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Abstract

Localization of anatomical landmarks to perform two-

dimensional measurements in echocardiography is part of

routine clinical workflow in cardiac disease diagnosis. Au-

tomatic localization of those landmarks is highly desirable

to improve workflow and reduce interobserver variability.

Training a machine learning framework to perform such lo-

calization is hindered given the sparse nature of gold stan-

dard labels; only few percent of cardiac cine series frames

are normally manually labeled for clinical use. In this pa-

per, we propose a new end-to-end reciprocal detection and

tracking model that is specifically designed to handle the

sparse nature of echocardiography labels. The model is

trained using few annotated frames across the entire car-

diac cine sequence to generate consistent detection and

tracking of landmarks, and an adversarial training for the

model is proposed to take advantage of these annotated

frames. The superiority of the proposed reciprocal model

is demonstrated using a series of experiments.

1. Introduction

Data scarcity and lack of annotation is a general prob-

lem for developing machine learning models in medical

imaging. Among various medical imaging modalities, ul-

trasound (US) is the most frequently used modality given

its widespread availability, lower cost, and safety since it

does not involve ionizing radiation. Specifically, US imag-

ing, in the form of echocardiography (echo), is the standard-

of-care in cardiac imaging for the detection of heart dis-

ease. Echo examinations are performed across up to 14

standard views from several acoustic windows on the chest.

In this paper, we specifically focus on the parasternal long

axis (PLAX), which is one of the most common view ac-

quired in the point-of-care US for rapid examination of car-

diac function (Fig. 1). Several measurements from PLAX

require the localization of anatomical landmarks across dis-

crete points in the cardiac cycle. Our work specifically in-

vestigates automatic localization of the left ventricle (LV)

internal dimension (LVID), which is routinely used to esti-

mate the ejection fraction (EF), a strong indicator of cardiac

function abnormality. In clinics, LVID landmarks are deter-

mined in two frames of the cardiac cycle, i.e. end-diastolic

and end-systolic. However, such annotation is challenging,

specially for general physicians at point-of-care who do not

have the experience of cardiologists. As such, the automa-

tion of landmark localization is highly desirable. However,

developing a machine learning model for such automation

has been hindered by the availability of only sparse set of la-

beled frames in cardiac cines. Manually labeling all cardiac

frames for a large set of cardiac cines is virtually impracti-

cal, given limited expert time.

Instead of manually labeling, we propose a new Recipro-

cal landmark Detection and Tracking (RDT) model that en-

ables automation in measurements across the entire cardiac

cycle. The model only uses prior knowledge from sparsely

labeled key frames that are temporally distant in a cardiac

cycle. Meanwhile, we take advantage of temporal coher-

ence of cardiac cine series to impose cycle consistency in

tracking landmarks across unannotated frames that are be-

tween these two annotated frames. To impose consistent

detection and tracking of the landmarks, we propose a re-

ciprocal training as a self-supervision process.

In summary, we propose a RDT model, which is weakly

supervised by only two annotated keyframes in an image se-

quence for model training. For testing, the model is an end-

to-end model that detects the landmark in the first frame,
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Figure 1: Example of PLAX images, as one of the most common

standard views acquired in point-of-care echocardiography. Land-

marks identified on the left ventricle are used to measure the EF,

a strong indicator of cardiac disease. Two landmarks on inferolat-

eral and anteroseptal walls (IW, AW) are yellow color while the

LVID is the red line. LVID can be localized with IW and AW.

followed by a tracking process. Our contributions are:

• A novel Reciprocal landmark Detection and Tracking

(RDT) model is proposed. In the model, the spatial

constraint for detection and temporal coherence for

tracking of cardiac cine series work reciprocally, to

generate accurate localization of landmarks;

• The sparse nature of echocardiography labels is han-

dled by the proposed model. The model is only weakly

supervised by two annotated image frames that are

temporally distant from each other. The annotation

sparsity is also analyzed in the experimental part;

• A novel adversarial training approach (Ad-T) for opti-

mization of the proposed RDT. Such training is made

possible by introducing four complementary losses as

in Fig. 2, i.e. reciprocal loss, motion loss, focal loss,

and cycle loss. Compared with conventional training

approaches, Ad-T indirectly achieves feature augmen-

tation, which is extremely important for model training

given the extremely few annotations. the advantage of

such Ad-T is highlighted in our ablation study.

