity of the skeletal points to form

skeletal mesh structures. Extensive evaluations and com-

parisons show our method has superior performance and

robustness. The learned skeletal representation will benefit

several unsupervised tasks for point clouds, such as surface

reconstruction and segmentation.

1. Introduction

Generating skeleton-based representations to capture the

underlying shape structures is a classic problem in com-

puter vision and computer graphics. Skeletonization has

been shown to benefit various tasks including shape recog-

nition [4,40], 3D reconstruction [38,43], segmentation [24],

shape matching [34, 36], pose estimation [28, 32], action

recognition [21,33] and animation [5]. Extracting skeletons

of 3D shapes using hand-crafted rules [3, 26, 37] has been

researched for decades. With the recent advances in 3D vi-

sion with deep learning, predicting curve skeletons for 3D

shapes using networks [44] is beginning to be studied.

In fact, the existing methods only target a specific cate-

gory of shapes that can be abstracted appropriately by curve

segments, i.e., shapes composed of tubular parts. Also, gen-

erating an internal representation, such as the skeleton, for

a 3D shape heavily relies on watertight surface meshes to

explicitly give inside/outside classification labels and pre-

cisely compute certain geometric functions [12, 14]. These
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Figure 1. We introduce an unsupervised method to learn skeletal

meshes from point clouds. The skeletal meshes contain both 1D

curve segments and 2D surface sheets which can represent under-

lying structures of various shapes.

restrictions critically limit the applicability of the existing

skeletonization methods. Hence, it is imperative to develop

an effective method for computing a generalized skeletal

representation for an arbitrary 3D shape. Such a skele-

tonization method should be able to handle general input

beyond the closed surface, such as point clouds with miss-

ing parts, in order to significantly extend the utility of skele-

ton in various computer vision and graphics tasks.
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Figure 2. Illustration of the medial axis transformation (MAT) and

the skeletal mesh. (a) The MAT of a 2D shape; (b) the original

MAT of a 3D shape; (c) the skeletal mesh.

We observe that the medial axis transform (MAT), one

of the best known examples of skeletal representation, has

a rigorous mathematical definition for arbitrary shapes, un-

like the curve skeleton which is only empirically understood

for tubular objects. Given a 3D shape, the MAT [8] is de-

fined as the set of points in the interior with more than one

closest point on the boundary surface; the MAT encodes the

shape to a lower-dimensional representation with the asso-

ciated radius function. The examples are shown in Fig. 2.

Despite its simple definition, the MAT is difficult to use
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in practice for the following two reasons: (1) the compu-

tation of the MAT is expensive, since it requires the in-

put 3D shape to be defined by a closed boundary surface

and a substantial amount of time for geometric processing;

(2) the MAT is notoriously sensitive to surface noise, i.e.,

small perturbations to the shape surface lead to numerous

insignificant branches [2,15] (Fig. 2 (b)); such a noisy MAT

does not clearly reflect the structures of the given shape.

These difficulties motivate us to resort to the formula-

tion of the MAT and the representational power of the deep

neural network to learn a generalized skeletal representa-

tion. We name this representation skeletal mesh, which is

an important extension to the curve skeleton. As shown in

Fig 2, the skeletal mesh follows a similar but not identical

definition to the MAT; it circumvents the drawbacks of the

MAT and has its own merits: (1) it is structurally meaning-

ful and topologically informative, where the tubular parts

can be properly abstracted by a few curves while the pla-

nar or bulky parts by interior surfaces; (2) the skeletal mesh

is simpler and more compact than the standard MAT; it fo-

cuses on the fundamental geometry of a shape and can cope

with point clouds, making it robust to surface noise and par-

tially missing data. Therefore, given such a representation,

the expressive capacity for the geometry and topology of a

3D shape is significantly enhanced.

In this paper, we propose Point2Skeleton, an unsuper-

vised method for learning skeletal meshes from 3D point

clouds. Our method consists of two main steps as shown

in Fig 1. The first step is to predict the skeletal points by

learning a geometric transformation. The second step is to

connect the skeletal points to form a mesh structure; we

adopt a graph structure, and analyze the edge connectivity

by jointly leveraging the properties of skeletal mesh and the

correlations learned by a graph auto-encoder (GAE). Our

main contributions are:

• To our best knowledge, Point2Skeleton is the first

unsupervised learning method for generalized point

cloud skeletonization.

• We present novel unsupervised formulations for geo-

metric learning of 3D point clouds, i.e., learning in-

trinsic geometric transformations and predicting con-

nectivity for mesh generation.

• We introduce a new representation, called skeletal

mesh, which gives new insights into some unsuper-

vised tasks for point clouds, such as surface recon-

struction and segmentation.

