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Zoom input and background shot Zoom with new background Our Zoom plugin with new background

Figure 1: Current video conferencing tools like Zoom can take an input feed (left) and replace the background, often introducing artifacts,

as shown in the center result with close-ups of hair and glasses that still have the residual of the original background. Leveraging a frame

of video without the subject (far left inset), our method produces real-time, high-resolution background matting without those common

artifacts. The image on the right is our result with the corresponding close-ups, screenshot from our Zoom plugin implementation.

Abstract

We introduce a real-time, high-resolution background re-

placement technique which operates at 30fps in 4K resolu-

tion, and 60fps for HD on a modern GPU. Our technique is

based on background matting, where an additional frame of

the background is captured and used in recovering the al-

pha matte and the foreground layer. The main challenge is

to compute a high-quality alpha matte, preserving strand-

level hair details, while processing high-resolution images

in real-time. To achieve this goal, we employ two neural

networks; a base network computes a low-resolution result

which is refined by a second network operating at high-

resolution on selective patches. We introduce two large-

scale video and image matting datasets: VideoMatte240K

and PhotoMatte13K/85. Our approach yields higher qual-

ity results compared to the previous state-of-the-art in back-

ground matting, while simultaneously yielding a dramatic

boost in both speed and resolution.

1. Introduction

Background replacement, a mainstay in movie special

effects, now enjoys wide-spread use in video conferencing

tools like Zoom, Google Meet, and Microsoft Teams. In ad-

dition to adding entertainment value, background replace-

ment can enhance privacy, particularly in situations where

a user may not want to share details of their location and

*Equal contribution.

environment to others on the call. A key challenge of this

video conferencing application is that users do not typically

have access to a green screen or other physical props used to

facilitate background replacement in movie special effects.

While many tools now provide background replacement

functionality, they yield artifacts at boundaries, particu-

larly in areas where there is fine detail like hair or glasses

(Figure 1). In contrast, traditional image matting methods

[6, 16, 17, 29, 9, 2, 7] provide much higher quality re-

sults, but do not run in real-time, at high resolution, and

frequently require manual input. In this paper, we intro-

duce the first fully-automated, real-time, high-resolution

matting technique, producing state-of-the-art results at 4K

(3840×2160) at 30fps and HD (1920×1080) at 60fps. Our

method relies on capturing an extra background image to

compute the alpha matte and the foreground layer, an ap-

proach known as background matting.

Designing a neural network that can achieve real-

time matting on high-resolution videos of people is ex-

tremely challenging, especially when fine-grained details

like strands of hair are important; in contrast, the previous

state-of-the-art method [27] is limited to 512×512 at 8fps.

Training a deep network on such a large resolution is ex-

tremely slow and memory intensive. It also requires large

volumes of images with high-quality alpha mattes to gener-

alize; the publicly available datasets [32, 24] are too limited.

Since it is difficult to collect a high-quality dataset with

manually curated alpha mattes in large quantities, we pro-
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pose to train our network with a series of datasets, each with

different characteristics. To this end, we introduce Video-

Matte240K and PhotoMatte13K/85 with high-resolution al-

pha mattes and foreground layers extracted with chroma-

key software. We first train our network on these larger

databases of alpha mattes with significant diversity in hu-

man poses to learn robust priors. We then train on publicly

available datasets [32, 24] that are manually curated to learn

fine-grained details.

To design a network that can handle high-resolution im-

ages in real-time, we observe that relatively few regions in

the image require fine-grained refinement. Therefore, we

introduce a base network that predicts the alpha matte and

foreground layer at lower resolution along with an error

prediction map which specifies areas that may need high-

resolution refinement. A refinement network then takes

the low-resolution result and the original image to generate

high-resolution output only at select regions.

We produce state-of-the-art background matting results

in real-time on challenging real-world videos and images

of people. We will release our VideoMatte240K and Pho-

toMatte85 datasets and our model implementation.