2. Related Work

As a low cost, low risk, and easily accessible modality,

the cardiac US is widely used as an assessment tool in point-

of-care. With the utilization of US technology in various

form factors from cart-based to hand-held devices, mea-

surement of cardiac structures can be typically conducted

by users with diverse levels of expertise. However, due

to US images’ noisy nature, studies indicate large amounts

of inter- and intra-observer variability even among experts

[21]. This amount of observer variability may easily lead to

errors in reporting an abnormal patient as normal, or vice

versa for borderline cases. This fact has raised the signifi-

cance of automated measurement systems by reducing the

variability and increasing the reliability of cardiac reports

among US operators. Furthermore, automation saves a con-

siderable amount of time by improving clinical workflow.

The problem of automated prediction of clinical mea-

surements, such as segmentation and keypoint localization

of anatomical structures, has been approached from differ-

ent angles, especially within the deep learning literature,

where leveraging large size training datasets has led to sig-

nificant improvements in the accuracy of predicted mea-

surements. Most of the recent methods have used fully

convolutional neural networks (FCN) as their main build-

ing block to predict pixel-level labels [18, 12, 1, 14, 13, 2,

3, 24]. Similar to numerous works in pose detection liter-

ature [16, 22], in many FCN-based methods, the structure

localization problem has been approached by predicting

heatmaps corresponding to the regions of interest at some

point in the network [15]. In [15], a convolutional neural

network (CNN) architecture was explored to combine the

local appearance of one landmark with the spatial config-

uration of other landmarks for multiple landmark localiza-

tion. However, these methods are introduced for problems

where data consists of individual frames, rather than tempo-

ral sequences. On the contrary, time plays an important role

in the calculation of measurements such as EF in cardiac

cycles. Therefore, the sole use of these methods may not be

sufficient for our problem of interest and other temporally

constrained or real-time applications.

Recent studies have made use of spatio-temporal mod-

els to overcome limitations of previous models in problems

dealing with sequential data, and particularly, echo cine

loops [19, 5]. In [20], while a center of the mass layer

was introduced and placed on top of an FCN architecture

to regress keypoints out of the predicted heatmaps directly,

a convolutional long short-term memory (CLSTM) network

was also utilized for improving temporal consistency. In the

cardiac segmentation domain, many works such as [6] have

applied recurrent neural networks to their pipeline. In [9],

multi-scale features are first extracted with pyramid Con-

vBlocks, and these features are aggregated using hierarchi-

cal ConvLSTMs. Other types of studies have fed motion in-

formation to their network based on estimating the motion

vector between consecutive frames [23, 8, 4]. Another case

of this method is presented by [17], in which similar to our

weakly-supervised problem, motion estimation is obtained

from an optical flow branch to enforce spatio-temporal

smoothness over a weakly supervised segmentation task

with sparse labels in the temporal dimension. However, op-

tical flow estimation might contain drastic errors in consec-

utive frames with large variability, especially in US images
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Figure 2: The general flowchart of the proposed detection and tracking model. Gold standard labels are only available for end-diastolic and

end-systolic frames. The propagation starts from the end-diastolic frame and ends at the end-systolic frame. The tracking is completed in

a cycle way. The two annotated frames serve as a weak supervision for the model. The detection and tracking results from the unannotated

frames jointly reciprocally provide another self-supervision.

where the boundaries are fuzzy, and considerable amounts

of noise and artifacts may be present. Therefore, they may

not be suitable for a weakly supervised task where the la-

bels are distant in the time domain. Moreover, although

most of the mentioned methods take temporal coherence

into account, these constraints may not be directly enforced

on the model in a desired way [23, 8, 19, 17, 9, 4, 6]. In or-

der to overcome these shortcomings, weitemporal proposed

a method for consistent segmentation of echocardiograms

in the time dimension, where only end-diastolic and end-

systolic frames have segmentation labels per cycle. This

method consists of two co-learning strategies for segmenta-

tion and tracking, in which the first strategy estimates shape

and motion fields in appearance level, and the second one

imposes further temporal consistency in shape level for the

previous segmentation predictions. In our method, however,

instead of a segmentation task, we perform detection and

tracking with reciprocal learning in a landmark detection

paradigm in the presence of sparse temporal labels.

3. Approach

Our general RDT framework can be found in Figure 2.