2. Related Work

Skeletonization and medial axis transform. Skeleton-

based shape representation has been extensively researched

in computer vision and computer graphics. A widely-used

form is the curve skeleton due to its simplicity. Traditional

methods use hand-crafted rules to capture geometric proper-

ties for generating curve skeletons [3,9,17,26,37]. Recently,

attempts have been made to use deep neural networks to

predict curve skeletons [44]. The curve skeletons are only

empirically understood for tubular geometries, so they can

only be applied to a limited class of shapes.

Another form of skeletal representation is known as the

medial axis transform (MAT) [8], which is a principled for-

mulation that can encode arbitrary shapes. There are nu-

merous methods for computing the MAT of 3D shapes,

such as [1] [2] and [15]. However, the MAT is notoriously

sensitive to surface noise, which usually leads to numer-

ous insignificant spikes. Therefore, some methods use sim-

plification techniques to produce a clean and structurally

simple MAT [23, 35, 45]. These methods all need expen-

sive geometric processing and require watertight input sur-

faces. There are also some rule-based methods for gener-

ating meso-skeletons [37, 43] to approximate the MAT. We

use deep learning techniques to efficiently predict the clean

skeletons based on the insights of the MAT, and also show

better performance than the other related methods.

Learning transformations. Learning spatial transforms in

the image domain is an important problem. Representative

works on this problem include spatial transformer networks

(STN) [19] and view synthesis by appearance flow [48], to

name a few. However, learning geometric transforms in the

3D domain is still under-explored. Berkiten et al. [6] pro-

pose to learn a combination of geometric features to derive

the transform of surface details. More relevantly, Yin et

al. [47] introduce a deep neural framework to learn geomet-

ric transforms between two domains of 3D points. Yang et

al. [46] explicitly predict the medial axis from an input point

cloud. These two methods are able to learn geometric trans-

formations, but the learning is driven by the pre-computed

ground-truth points rather than capturing the intrinsic geo-

metric natures. Also, the learned point-to-point transforma-

tion neither contains structured surfaces nor gives topologi-

cal connectivity.

Inferring mesh structures. There has been growing in-

terest in inferring mesh structures of 3D shapes using deep

neural networks. Due to the difficulty of directly generat-

ing such compact structures, many approaches generate tar-

get meshes by deforming the pre-defined mesh templates

[25, 41]. These methods lack the flexibility of handling

complex geometries and typologies. Recently, learning im-

plicit representations becomes popular. The common form

is to first learn implicit volumetric functions to represent a

3D shape, such as signed-distance functions [29], indicator

functions [27] and structured implicit functions [14], and

then extract the surface. Some methods aim to directly pre-

dict mesh structures from scratch. Scan2Mesh [13] learns

to explicitly generate vertices, edges and faces using graph

neural networks. PointTriNet [31] explicitly learns the tri-

angulation of a given point set to form the mesh.
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Figure 3. Overview of our Point2Skeleton pipeline. Given a point cloud as input, first, we learn a geometric transformation via convex

combinations to predict the skeletal points together with their radii. Second, we connect the skeletal points to form a mesh structure; we

initialize a graph structure using two simple priors and formulate a link prediction problem using a graph auto-encoder to obtain a complete

skeletal mesh.

Most of these methods rely on ground-truth surfaces for

reliable supervision; none of them can be used to predict

skeleton representations that contain curves. In contrast, our

method is directly trained on point clouds, aiming to effec-

tively generate skeletal meshes in an unsupervised manner.

3. Skeletal Mesh

The skeletal mesh of a given 3D shape is a discrete

2D non-manifold defined by a collection of skeletal points,

edges and faces that form the underlying structure of the

3D shape, as shown in Fig. 4 (a). A skeletal sphere is re-

quired to be maximally inscribed in the 3D shape, denoted

as s = (c, r(c)) ∈ R
4, where c ∈ R

3 is the center of the

sphere (i.e., the skeletal point), and r(c) : R3 → R is the as-

sociated radius. We use eij = (ci, cj) to represent an edge

of the skeletal mesh connecting two skeletal points ci and

cj , and use fijk = (ci, cj , ck) to represent a triangle face.

The skeletal mesh is a discrete representation while the

MAT is continuously defined. The discrete nature of the

skeletal mesh allows us to develop a learning-based ap-

proach to robustly compute the skeletal representation, such

that it inherits the favorable properties of the MAT for shape

representation while not suffering from the instability to

boundary noise [2,15]. Several good properties of the skele-

tal mesh are elaborated as follows, which makes it a useful

representation for shape analysis (see Sec. 6).

Recoverability. The skeletal mesh can be considered as a

complete shape descriptor, which means it can reconstruct

the shape of the original domain. Fig. 4 (b)(c) shows how

to reconstruct the original shape by the interpolation of all

the skeletal spheres based on the mesh structure.

Abstraction. The skeletal mesh captures the fundamental

(a) (b) (c)
Figure 4. Properties of skeletal mesh. (a) A skeletal mesh structure

of a shape; (b) interpolation of the skeleton spheres of an edge

(top) and a triangle face (bottom); (c) the interpolation of all the

spheres on the skeletal mesh reconstructs the original shape.

geometry of a 3D shape and extracts its global topology; the

tubular parts are abstracted by simple 1D curve segments

and the planar or bulky parts by 2D surface triangles.