2. Related Work

Background replacement can be achieved with segmen-

tation or matting. While binary segmentation is fast and

efficient, the resulting composites have objectionable arti-

facts. Alpha matting can produce visually pleasing compos-

ites but often requires either manual annotations or a known

background image. In this section, we discuss related works

that perform background replacement with segmentation or

matting.

Segmentation. The literature in both instance and se-

mantic segmentation is vast and out of scope for this paper,

so we will review the most relevant works. Mask RCNN

[11] is still a top choice for instance segmentation while

DeepLabV3+ [5] is a state-of-the-art semantic segmentation

network. We incorporate the Atrous Spatial Pyramid Pool-

ing (ASPP) module from DeepLabV3 [4] and DeepLabV3+

within our network. Since segmentation algorithms tend to

produce coarse boundaries especially at higher resolutions,

Kirillov et al. presented PointRend [15] which samples

points near the boundary and iteratively refines the segmen-

tation. This produces high-quality segmentation for large

image resolutions with significantly cheaper memory and

computation. Our method adopts this idea to the matting

domain via learned refinement-region selection and a con-

volutional refinement architecture that improves the recep-

tive field. Specific applications of human segmentation and

parsing have also received considerable attention in recent

works [33, 19].

Trimap-based matting. Traditional (non-learning

based) matting algorithms [6, 16, 17, 29, 9, 2, 7] require

manual annotation (a trimap) and solve for the alpha matte

in the ‘unknown’ region of the trimap. Different matting

techniques are reviewed in the survey by Wang and Co-

hen [31]. Xu et al. [32] introduced a matting dataset and

used a deep network with a trimap input to predict the alpha

matte. Many recent approaches rely on this dataset to learn

matting, e.g., Context-Aware Matting [13], Index Matting

[21], sampling-based matting [30] and opacity propagation-

based matting [18]. Although the performance of these

methods depends on the quality of the annotations, some

recent methods consider coarse [20] or faulty human anno-

tations [3] to predict the alpha matte.

Matting without any external input. Recent ap-

proaches have also focused on matting humans without any

external input. Portrait matting without a trimap [35, 28] is

one of the more successful applications due to less variabil-

ity among portrait images compared to full body humans.

Soft segmentation for natural images had also been explored

in [1]. Recent approaches like Late Fusion Matting [34] and

HAttMatting [24] aim to solve for the alpha matte directly

from the image, but these approaches can often fail to gen-

eralize as shown in [27].

Matting with a known natural background. Mat-

ting with known natural background had been previously

explored in [23], Bayesian matting [7] and Poisson mat-

ting [29, 10] which also requires a trimap. Recently Sen-

gupta et al. [27] introduced Background Matting (BGM)

where an additional background image is captured and

it provides a significant cue to predict the alpha matte

and the foreground layer. Although this method showed

high-quality matting results, the architecture is limited to

512×512 resolution and runs only at 8fps. In contrast, we

introduce a real-time unified matting architecture that op-

erates on 4K videos at 30fps and HD videos at 60fps, and

produces higher quality results than BGM.

3. Our Dataset

Since it is extremely difficult to obtain a large-scale,

high-resolution, high-quality matting dataset where the al-

pha mattes are cleaned by human artists, we rely on multiple

datasets including our own collections and publicly avail-

able datasets.

Publicly available datasets. The Adobe Image Matting

(AIM) dataset [32] provides 269 human training samples

and 11 test samples, averaging around 1000×1000 resolu-

tion. We also use a humans-only subset of Distinctions-

646 [24] consisting of 362 training and 11 test samples,

averaging around 1700×2000 resolution. The mattes were

created manually and are thus high-quality. However 631

training images are not enough to learn large variations in

human poses and finer details at high resolution, so we in-

troduce 2 additional datasets.