The model can be divided into three parts, the feature en-

coder (blue color), detection head (orange color), and track-

ing head (green color). The feature encoder and detection

head combined can be viewed as a Unet-like model, for

which the general structure is similar to Unet. In the model

training phase, the input of the RDT model is an echo se-

quence starting from the end-diastolic frame and ending at

the end-systolic frame. For the detection branch, the input

is the whole frame, while for the tracking branch, the inputs

are patches from two neighboring frames. The output of the

network is two predicted landmark pair locations for LVID.

3.1. Problem Formulation

Suppose the frames in the cardiac cine series are repre-

sented by {I1, I2, I3, ..., Ik}. For model training, we sup-

pose the end-diastolic frame to be the 1st frame, and the

end-systolic frame to be the kth frame. The 1st and kth

frames are with annotation, while the in-between frames are

unannotated. The landmark pairs are represented by it, at
(it = {xi

t, y
i
t}, at = {xa

t , y
a
t }) corresponding to the land-

marks on the inferolateral and anteroseptal walls of LV in

the tth frame, respectively. We use φ to represent the fea-

ture encoder, and the feature generated for It is represented

by φIt . The φIt is solely input to the detection head D to get

the predicted landmark locations iDt , aDt . For tracking head,
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the input is the cropped features of two consecutive frames.

One serves as the template frame while the other serves as

the search frame. For landmark tracking, the predicted lo-

cations start from the 2nd frame. After a cycle forward and

backward propagation, the predicted location will end at the

1st frame.

3.2. Network Architecture and Losses

3.2.1 Shared Feature Encoder

The feature encoder consists of six 3×3 convolution layers,

each followed by a rectified linear unit (ReLU). The third

convolution layer is with a stride equal to 2. Since a single

feature encoder is sufficient for the tracking head, we share

this part of the encoder with both tracking and detection

branches. Since the shared encoder is optimized by losses

generated from different heads, the encoded feature should

be robust since its optimization considers both the spatial

information exploited by the detection branch and temporal

information explored by the tracking branch.

3.2.2 Detection Head and Focal Loss

The detection head combined with the feature encoder to-

gether can be viewed as an Unet-like structure, which con-

sists of a contracting path and an expansive path. The con-

tracting path follows the typical architecture of a convolu-

tional network. The beginning of the detection head is an-

other six layers for feature generation. There are two simi-

lar downsampling steps to the shared feature encoder. How-

ever, we also double the number of feature channels in these

two steps. Every step in the expansive path consists of an

upsampling of the feature map followed by a 2×2 convo-

lution (“up-convolution”). The first two upsampling layers

halve the number of feature channels. We also concatenate

the output of each upsampling layer with a correspondingly

cropped feature map from the contracting path. Each 3×3

convolutions is followed by a ReLU. As padding is applied,

there is no cropping in the whole neural network. For the

final two layers used for classification, the first one is a 3×3

convolution layer, and the second is a 1×1 layer, which is

used to map each 48-component feature vector to the de-

sired number of landmarks (Here, the number of landmarks

is 2). The last layer’s output is a two-dimension heatmap,

and each location of the heatmap represents the probability

of a target landmark.

Focal loss is generated on annotated frames. For each

landmark, there is one ground-truth positive location in each

dimension of the heatmap (Two landmarks correspond to

two dimensions), and all the other locations are negative.

For such ground truth, penalizing negative location equally

with the positive ones is not appropriate, therefore we apply

the focal loss. During training, we reduce the penalty given

to negative locations within a radius of the positive location.

We empirically set the radius to be 10 pixels. The amount

of penalty reduction is given by an unnormalized 2D Gaus-

sian e−(x2+y2)/2δ2 , whose center is at the positive location

and whose σ is 1/3 of the radius. Let pci,j be the score at

location (i, j) for landmark c in the predicted heatmap, and

let yci,j be the ground-truth heatmap augmented with the

unnormalized Gaussians. We create a variant of focal loss

[11]:

Ldet =

2
∑

c=1

H
∑

i=1

W
∑

j=1

{

(1 − pci,j
)α log(pci,j

) if yci,j
= 1

(1 − yci,j
)β(pci,j

)α log(1 − pci,j
) else,

(1)

where α and β are the hyperparameters that control the con-

tribution of each point (we empirically set α to 2 and β to 4

in all experiments). With the Gaussian distribution encoded

in the yci,j , the term 1−yci,j is used for reducing the penalty

around the ground truth locations.