Structure awareness. The 1D curve segments and 2D sur-

face sheets as well as the non-manifold branches on the

skeletal mesh give a structural differentiation of a shape.

Volume-based closure. The interpolation of the skeletal

spheres gives solid cone-like or slab-like primitives (see

Fig. 4 (b)); then a local geometry is represented by volumet-

ric parts, which provides better integrity of shape context.

The interpolation also forms a closed watertight surface.

4. Method

Our method is composed of two modules. As shown in

Fig. 3, given a point cloud as input, the first module is to

predict a set of skeletal points by learning a geometric trans-

formation (Sec. 4.1). The second module is to connect the

skeletal points to form a skeletal mesh, where we resort to a

graph structure to analyze the edge connectivity (Sec. 4.2).

4.1. Skeletal Point Prediction

Given K input points {pi} with 3D coordinates, repre-

sented as P ∈ R
K×3, our goal is to predict N skeletal

spheres {si = (ci, r(ci))}, represented as S ∈ R
N×4,
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consisting of the coordinates of the centers C ∈ R
N×3

and their radii R ∈ R
N×1. To start with, we use Point-

Net++ [30] as the encoder to obtain the sampled input points

P ′ ∈ R
K′×3 and their contextual features F ∈ R

K′×D,

where K ′<K and D is the dimension of the feature.

Convex combination. We observe a skeletal point can be

considered as a local center of a set of surface points. Con-

sequently, instead of directly predicting the coordinates of

the skeletal points, we use the convex combination of input

points to generate the skeletal points. To this end, we pre-

dict the weights W ∈ R
K′×N of the sampled input points

P ′ in the convex combination and all the skeletal points C

are derived by:

C = W
T
P

′ s.t. j=1, ..., N

K′∑

i=1

W(i, j) = 1. (1)

Now we explain how to estimate the radius of each skele-

tal sphere. First, the closest distance from an input point p

to all the skeleton points {ci} is defined as follows:

d(p, {ci}) = min
c∈{ci}

‖p− c‖
2
. (2)

The distances for all K ′ sampled input points pi com-

puted by Eq. 2 are summarized in a vector D ∈ R
K′×1.

Now we express the radii of all the skeletal points as the

linear combinations of their closest distances of all the sam-

pled points, i.e., R = W
T
D. The rationale of using the

same weights W as Eq. 1 is based on the fact that the pre-

dicted weights for a skeletal point c are large only for the

input points close to c, but diminish to zero for those far

from c. The reader can refer to the supplementary material

for a detailed argument.

The advantages of using the weights of convex combi-

nation to predict the skeletal points lie in: (1) the gener-

ated points tend to be located inside the local shape with-

out using explicit inside/outside labels given by a watertight

boundary surface; (2) the computed combinational weights

W can be considered as linear filters which are effective for

denoising when computing the radius.

Similar to [11], we use a shared multi-layer-perceptron

(MLP) followed by a softmax layer to produce the weights

W . By capturing the properties of the skeletal mesh, we are

able to design a set of loss functions to train the network to

obtain the combinational weights W .

Based on the recoverability of the skeletal mesh, we first

introduce two loss functions to measure the reconstruction

error from two different perspectives.

Sampling loss. We sample points on the surface of each

skeletal sphere and measure the Chamfer Distance (CD) be-

tween the sampled points {ti} and the input points {pi}:

Ls =
∑

p∈{pi}

min
t∈{ti}

‖p− t‖
2
+

∑

t∈{ti}

min
p∈{pi}

‖t− p‖
2
. (3)

Here we adopt a uniform sampling strategy. For a skele-

tal sphere (c, r(c)), a surface point t can be obtained by

t = c + r(c)v given a unit direction vector v; we sample

8 points for each skeletal sphere by giving 8 unit vectors

V = {(±η,±η,±η), 3η2 = 1}.

Point-to-sphere loss. In addition to sampling, we introduce

a loss function that measures the reconstruction error by ex-

plicitly optimizing the coordinates of the skeletal points and

their radii:

Lp=
∑

p∈{pi}

(min
c∈{ci}

‖p−c‖
2
−r(cmin

p ))+
∑

c∈{ci}

(min
p∈{pi}

‖c−p‖
2
−r(c)),

(4)

where {ci} represents the predicted skeletal points, {pi} the

input points, r(c) the radius of a skeletal point c, and cmin
p

the closest skeletal point to the input point p. The first term

constrains each input point to be located on the surface of

its closest skeletal sphere, while the second term encourages

each skeletal sphere to touch its closest input point.

These two complementary losses optimize the consis-

tency between the skeleton and the input point cloud from

different aspects, leading to more reliable predictions (see

the evaluations in Sec. 5.2).