VideoMatte240K. We collect 484 high-resolution green
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(a) VideoMatte240K

(b) PhotoMatte13K/85

Figure 2: We introduce two large-scale matting datasets containing

240k unique frames and 13k unique photos.

screen videos and generate a total of 240,709 unique frames

of alpha mattes and foregrounds with chroma-key soft-

ware Adobe After Effects. The videos are purchased as

stock footage or found as royalty-free materials online. 384

videos are at 4K resolution and 100 are in HD. We split the

videos by 479 : 5 to form the train and validation sets. The

dataset consists of a vast amount of human subjects, cloth-

ing, and poses that are helpful for training robust models.

We are releasing the extracted alpha mattes and foregrounds

as a dataset to the public. To our knowledge, our dataset is

larger than all existing matting datasets publicly available

by far, and it is the first public video matting dataset that

contains continuous sequences of frames instead of still im-

ages, which can be used in future research to develop mod-

els that incorporate motion information.

PhotoMatte13K/85. We acquired a collection of 13,665

images shot with studio-quality lighting and cameras in

front of a green-screen, along with mattes extracted via

chroma-key algorithms with manual tuning and error re-

pair. We split the images by 13,165 : 500 to form the

train and validation sets. These mattes contain a narrow

range of poses but are high resolution, averaging around

2000×2500, and include details such as individual strands

of hair. We refer to this dataset as PhotoMatte13K. However

privacy and licensing issues prevent us from sharing this set;

thus, we also collected an additional set of 85 mattes of sim-

ilar quality for use as a test set, which we are releasing to

the public as PhotoMatte85. In Figure 2 we show examples

from the VideoMatte240K and PhotoMatte13K/85 datasets.

We crawl 8861 high-resolution background images from

Flickr and Google and split them by 8636 : 200 : 25 to

use when constructing the train, validation, and test sets.

We will release the test set in which all images have a CC

license (see supplementary material for details).

4. Our Approach

Given an image I and the captured background B we

predict the alpha matte α and the foreground F , which

will allow us to composite over any new background by

I ′ = αF +(1−α)B′, where B′ is the new background. In-

stead of solving for the foreground directly, we solve for

foreground residual FR = F − I . Then, F can be re-

covered by adding FR to the input image I with suitable

clamping: F = max(min(FR + I, 1), 0). We find this for-

mulation improves learning, and allows us to apply a low-

resolution foreground residual onto a high-resolution input

image through upsampling, aiding our architecture as de-

scribed later.

Matting at high resolution is challenging, as applying a

deep network directly incurs impractical computation and

memory consumption. As Figure 4 shows, human mattes

are usually very sparse, where large areas of pixels belong

to either background (α = 0) or foreground (α = 1), and

only a few areas involve finer details, e.g., around the hair,

glasses, and person’s outline. Thus instead of designing one

network that operates on high-resolution images, we intro-

duce two networks; one operates at lower-resolution and an-

other only operates on selected patches at the original reso-

lution based on the prediction of the previous network.

The architecture consists of a base network Gbase and a

refinement network Grefine. Given the original image I and

the captured background B, we first downsample by a factor

of c to Ic and Bc. The base network Gbase takes Ic and Bc

as input and predicts coarse-grained alpha matte αc, fore-

ground residual FR
c

, an error prediction map Ec, and hidden

features Hc. Then, the refinement network Grefine employs

Hc, I , and B to refine αc and FR
c

only in regions where the

predicted error Ec is large, and produces alpha α and fore-

ground residual FR at the original resolution. Our model is

fully-convolutional and is trained to work on arbitrary sizes

and aspect ratios.

4.1. Base Network

The base network is a fully-convolutional encoder-

decoder network inspired by the DeepLabV3 [4] and

DeepLabV3+ [5] architectures, which achieved state-of-

the-art performance on semantic segmentation tasks in 2017

and 2018. Our base network consists of three modules:

Backbone, ASPP, and Decoder.