3.2.3 Tracking Head and Cycle Loss:

For the tracking head, when we get φIt and φIt−1
, we

first crop the search patches and the template patches both

centering at the landmark pairs in the two consecutive

frames, respectively. The two template patches for infero-

lateral/anteroseptal landmarks get concatenated and are rep-

resented by Pt−1, while the two search patches for infero-

lateral/anteroseptal landmarks get concatenated and are rep-

resented by Nt.

The input for the tracking branch is the template patch

Pt−1 with size 25 × 25 and the search patch Nt with size

29 × 29, both centering at the landmark patch it−1, at−1.

The size of Pt−1 and Nt are labeled in Fig. 2, which are set

empirically. We formulate the tracking head T as δit , δat
=

T (φPt
, φNt+1

).
For the tracking head, we first define a convolutional op-

eration between φPt−1
and φNt

in order to compute the

affinity (similarity) between each sub-patch of φNt
and

φPt−1
. To be more specific, φPt−1

and φNt
are combined

by using a cross-correlation layer

f(φNt
, φPt−1

) = φPt−1
∗ φNt

. (2)

Note that the output of this function is a feature map indi-

cating the affinity score. For hands-on implementation, it is

simple to take φPt−1
as a kernel matrix to compute dense

convolution on φNt
within the framework of existing conv-

net libraries. The output feature map is followed by another

three fully connected layers (represented by m in Eq. 3) to

predict the landmark motion. Such regression operation is

further formulated as

T (φPt
, φNt+1

) = δit , δat
= m(f(φNt

, φPt−1
); θf ). (3)

where θf represents the parameters for the fully connected

network. δit and δat
are both two-dimensional moves
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Figure 3: Optimization of the proposed reciprocal training.

(along x-axis and y-axis, respectively). The new landmark

location is calculated by adding its previous location to the

predicted motion. Such motion prediction is generally sim-

ilar with optical flow, in which a new three-layer regression

is also incorporated. This regression makes the learning

process adaptive.

As the tracking process is only supervised by end-

diastolic and end-systolic frames, we introduce the cycle

loss and motion loss to supervise the tracking branch. To

model the cycle process, we iteratively apply the tracking

head T in a forward manner:

Lt
∗ = T (φPt−1

, φNt
) + Lt−1

∗

= T (φPt−1
, φNt

) + T (φPt−2
, φNt−1

) + Lt−2
∗

= T (φPt−1
, φNt

) + ...T (φP1
, φN2

) + L1
∗,

(4)

in which L∗
t = {it, at} represents the predicted location of

landmark pairs in tth frame, while L∗
1 = {i1, a1} represents

the ground truth location of landmark pairs in the first anno-

tated frame. Here ”+” represents the element-wise addition

between the location of landmarks in the current frame and

motion calculated in Eq.3. Also, we use the same formula-

tion in backward manner as:

L1
∗ = T (φP2

, φN1
) + L2

∗

= T (φP2
, φN1

) + T (φP3
, φN2

) + L3
∗

= T (φPt
, φNt−1

) + ...T (φP2
, φN1

) + Lt
∗.

(5)

We use the labeled end-diastolic frame as the beginning

frame of the echo cine series, and the end-systolic frame as

the end frame. The motion loss is defined by the deviation

between the predicted landmark pair locations in the end-

systolic frame and their ground truth locations. Suppose the

labeled end-systolic frame is the kth frame; after forward

propagation, the motion loss L is defined as

Lk
motion = L1→k = ‖Lk − Lk

∗‖2

= ‖Lk − (T (φPk−1
, φNk

) + ...T (φP1
, φN2

) + L1)‖
2.

(6)

The forward propagation is followed by backward propa-

gation that ends at the end-diastolic frame. By combining

Eq. 4 and Eq. 5, the current predicted landmark pair location

in the diastolic frame L∗
1 can actually be represented by its

ground truth location L1, and we use the deviation between

these two terms to represent the cycle loss as follow:

Lk
cycle = L1→k→1 = ‖L1 − L1

∗‖2

= ‖L1 − Lk
∗ + Lk

∗ − L1
∗‖2

= ‖(T (φPk−1
, φNk

) + ...T (φP1
, φN2

))+
(T (φPk

, φNk−1
) + ...T (φP2

, φN1
))‖2.

(7)

Finally, the cycle loss can be simplified as

Lk
cycle = −(Lk

motion + L1
motion). (8)

3.2.4 Reciprocal Loss for Unannotated Frames:

The former motion loss, cycle loss, and focal loss are

applied for the annotated frames, whereas the reciprocal

loss is proposed only for the unannotated frames, which

can be viewed as a self-supervision. In the training

phase, only the end-diastolic and end-systolic frames are

annotated while the in-between frames are unannotated.