Radius regularizer. An inscribed sphere of a 3D shape is

sensitive to surface noise; that is, a sphere can be stuck in

the space among several noisy points thus resulting in a tiny

radius. To focus on the fundamental geometry for better

abstraction and avoid instability, therefore, we also include

a radius regularization loss to encourage larger radii:

Lr = −
∑

c∈{ci}

r(c). (5)

Instead of directly being predicted by the network, the

radii are computed using a linear combination of the dis-

tances in Eq. 2 with the weights W . Thus, the radius values

are bounded to a certain range, which prevents them from

growing too large and giving a very small value of Lr to

destroy the optimization. The total loss function for pre-

dicting skeletal spheres is a weighted combination of these

three terms:

Lskel = Ls + λ1Lp + λ2Lr. (6)

4.2. Skeletal Mesh Generation

In this section, we aim to connect the predicted skeletal

points to form skeletal meshes. Our mesh generation pro-

cess is built on the edge connectivity of the skeletal points,

which can encode both curve segments and face triangles.

We thus resort to a graph representation for this problem.

Graph initialization. Based on the properties of the skele-

tal mesh, we first initialize a set of reliable links using two

simple priors:
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• Topology prior: A node has a link to its closest node

(marked as known existing links) but no links to its k-

farthest nodes (known absent links).

• Recovery prior: Given an input point p with its two

closest skeletal points c1, c2, there will be a link con-

necting (c1, c2) (known existing links).

The topology prior assumes the skeletal mesh is rela-

tively regular. The recovery prior ensures each input point

can be properly reconstructed by the skeletal mesh. Based

on these reliable priors, we obtain an initialized graph with

known existing and known absent links, and we mark the

other links as unknown.

Link prediction by GAE. The initialized graph is usually

incomplete. Therefore, we formulate a link prediction prob-

lem based on the graph auto-encoder (GAE) [22], which is

an unsupervised formulation, to further predict the missing

links by analyzing the correlations of the skeletal points in

the latent space. As shown in Fig. 5, the GAE predicts ad-

ditional links for the initialized graph, enabling our method

to handle missing regions and noise of the input points.

The input to the encoder is the initialized graph G =
(N , E) with N = |N | nodes representing N skeletal points

and E the edge connectivity. The graph G is undirected

and unweighted, represented by an adjacency matrix A ∈
{0, 1}N×N . To effectively leverage the geometric correla-

tions between the skeleton and the input surface points, the

node features are jointly characterized by the coordinates

C of the skeleton points, their radii R and the contextual

features F of the input, which is denoted as [C,R,WT
F ],

where [·, ·, ·] represents the concatenation on the feature di-

mension and W
T
F combines the contextual features to the

skeletal points using the predicted weights W .

The encoder is a series of graph convolutional network

(GCN) layers with residual blocks [16] between the consec-

utive layers. We use an inner product decoder to produce

the reconstructed adjacency matrix Â. Please refer to the

supplementary material to find more details.

Learning. We define a reconstruction loss that captures the

similarity of the reconstructed Â and the initialized A:

Llink=mean(M⊙(−ξAlog(σ(Â))−(1−A)log(σ(1−Â)))).
(7)

This is referred to as a Masked Balanced Cross-Entropy

(MBCE) loss [39]. Here ξ represents the balanced weight,

which is the ratio of the amount of absent links to the exist-

ing links; M ∈ R
N×N is a binary mask indicating whether a

link between two nodes is known or unknown (as marked in

the graph initialization priors), by which we only consider

the known links in the back-propagation; ⊙ is the element-

wise product and σ(·) represents the Sigmoid function.

The capability of the GAE to predict missing links is at-

tributed to the encoded meaningful latent embeddings that

can reconstruct the graph. The decoder establishes the links

by measuring the correlations of the latent features; thus the

Figure 5. Skeletal mesh generation. Given the initialized graph,

the GAE predicts potential links by measuring the correlations of

the skeletal points in the latent embedding, based on which we

refine the initialized graph to derive the final skeletal mesh.

nodes with unknown connectivity will form links if they ex-

hibit strong correlations in the latent space.

Mesh generation. Once the training is finished, we do

not directly use the raw output of GAE as the final skele-

tal mesh, since it will lead to many redundant triangles and

unclear structures. Instead, as shown in Fig. 5, we use the

GAE prediction to refine the initial graph, which mainly

contains two steps. The first is hole filling. We extract all

the triangle faces on the initial graph, and then detect the

small polygonal loops that do not form face triangles on the

remaining initial graph. A polygonal loop hole will be filled

if the links predicted by the GAE show the hole does not ex-

ist. To explicitly consider the geometric recoverability for

more reliable mesh generation, we also fill a hole if there are

enough points on its corresponding area of the input points.

The second is boundary refinement. We extract the skele-

tal points on the boundary and connect two points if the

GAE prediction shows they are connected. With the pre-

dicted mesh, we can re-compute the closest distances based

on Eq. 2 and then obtain a more accurate radius estimation.