We adopt ResNet-50 [12] for our encoder back-

bone, which can be replaced by ResNet-101 and Mo-

bileNetV2 [26] to trade-off between speed and quality. We

adopt the ASPP (Atrous Spatial Pyramid Pooling) mod-

ule after the backbone following the DeepLabV3 approach.
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Figure 3: The base network Gbase (blue) operates on the downsampled input to produce coarse-grained results and an error prediction map.

The refinement network Grefine (green) selects error-prone patches and refines them to the full resolution.

(a) Coarse (b) Selection (c) Refined

Figure 4: We only refine on error-prone regions (b) and directly

upsample the rest to save computation.

The ASPP module consists of multiple dilated convolution

filters with different dilation rates of 3,6 and 9. Our decoder

network applies bilinear upsampling at each step, concate-

nated with the skip connection from the backbone, and fol-

lowed by a 3×3 convolution, Batch Normalization [14], and

ReLU activation [22] (except the last layer). The decoder

network outputs coarse-grained alpha matte αc, foreground

residual FR
c

, error prediction map Ec and a 32-channel hid-

den features Hc. The hidden features Hc contain global

contexts that will be useful for the refinement network.

4.2. Refinement Network

The goal of the refinement network is to reduce redun-

dant computation and recover high-resolution matting de-

tails. While the base network operates on the whole im-

age, the refinement network operates only on patches se-

lected based on the error prediction map Ec. We perform

a two-stage refinement, first at 1

2
of the original resolution

and then at the full resolution. During inference, we refine

k patches, with k either set in advance or set based on a

threshold that trades off between quality and computation

time.

Given the coarse error prediction map Ec at 1

c
of the orig-

inal resolution, we first resample it to 1

4
of the original res-

olution E4, s.t. each pixel on the map corresponds to a 4×4

patch on the original resolution. We select the top k pix-

els with the highest predicted error from E4 to denote the k

4×4 patch locations that will be refined by our refinement

module. The total number of refined pixels at the original

resolution is 16k.

We perform a two-stage refinement process. First, we

bilinearly resample the coarse outputs, i.e., alpha matte αc,

foreground residual FR
c

and hidden features Hc, as well as

the input image I and background B to 1

2
of the original

resolution and concatenate them as features. Then we crop

out 8×8 patches around the error locations selected from

E4, and pass each through two layers of 3×3 convolution

with valid padding, Batch Normalization, and ReLU, which

reduce the patch dimension to 4×4. These intermediate fea-

tures are then upsampled to 8 × 8 again and concatenated

with the 8×8 patches extracted from the original-resolution

input I and background B at the corresponding location.

We then apply an additional two layers of 3×3 convolu-

tion with valid padding, Batch Normalization and ReLU

(except the last layer) to obtain 4×4 alpha matte and fore-

ground residuals results. Finally, we upsample the coarse

alpha matte αc and foreground residual FR
c

to the origi-

nal resolution and swap in the respective 4×4 patches that

have been refined to obtain the final alpha matte α and fore-

ground residual FR. The entire architecture is illustrated in

Figure 3. See supplementary for the details of implementa-

tion.

4.3. Training

All matting datasets provide an alpha matte and a

foreground layer, which we compose onto multiple high-

resolution backgrounds. We employ multiple data augmen-

tation techniques to avoid overfitting and help the model

generalize to challenging real-world situations. We apply

affine transformation, horizontal flipping, brightness, hue,

and saturation adjustment, blurring, sharpening, and ran-

dom noise as data augmentation to both the foreground and

background layer independently. We also slightly translate

the background to simulate misalignment and create artifi-

cial shadows to simulate how the presence of a subject can

cast shadows in real-life environments (see supplementary

material for more details). We randomly crop the images

in every minibatch so that the height and width are each

uniformly distributed between 1024 and 2048 to support in-

ference at any resolution and aspect ratio.