For these unannotated frames, we can generate both the

iDt , aDt = max(D(φIt)) and the iTt , a
T
t = T (φPt−1

, φNt
)+

iTt−1, a
T
t−1. Although no annotation was assigned, the two

predicted landmark pair locations are assumed to be the

same. The discrepancy between these two formulates the

reciprocal loss. The frame rate for reciprocal loss is set as 3,

which means such loss is generated in every three frames.

As D(φIt) is a heatmap with each location indicating the

probability of target location, we define the reciprocal loss

similar to the focal loss. We assume iTt and aTt to be the

only positive locations of frame t, which is augmented as

a 2D Gaussian distribution centering at each positive loca-

tion. The predicted heatmap from the detection branch is

viewed as predicted locations. The formulated reciprocal

loss Lrec(D,T ) is the same as defined in Eq. 1.

4. Optimization

The basic idea for the proposed RDT model is to cre-

ate a reciprocal learning between the detection task and the

tracking task, as the detection task mainly focuses on the

spatial information of a single frame, while the tracking

task considers the temporal correlation between consecu-

tive frames. However, the detected landmark pair locations

and the tracked landmark pair locations are assumed to be

the same. Therefore, we want the two branches to generate

a discrepancy to optimize both the feature encoder φ and

the detection/tracking head.

We propose a novel adversarial optimization mechanism.

The motivation is for feature augmentation as the number

of data is really limited. Trained by the augmented feature,

both the detection head D and the tracking head T in Fig. 3

can be more robust. In Fig. 3, we use blue color to represent

the feature distribution of the target landmark pair, and or-

ange color to represent the background. In order to generate

a more different distribution of features from unannotated
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frames, we propose to utilize the disagreement between D

and T on the prediction of unannotated frames. We assume

D and T can predict the location of annotated frames cor-

rectly. Here, we use a key intuition that the feature distri-

bution of unannotated data outside the support of the an-

notated ones is likely to be predicted differently by D and

T. Black lines denote this region as in Fig. 3 (Discrepancy

Region). Therefore, if we can measure the disagreement be-

tween D and T and train φ to maximize the disagreement,

the encoder will generate more unknown feature distribu-

tions outside the support of the annotated ones. The dis-

agreement here is our formerly formulated reciprocal loss

Lrec(D,T ). This goal can be achieved by iterative steps as

in Fig. 4. We first update the feature encoder to maximize

the Lrec(D,T ). Then we freeze this encoder part, and up-

date the D and T to minimize the Lrec(D,T ), in order to

get the uniformed predicted results for the newly generated

unknown feature from the feature encoder. Detailed opti-

mization steps are described as follows.

4.1. Training Steps:

We need to train D and T, which take inputs from φ. Both

D and T must predict the annotated landmark pair locations

correctly. We solve this problem in three steps, as can be

found in Fig. 4.

Step A. First, we train D, T, and φ to predict the land-

mark pairs of annotated frames correctly. We train the net-

works to minimize three losses applied to annotated frames.

The objective is as follows:

min
φ,D,T

(Ldet + Lk
motion + Lk

cycle); (9)

Step B. In this step, we train the feature encoder φ

for fixed D and T. By training the encoder to increase the

discrepancy, more unknown feature distributions different

from the annotated data can be generated. Note that this

step only uses the unannotated data. The objective can be

formulated as:

max
φ

(Lrec(D, T )); (10)

Step C. We train D and T to minimize the discrepancy

with a fixed φ. As this step is to get the uniformed and

correct detection/tracking results, the step is repeated for

three times for the same mini-batch empirically. This set-

ting achieves a trade-off between the encoder and the heads

(detection, tracking). This step is applied on both annotated

and unannotated frames, to get the best model weights of

detection/tracking heads for all the existing features. The

objective is as follows:

min
D,T

(Ldet + Lk
motion + Lk

cycle + Lrec(D, T )). (11)

These three steps are repeated until convergence.