5. Experimental Results

Dataset. We collect 7088 shapes from 8 categories of

ShapeNet [10], and use a virtual scanner [42] to generate the

point clouds (2000 points are randomly sampled for each

shape). We use 5/6 of the data from each category for train-

ing and the other 1/6 for testing. The network is trained on

all the shape categories jointly.

Implementation details. We use a PointNet++ [30] en-

coder of 4 set abstraction levels to obtain the contextual fea-

tures; then the features are processed by 5 shared MLPs to

predict N=100 skeletal points for each shape. For the GAE,

we use a 12 layers GCN with residual blocks. More details

and evaluations are given in the supplementary material.

For the training process, the skeletal point prediction net-

work is first pre-trained only by the CD loss between the

skeletal points and the input points for 20 epochs. This is

to make the skeletal points evenly distributed around the

shape, leading to a better initialization. Then, the network

is trained using Lskel (with λ1 = 0.3 and λ2 = 0.4) for

30 epochs. After that, we freeze the skeletal point predic-

tion network and train the GAE for 30 epochs. The learning
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Figure 6. Qualitative comparison with the competitive point cloud skeletonization methods, i.e., L1-medial skeleton [17] and deep point

consolidation (DPC) [43].

rates for the two networks are 1e−3 and 5e−4 respectively

and the batch size is 4.

5.1. Results and Comparisons

Evaluation metrics. We evaluate our method and the com-

petitive skeletonization methods from two aspects. The first

is the reconstruction quality for the original shape. We mea-

sure the difference between the shapes reconstructed from

the skeletons and the ground truth shapes using the Cham-

fer distance (CD) and Hausdorff distance (HD), which are

denoted as CD-Recon and HD-Recon, respectively.

Note that only the reconstruction accuracy alone is not

enough to completely reflect the quality of the skeletoniza-

tion. For example, a poorly designed algorithm that directly

outputs the input points will yield small reconstruction er-

ror, but do not constitute a reasonable skeleton. Unfortu-

nately, there are no existing metrics to evaluate if a skele-

tonization is reasonable, since the skeleton is a form of

shape abstraction involving higher-level perceptions. Nev-

ertheless, we observe a manually simplified MAT, where the

unstable spikes are removed, not only shares some common

characteristics with different forms of skeletons, but also

has good geometric accuracy. A simplified MAT contains

both curve-like and surface-like geometries; thus it can be

used to evaluate the methods that are based on curves or

beyond the curves.

We repair the ground truth meshes of the ShapeNet, con-

vert them to watertight meshes [18] and compute the strictly

defined MATs. We manually simplify the MATs using the

handcrafted methods [23] by removing the spikes to make

them visually simple and clean (see the supplementary ma-

terial for more details). Again, we use the CD and HD to

measure the difference between the output skeletal repre-

sentations and the simplified MAT, denoted as CD-MAT and

HD-MAT. All these distances are computed by randomly

sampled points from the respective geometries.

Comparisons. Since learning-based skeletonization is

barely studied, we evaluate our method with comparisons

to closely relevant approaches that are not learning-based,

i.e., L1-medial skeleton [17] and deep point consolidation

(DPC) [43]. We use the code released by the authors for

comparison. Similar to ours, these methods are designed

for the skeletonization of an arbitrary 3D shape given as a

point cloud. Fig. 6 shows the qualitative comparisons with

these methods. The L1-medial skeleton [17] can produce

structured representations that only contain 1D curves, thus

resulting in large errors when used to abstract non-tubular

shapes. The DPC [43] method can generate both surface-

like and curve-like skeletons, but the representations are

unstructured points that lack topological constraints, lead-

ing to inconsistency for thin structures. In contrast, our

method can generate more compact and structurally mean-

ingful skeletal representations for various geometries.

As shown in Table 1, we quantitatively compare our

method with these two methods using the four metrics

aforementioned. The results show that our method not only

more accurately encodes the information from the original

input, but also produces more reasonable skeletonization re-

sults that are geometrically meaningful.

5.2. Discussions

We conduct a series of ablation studies to verify the var-

ious settings in our framework, and also some experiments

to further explore the properties of the proposed method.