To learn α w.r.t. ground-truth α∗, we use an L1 loss over
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the whole alpha matte and its (Sobel) gradient:

Lα = ||α− α∗||1 + ||∇α−∇α∗||1. (1)

We obtain the foreground layer from predicted fore-

ground residual FR, using F = max(min(FR + I, 1), 0).
We compute L1 loss only on the pixels where α∗ > 0:

LF = ||(α∗ > 0) ∗ (F − F ∗))||1. (2)

where that (α∗ > 0) is a Boolean expression.

For refinement region selection, we define the ground

truth error map as E∗ = |α − α∗|. We then compute

mean squared error between the predicted error map and

the ground truth error map as the loss:

LE = ||E − E∗||2. (3)

This loss encourages the predicted error map to have larger

values where the difference between the predicted alpha and

the ground-truth alpha is large. The ground-truth error map

changes over iterations during training as the predicted al-

pha improves. Over time, the error map converges and pre-

dicts high error in complex regions, e.g. hair, that would

lead to poor composites if simply upsampled.

The base network (αc, F
R
c
, Ec, Hc) = Gbase(Ic, Bc) op-

erates at 1

c
of the original image resolution, and is trained

with the following loss function:

Lbase = Lαc
+ LFc

+ LEc
. (4)

The refinement network (α, FR) =
Grefine(αc, F

R
c
, Ec, Hc, I, B) is trained using:

Lrefine = Lα + LF . (5)

We initialize our model’s backbone and ASPP module

with DeepLabV3 weights pre-trained for semantic segmen-

tation on ImageNet and Pascal VOC datasets. We first train

the base network till convergence and then add the refine-

ment module and train it jointly. We use Adam optimizer

and c = 4, k = 5, 000 during all the training. For training

only the base network, we use batch size 8 and learning rate

[1e-4, 5e-4, 5e-4] for backbone, ASPP, and decoder. When

training jointly, we use batch size 4 and learning rate [5e-5,

5e-5, 1e-4, 3e-4] for backbone, ASPP, decoder, and refine-

ment module respectively.

We train our model on multiple datasets in the follow-

ing order. First, we train only the base network Gbase and

then the entire model Gbase and Grefine jointly on Video-

Matte240K, which makes the model robust to a variety of

subjects and poses. Next, we train our model jointly on Pho-

toMatte13K to improve the high-resolution details. Finally,

we train our model jointly on Distinctions-646. The dataset

has only 362 unique training samples, but it is of the high-

est quality and contains human-annotated foregrounds that

are very helpful for improving the foreground quality pro-

duced by our model. We omit training on the AIM dataset

as a possible 4th stage and only use it for testing because

it causes a degradation in quality as shown in our ablation

study in Section 6.

Alpha FG

Dataset Method SAD MSE Grad Conn MSE

AIM

DIM† 37.94 80.67 32935 37861 -

FBA† 8.26 5.24 3679 6216 1.58

BGM 16.07 21.00 15371 14123 47.98

BGMa 19.28 29.31 19877 18083 42.84

Ours 12.86 12.01 8426 11116 5.31

Distinctions

DIM† 43.70 86.22 49739 43914 -

FBA† 9.96 7.11 5955 8872 15.45

BGM 19.21 25.89 30443 18191 36.13

BGMa 16.02 20.18 24845 14900 43.00

Ours 9.19 7.08 6345 7216 6.10

PhotoMatte85

DIM† 32.26 45.40 44658 30876 -

FBA† 8.26 5.24 3679 6216 1.58

BGM 17.32 21.21 27454 15397 14.25

BGMa 14.45 19.24 23314 13091 16.80

Ours 8.65 9.57 8736 6637 13.82

Table 1: Quantitative evaluation on different datasets. † indicates

methods that require a manual trimap.

5. Experimental Evaluation

We compare our approach to two trimap-based methods,

Deep Image Matting (DIM) [32] and FBA Matting (FBA)

[8], and one background-based method, Background Mat-

ting (BGM) [27]. The input resolution to DIM was fixed at

320×320 by the implementation, while we set the FBA in-

put resolution to approximately HD due to memory limits.

We additionally train the BGM model on our datasets and

denote it as BGMa (BGM adapted).

Our evaluation uses c = 4, k = 20, 000 for photos, c =
4, k = 5, 000 for HD videos, and c = 8, k = 20, 000 for

4K videos, where c is the downsampling factor for the base

network and k is the number of patches that get refined.

5.1. Evaluation on composition datasets

We construct test benchmarks by separately composit-

ing test samples from AIM, Distinctions, and PhotoMatte85

datasets onto 5 background images per sample. We ap-

ply minor background misalignment, color adjustment, and

noise to simulate flawed background capture. We gener-

ate trimaps from ground-truth alpha using thresholding and

morphological operations. We evaluate matte outputs us-

ing metrics from [25]: MSE (mean squared error) for alpha

and foreground, SAD (sum of absolute difference), Grad

(spatial-gradient metric), and Conn (connectivity) for alpha

only. All MSE values are scaled by 103 and all metrics are

only computed over the unknown region of trimaps gener-

ated as described above. Foreground MSE is additionally

only measured where the grouth-truth alpha α∗ > 0.

Table 1 shows that our approach outperforms the ex-

isting background-based BGM method across all datasets.
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Input Ours BGM BGMa Trimap FBA Trimap FBAauto

Background-based methods Manual trimap Segmentation-morph trimap

Figure 5: Qualitative comparison on real images. We produce superior results at high-resolution with minimal user input. While FBA is

competitive, it fails in a fully automatic application where the segmentation-based trimap is faulty.

Our approach is slightly worse than the state-of-the-art

trimap-based FBA method, which requires carefully anno-

tated manual trimaps and is much slower than our approach,

as shown later in the performance comparison.

5.2. Evaluation on captured data

Although quantitative evaluation on the above-

mentioned datasets serves the purpose of quantifying

the performance of different algorithms, it is important

to evaluate how these methods perform on unconstrained

real data. To evaluate on real data, we capture a number

of photos and videos containing subjects in varying poses

and surroundings. The videos are captured on a tripod

with consumer smartphones (Samsung S10+ and iPhone

X) and a professional camera (Sony α7s II), in both HD

and 4K resolution. The photos are captured in 4000×6000

resolution. We also use some HD videos presented in

the BGM paper that are made public to compare with our

method.

For fair comparison in the real-time scenario, where

manual trimaps cannot be crafted, we construct trimaps by

morphing segmentation result from DeepLabV3+, as sug-

gested in [27]. We show results on both trimaps, denoting

FBA using this fully automatic trimap as FBAauto.

Figure 5 shows our method produces much sharper

and more detailed results around hair and edges compared

to other methods. Since our refinement operates at the

native resolution, the quality is far superior relative to

BGM, which resizes the images and only processes them

at 512×512 resolution. FBA, with manual trimap, pro-

duces excellent results around hair details, however can-

not be evaluated at resolutions above around HD on stan-

dard GPUs. When FBA is applied on automatic trimaps

generated with segmentation, it often shows large artifacts,

mainly due to faulty segmentation.

We extract 34 frames from both the test videos shared

by the BGM paper and our captured videos and photos to

create a user study. 40 participants were presented with an

interactive interface showing each input image as well as the

mattes produced by BGM and our approach, in random or-

der. They were encouraged to zoom in on details and asked

to rate one of the mattes as ”much better”, ”slightly better”,

or ”similar”. The results, shown in Table 2, demonstrate

significant qualitative improvement over BGM. 59% of the

time participants perceive our algorithm to be better, com-

8767



pared to 23% for BGM. For sharp samples in 4K and larger,

our method is preferred 75% of the time to BGM’s 15%.