Skeletal point prediction. We evaluate the effect of the ge-

ometric constraints in the loss function (Eq. 6) for skeletal

point prediction. We alternatively remove each constraint

and analyze the quality of the predicted skeletal points. The

qualitative and quantitative results are shown in Fig. 7 and

Table 2, respectively. Under the effect of the radius regular-

izer that encourages larger radii, only the point-to-sphere

loss struggles to constrain the skeletal spheres inside the

shape without using sampling loss. The removal of the

point-to-sphere loss results in inaccurate radii and uneven

distribution of spheres, while the removal of the radius reg-

ularizer leads to spheres that are scattered instead of being

maximally inscribed. Using the full configuration better

captures the inner structures and achieves higher accuracy.
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CD-Recon HD-Recon CD-MAT HD-MAT

L1 DPC Ours L1 DPC Ours L1 DPC Ours L1 DPC Ours

Airplane 0.0378 0.0348 0.0363 0.2216 0.1436 0.1266 0.0793 0.1307 0.0611 0.2384 0.2580 0.1721

Chair 0.1126 0.0769 0.0441 0.4810 0.2478 0.1618 0.1885 0.2286 0.0974 0.4991 0.3707 0.2151

Table 0.1041 0.0853 0.0424 0.3453 0.2584 0.1745 0.1541 0.2683 0.0876 0.3583 0.3690 0.2085

Lamp 0.1542 0.0712 0.0335 0.3956 0.1850 0.1382 0.1870 0.1751 0.0884 0.4089 0.2627 0.2003

Guitar 0.0655 0.0212 0.0179 0.2180 0.0589 0.0625 0.0817 0.0672 0.0536 0.2262 0.1226 0.1216

Earphone 0.0437 0.0573 0.0399 0.1908 0.2059 0.1125 0.0607 0.2216 0.1638 0.1732 0.3403 0.2130

Mug 0.2864 0.1280 0.0417 0.9142 0.3510 0.1419 0.5316 0.4600 0.1179 0.9057 0.4308 0.2158

Rifle 0.0260 0.0215 0.0213 0.1078 0.0702 0.0767 0.0494 0.0427 0.0356 0.1234 0.1050 0.0957

Average 0.1038 0.0668 0.0372 0.3593 0.2049 0.1424 0.1665 0.2026 0.0828 0.3667 0.3047 0.1898

Table 1. Quantitative comparison with the competitive point cloud skeletonization methods.

CD-Recon HD-Recon CD-MAT HD-MAT

w/o sampling(Ls) 0.3032 0.4886 0.7319 0.7848

w/o point2sphere(Lp) 0.0535 0.1619 0.1102 0.2236

w/o radius(Lr) 0.0634 0.2206 0.1276 0.2517

full configuration 0.0525 0.1592 0.1060 0.2079

Table 2. Quantitative ablation study using different configurations

of the geometric constraints for skeletal point prediction.

Figure 7. Qualitative ablation study on different configurations of

the geometric constraints for skeletal point prediction.

Mesh generation. Given a set of discrete points, there are

some frequently used methods to generate meshes in the

same manner as our method, i.e., connecting the vertices

to form mesh structures. The alternative methods tested in-

clude Ball pivoting [7], Delaunay triangulation (deleting the

triangle faces with overlong edges using a threshold) and K

Nearest Neighbor (KNN) (connecting the K nearest neigh-

bors of each point and extracting the formed triangles). The

qualitative and quantitative results are shown in Fig. 8 and

Table 3 (the first three rows). Our strategy for connecting

points into a skeletal mesh is significantly better than the

alternative methods, thanks to the joint use of the properties

of skeletal mesh and the point correlations in latent embed-

dings; the other methods cannot preserve the typologies and

thus are not suitable for generating skeletal meshes.

As an ablation study, in Table 3, we also report the er-

rors without using the graph initialization (only skeletal

spheres) and without using the GAE (only graph initializa-

tion), respectively. The results demonstrate the improve-

ments brought about by the learned latent embeddings over

the raw output of skeletal spheres and the initialization.

Noise and sparsity. To study the effect of the input qual-

ity on our algorithm, we evaluate our method using the in-

put of different point numbers and noise levels, i.e., 2000

points with no noise, 1000 points with 0.5% noise and 500

Figure 8. Qualitative results of alternative mesh generation meth-

ods by connecting vertices to form mesh structures.

CD-Recon HD-Recon CD-MAT HD-MAT

Delaunay 0.0388 0.3313 0.1196 0.3386

Ball Pivoting 0.0443 0.3903 0.1095 0.3965

KNN 0.0394 0.2811 0.0946 0.3243

w/o graph 0.0525 0.1592 0.1060 0.2079

w/o GAE 0.0383 0.1462 0.0842 0.1886

w/ GAE 0.0372 0.1424 0.0828 0.1898

Table 3. Quantitative comparisons with different methods for mesh

generation by connecting vertices (first 3 rows); ablation study for

the mesh generation (last 3 rows).

Figure 9. Qualitative evaluation on the effect of the quality of input

point cloud, i.e., density (point number) and noise.

points with 1% noise. The qualitative results are shown in

Fig. 9 and more results can be found in the supplementary

material, where we can find the results are largely similar.

However, since we use the convex combination of the in-

put points to generate the skeletal points, if the input points

are too sparse and some points on the convex hull are miss-

ing, our method struggles to recover the complete geometry

(see the red boxes in Fig. 9).
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Figure 10. Unsupervised surface reconstruction from point clouds.

Our method can produce watertight surfaces without the need of

surface normals and can capture the details of thin structures.