Much worse Worse Similar Better Much better

All 6% 17% 18% 32% 27%

4K+ 5% 10% 10% 34% 41%

Table 2: User study results: Ours vs BGM

5.3. Performance comparison

Table 3 and 4 show that our method is smaller and much

faster than BGM. Our method contains only 55.7% of the

parameters compared to BGM. Our method can achieve

HD 60fps and 4K 30fps at batch size 1 on an Nvidia RTX

2080 TI GPU, considered to be real-time for many appli-

cations. It is a significant speed-up compared to BGM

which can only handle 512×512 resolution at 7.8fps. The

performance can be further improved by switching to Mo-

bileNetV2 backbone, which achieves 4K 45fps and HD

100fps. More performance results, such as adjusting the

refinement selection parameter k and using a larger batch

size, are included in the ablation studies and in the supple-

mentary.

Method Backbone Resolution FPS GMac

FBA HD 3.3 54.3

FBAauto HD 2.9 137.6

BGM 5122 7.8 473.8

Ours

ResNet-50* HD 60.0 34.3

ResNet-101 HD 42.5 44.0

MobileNetV2 HD 100.6 9.9

Ours

ResNet-50* 4K 33.2 41.5

ResNet-101 4K 29.8 51.2

MobileNetV2 4K 45.4 17.0

Table 3: Speed measured on Nvidia RTX 2080 TI as PyTorch

model pass-through without data transferring at FP32 precision

and with batch size 1. GMac does not account for interpolation

and cropping operations. For the ease of measurement, BGM and

FBAauto use adapted PyTorch DeepLabV3+ implementation with

ResNet101 backbone as segmentation.

Method Backbone Parameters Size

FBA 34,693,031 138.80 MB

FBAauto 89,398,348 347.48 MB

BGM 72,231,209 275.53 MB

Ours

ResNet-50* 40,247,703 153.53 MB

ResNet-101 59,239,831 225.98 MB

MobileNetV2 5,006,839 19.10 MB

Table 4: Model size comparison. BGM and FBAauto use

DeepLabV3+ with Xception backbone for segmentation.

Natural capture BGM Ours

Green screen capture DaVinci Ours

Figure 6: We produce better results than a chroma-keying soft-

ware, when an amateur green-screen setup is used.

5.4. Practical use

Zoom implementation We build a Zoom plugin that in-

tercepts the webcam input, collects one no-person (back-

ground) shot, then performs real-time video matting and

compositing, streaming the result back into the Zoom call.

We test with a 720p webcam in Linux. The upgrade elicits

praise in real meetings, demonstrating its practicality in a

real-world setting.

Comparison to green-screen Chroma keying with a

green screen is the most popular method for creating high-

quality mattes. However, it requires even lighting across

the screen and background-subject separation to avoid cast

shadows. In Figure 6, we compare our method against

chroma-keying under the same lighting with an amateur

green-screen setup. We find that in the unevenly lit setting,

our method outperforms approaches designed for the green

screen.

6. Ablation Studies

Role of our datasets We train on multiple datasets, each

of which brings unique characteristics that help our net-

work produce high-quality results at high-resolution. Table

5 shows the metrics of our method by adding or remov-

ing a dataset from our training pipeline. We find adding

the AIM dataset as a possible 4th stage worsens the metrics

even on the AIM test set itself. We believe it is because sam-

ples in the AIM dataset are lower in resolution and quality

compared to Distinctions and the small number of samples

may have caused overfitting. Removal of VideoMatte240K,

PhotoMatte13K, and Distinctions datasets from the train-

ing pipeline all result in worse metrics, proving that those

datasets are helpful in improving the model’s quality.

Role of the base network We experiment with replac-

ing ResNet-50 with ResNet-101 and MobileNetV2 as our

encoder backbone in the base network. The metrics in Ta-

ble 6 show that ResNet-101 has slight improvements over

ResNet-50 on some metrics while doing worse on others.

This indicates that ResNet-50 is often sufficient for obtain-

ing the best quality. MobileNetV2 on the other hand is

worse than ResNet-50 on all metrics, but it is significantly

faster and smaller than ResNet-50 as shown in Tables 3 and

4, and still obtains better metrics than BGM.
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Alpha FG

Method SAD MSE Grad Conn MSE

Ours* 12.86 12.01 8426 11116 5.31

+ AIM 14.19 14.70 9629 12648 6.34

- PhotoMatte13K 14.05 14.10 10102 12749 6.53

- VideoMatte240K 15.17 17.31 11907 13827 7.04

- Distinctions 15.95 19.51 11911 14909 14.36

BGM 16.07 21.00 15371 14123 42.84

Table 5: Effect of removing or appending a dataset in the training

pipeline, evaluated on the AIM test set.

Base Refine Alpha FG

Backbone Kernel SAD MSE Grad Conn MSE

BGMa 16.02 20.18 24845 14900 43.00

MobileNetV2 3×3 10.53 9.62 7904 8808 8.19

ResNet-50* 3×3 9.19 7.08 6345 7216 6.10

ResNet-101 3×3 9.30 6.82 6191 7128 7.68

ResNet-50 1×1 9.36 8.06 7319 7395 6.92

Table 6: Comparison of backbones and refinement kernels on the

Distinctions test set

Role of the refinement network Our refinement net-

work improves detail sharpness over the coarse results in

Figure 7, and is effective even in 4K resolution. Figure 8

shows the effects of increasing and decreasing the refine-

ment area. Most improvement can be achieved by refining

over only 5% to 10% of the image resolution. Table 7 shows

that refining only the selected patches provides significant

speedup compared to refining the full image.

Input 480×270 HD 4K

Figure 7: Effect of refinement, from coarse to HD and 4K.

% image refined
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MSE* SAD Grad* Conn* FG-MSE*

Figure 8: Metrics on the Distinctions test set over percentage of

image area refined. Grad and Conn are scaled by 10−3.

k 2,500 5,000* 7,500 Full

FPS 62.9 60.0 55.7 42.8

Table 7: Performance with different k values. Measured on our

method with ResNet-50 backbone at HD.

Figure 9: Failure cases. Our method fails when the subject casts

a substantial shadow on, or matches color with, the background

(top) and when the background is highly textured (bottom).

Patch-based refinement vs. Point-based refinement

Our refinement module uses a stack of 3×3 convolution

kernels, creating a 13×13 receptive field for every output

pixel. An alternative is to refine only on points using 1×1

convolution kernels, which would result in a 2×2 receptive

field with our method. Table 6 shows that the 3 × 3 kernel

can achieve better metrics than point-based kernels, due to

a larger receptive field.

Limitations Our method can be used on handheld input

by applying homography alignment to the background on

every frame, but it is limited to small motion. Other com-

mon limitations are indicated in Figure 9. We recommend

using our method with a simple-textured background, fixed

exposure/focus/WB setting, and a tripod for the best result.

7. Conclusion

We have proposed a real-time, high-resolution back-

ground replacement technique that operates at 4K 30fps and

HD 60fps. Our method only requires an input image and an

pre-captured background image, which is easy to obtain in

many applications. Our proposed architecture efficiently re-

fines only the error-prone regions at high-resolution, which

reduces redundant computation and makes real-time high-

resolution matting possible. We introduce two new large-

scale matting datasets that help our method generalize to

real-life scenarios. Our experiment shows our method sets

new state-of-the-art performance on background matting.

We demonstrate the practicality of our method by stream-

ing our results to Zoom and achieve a much more realistic

virtual conference call.

Ethics Our primary goal is to enable creative applica-

tions and give users more privacy options through back-

ground replacement in video calls. However, we recognize

that image editing can also be used for negative purposes,

which can be mitigated through watermarking and other se-

curity techniques in commercial applications of this work.
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