6. More Applications

Some good properties (see Sec. 3) of the skeletal mesh,

i.e., recoverability, abstraction, structure-awareness and

volume-based closure, provide new insights into several un-

supervised tasks on point clouds. In this section, we demon-

strate the benefits to four such applications.

Surface reconstruction. Generating watertight surfaces

from point clouds for thin structures and preserving the

original typologies, especially when there is no supervision

from ground-truth, is a highly challenging problem. The

skeletal mesh provides a suitable vehicle for solving this

problem, since we can reconstruct the surface of an input

point cloud by interpolating the skeletal spheres. We qual-

itatively compare to some unsupervised surface reconstruc-

tion methods, including Ball pivoting [7], Screened Pois-

son reconstruction [20] and PointTriNet [31]. The results

are shown in Fig. 10. On the one hand, the reconstructions

using skeletal meshes preserve the complex typologies and

also capture the thin structures of the input. On the other

hand, unlike the Poisson reconstruction, our method does

not need to input any surface normal information, and is

still able to produce high-quality watertight surfaces.

Structural decomposition. The skeletal mesh is structure-

aware as introduced in Sec. 3; thus it naturally induces a

structural decomposition of a shape without data annota-

tion. Fig. 11 shows a set of segmentation results by de-

tecting the dimensional changes and the the non-manifold

branches on the skeletal meshes.

Shape in-painting. The skeletal mesh encodes volume-

based shape context which provides better integrity of part

geometry, leading to robustness against partially missing

data. Thus we can recover the complete geometry from an

incomplete point cloud. Some results are given in Fig. 12.

Skeleonization with consistent correspondence. Skele-

tons play a vital role in pose recognition and animation, in

which a challenge is to find the correspondences between

Figure 11. Unsupervised structural decomposition for point clouds

by detecting dimensional changes and non-manifold branches on

the skeletal mesh.

Figure 12. Skeletal mesh prediction for reconstructing complete

surfaces from point clouds with missing regions.

Figure 13. Skeletal meshes with consistent correspondences. We

color the skeletal points of each shape individually based on their

indices in each prediction; some key skeletal points are highlighted

to show the semantic consistency.

different poses of a human or an animal. Fig. 13 shows the

skeletal meshes generated for a sequence of horse models in

different poses. Without explicitly enforcing the correspon-

dence, the results for different poses are semantically con-

sistent due to the learning of convex combination (see [11]

for the detailed explanation). This would be beneficial for

tasks that require pose invariance in animation.

7. Conclusion

We propose Point2Skeleton, a novel unsupervised

method for generating skeletal meshes from point clouds.

We first predict skeletal points by learning a geometric

transformation, and then analyze the connectivity of the

skeletal points to form meshes. Experiments show that the

skeletal mesh generated by our method effectively captures

the underlying structures for general 3D shapes, even when

represented as points clouds with noises or missing parts.

We believe our method for learning skeletons can benefit

a variety of 3D applications, given the good properties of

the skeletal mesh. In the future, how to combine the geo-

metric and topological properties of the skeletal mesh and

higher-level supervision from humans (e.g., semantics) for

3D learning tasks, would be a promising direction.
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Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE transactions on vi-

sualization and computer graphics, 5(4):349–359, 1999. 7,

8

[8] Harry Blum. A transformation for extracting new descriptors

of shape. Models for Perception of Speech and Visual Forms,

1967, pages 362–380, 1967. 1, 2

[9] Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang,

and Zhinxun Su. Point cloud skeletons via laplacian based

contraction. In 2010 Shape Modeling International Confer-

ence, pages 187–197. IEEE, 2010. 2

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 5

[11] Nenglun Chen, Lingjie Liu, Zhiming Cui, Runnan Chen,

Duygu Ceylan, Changhe Tu, and Wenping Wang. Unsuper-

vised learning of intrinsic structural representation points. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 9121–9130, 2020. 4,

8

[12] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5939–5948, 2019. 1

[13] Angela Dai and Matthias Nießner. Scan2mesh: From un-

structured range scans to 3d meshes. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5574–5583, 2019. 2

[14] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,

William T Freeman, and Thomas Funkhouser. Learning

shape templates with structured implicit functions. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 7154–7164, 2019. 1, 2

[15] Joachim Giesen, Balint Miklos, Mark Pauly, and Camille

Wormser. The scale axis transform. In Proceedings of the

twenty-fifth annual symposium on Computational geometry,

pages 106–115, 2009. 2, 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 5

[17] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong,

Hao Zhang, Guiqing Li, and Baoquan Chen. L1-medial

skeleton of point cloud. ACM Trans. Graph., 32(4):65–1,

2013. 2, 6

[18] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-

tight manifold surface generation method for shapenet mod-

els. arXiv preprint arXiv:1802.01698, 2018. 6

[19] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 2

[20] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-

face reconstruction. ACM Transactions on Graphics (ToG),

32(3):1–13, 2013. 8

[21] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous

Sohel, and Farid Boussaid. A new representation of skele-

ton sequences for 3d action recognition. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3288–3297, 2017. 1

[22] Thomas N Kipf and Max Welling. Variational graph auto-

encoders. NIPS Workshop on Bayesian Deep Learning,

2016. 5

[23] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang,

and Wenping Wang. Q-mat: Computing medial axis trans-

form by quadratic error minimization. ACM Transactions on

Graphics (TOG), 35(1):1–16, 2015. 2, 6

[24] Cheng Lin, Lingjie Liu, Changjian Li, Leif Kobbelt, Bin

Wang, Shiqing Xin, and Wenping Wang. Seg-mat: 3d shape

segmentation using medial axis transform. IEEE Transac-

tions on Visualization and Computer Graphics, 2020. 1

[25] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph con-

volutional autoencoders. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1886–1895, 2018. 2

[26] Wan-Chun Ma, Fu-Che Wu, and Ming Ouhyoung. Skeleton

extraction of 3d objects with radial basis functions. In 2003

Shape Modeling International., pages 207–215. IEEE, 2003.

1, 2

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4460–4470, 2019. 2

[28] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In European con-

ference on computer vision, pages 483–499. Springer, 2016.

1

4285



[29] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 165–174, 2019. 2

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 4, 5

[31] Nicholas Sharp and Maks Ovsjanikov. Pointtrinet:

Learned triangulation of 3d point sets. arXiv preprint

arXiv:2005.02138, 2020. 2, 8

[32] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,

Mark Finocchio, Richard Moore, Alex Kipman, and Andrew

Blake. Real-time human pose recognition in parts from sin-

gle depth images. In CVPR 2011, pages 1297–1304. Ieee,

2011. 1

[33] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu

Tan. Skeleton-based action recognition with spatial reason-

ing and temporal stack learning. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 103–

118, 2018. 1

[34] Kaleem Siddiqi, Ali Shokoufandeh, Sven J Dickinson, and

Steven W Zucker. Shock graphs and shape matching. In-

ternational Journal of Computer Vision, 35(1):13–32, 1999.

1

[35] Feng Sun, Yi-King Choi, Yizhou Yu, and Wenping Wang.

Medial meshes–a compact and accurate representation of

medial axis transform. IEEE transactions on visualization

and computer graphics, 22(3):1278–1290, 2015. 2

[36] Hari Sundar, Deborah Silver, Nikhil Gagvani, and Sven

Dickinson. Skeleton based shape matching and retrieval. In

2003 Shape Modeling International., pages 130–139. IEEE,

2003. 1

[37] Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and

Hao Zhang. Mean curvature skeletons. In Computer Graph-

ics Forum, volume 31, pages 1735–1744. Wiley Online Li-

brary, 2012. 1, 2

[38] Jiapeng Tang, Xiaoguang Han, Junyi Pan, Kui Jia, and Xin

Tong. A skeleton-bridged deep learning approach for gener-

ating meshes of complex topologies from single rgb images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4541–4550, 2019. 1

[39] Phi Vu Tran. Learning to make predictions on graphs with

autoencoders. In 2018 IEEE 5th International Conference on

Data Science and Advanced Analytics (DSAA), pages 237–

245. IEEE, 2018. 5

[40] Nhon H Trinh and Benjamin B Kimia. Skeleton search:

Category-specific object recognition and segmentation using

a skeletal shape model. International Journal of Computer

Vision, 94(2):215–240, 2011. 1

[41] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 52–67,

2018. 2

[42] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics (SIGGRAPH), 36(4), 2017. 5

[43] Shihao Wu, Hui Huang, Minglun Gong, Matthias Zwicker,

and Daniel Cohen-Or. Deep points consolidation. ACM

Transactions on Graphics (ToG), 34(6):1–13, 2015. 1, 2,

6

[44] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan

Singh. Predicting animation skeletons for 3d articulated

models via volumetric nets. In 2019 International Confer-

ence on 3D Vision (3DV), pages 298–307. IEEE, 2019. 1,

2

[45] Yajie Yan, David Letscher, and Tao Ju. Voxel cores: Effi-

cient, robust, and provably good approximation of 3d medial

axes. ACM Transactions on Graphics (TOG), 37(4):1–13,

2018. 2

[46] Baorong Yang, Junfeng Yao, Bin Wang, Jianwei Hu, Yil-

ing Pan, Tianxiang Pan, Wenping Wang, and Xiaohu Guo.

P2mat-net: Learning medial axis transform from sparse

point clouds. Computer Aided Geometric Design, page

101874, 2020. 2

[47] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang.

P2p-net: Bidirectional point displacement net for shape

transform. ACM Transactions on Graphics (TOG), 37(4):1–

13, 2018. 2

[48] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-

lik, and Alexei A Efros. View synthesis by appearance flow.

In European conference on computer vision, pages 286–301.

Springer, 2016. 2

4286