Weights for different losses are emprically set as 1, in both

Tracking
head

Tracking
headIt,	Pt-1,		Nt

Shared
Encoder Detection

head

Reciprocal	Loss

It,	Lt-1,		Lt

Shared
Encoder

Detection
head

Reciprocal	Loss

Step	2：	Maximize	the	T/D	discrepancy	by	updating	the	shared	encoder

Step	3：	Minimize	the	T/D	discrepancy	by	updating	the	separate	heads	

I1/k,		P1/k

Shared
Encoder

Tracking
head

Detection
head

Entropy	Loss/	Cycle	Loss

Step	1：	Initialize	the	whole	network	on	annotated	frames

Focal	Loss

I1/k,		P1/k

Entropy	Loss/	Cycle	Loss

Focal	Loss
(repeat	3	times)

Figure 4: Stepwise model training process.

Step A and Step C. Based on our experience, the order of the

three steps is not essential. However, our primary concern

is to train D, T, and φ in an adversarial manner.

5. Experiments

5.1. Dataset and Setup

Our echocardiography dataset is collected from our local

hospital, following approvals from the Medical Research

Ethics Board in coordination with the privacy office. Data

were randomly split into mutually exclusive training and

testing datasets, where no patient data were shared across

the two datasets. The training dataset includes 995 echo

cine series with 1990 annotated frames, while the testing

dataset includes 224 sequences with 448 annotated frames.

Different sequences have a different number of frames rang-

ing from 10s to 100s. The number of frames between end-

diastolic and end-systolic phases is different for each cine

sample, ranging from 5 to 20 frames.

We run the experiments on our 8x Tesla V100 Server.

For the hardware, the CPU is Intel(R) Xeon(R) CPU E5-

2698 v4. All comparison methods are trained until conver-

gence. For the proposed method trained by a single GPU,

the model converges at 30 epochs, and the running time is

31min/epoch.

5.2. Quantitative Results

EF in PLAX view is estimated based on the dis-

tance between inferolateral and anteroseptal landmarks,

i.e. LVID. We use the length error (LE) of LVID as

well as the location deviation error (LDE) of inferolat-
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Figure 5: Four examples of frames with median LDE. The pre-

dicted LVID is the orange color line with landmarks in yellow

color, while the ground truth LVID is the green color line with

landmarks in red color.

eral/anteroseptal landmarks (abbreviated as IL/AL) as key

errors. LDE is also the most widely used criterion for

detection/tracking methods. The comparison is mainly

made among the proposed method, the most recently pro-

posed frame by frame detection-based method (Modified U-

Net[7], CenterNet[25]), and the regular detection+tracking

method (Unet+C-Ynet[10]). Unet here is with the same

structure as the proposed method. Unet and C-Ynet are

trained separately. A general comparison can be found in

Table 1. Comparison with state-of-the-art methods is re-

ported in Table 1. Our results verify that our detection on

the end-diastolic frame performs best over compared meth-

ods. Results also demonstrate that errors in end-systolic and

end-diastolic frames are of the same range, suggesting that

the tracking error is not accumulative over in-between unan-

notated frames.

5.3. Visualized Results

Fig. 5 shows four examples with the location er-

ror around the median. Here the Location Deviation

Error (LDE) is the average location error of Inferolat-

eral/Anteroseptal Landmarks (AL and IL), as there are no

cases in our test data for which the AL and IL are both at

the median. For the end-systolic frame, the average LDE

is 0.95±0.68 cm for mean ± std, and 0.85 cm for the me-

dian. For the end-diastolic frame, the average LDE is with

0.91±0.66 cm for mean ± std, and 0.82 cm for the median.

5.4. Ablation Study

In our ablation study, we verify the effectiveness of the

adversarial training (Ad-T), as well as the reciprocal loss

(Rec-L). Without the reciprocal loss, the structural infor-

mation of in-between unannotated frames is ignored. As

Ad-T is based on Rec-L, without Rec-L the Ad-T cannot be

achieved. A detailed comparison can be found in Table 2.

Table 2 shows that the reciprocal loss substantially im-

proves the framework. By adding the reciprocal loss, the

errors decrease around 2 cm for all different criteria. The

results again improve a lot when the model is trained with

our proposed Ad-T method.

5.5. Model Extension

We also test our proposed model’s extension ability, in

which we try only to use one frame (end-diastolic) in each

sequence for model training. Such training would start from

the first annotated frame, and then track in a cycle way. The

motion loss and the focal loss in the last frame are not avail-

able in such a model. The model is mainly trained by the

reciprocal loss from the unannotated frames and the focal

loss as well as the cycle loss in the annotated frame (i.e., the

end-diastolic frame). Detailed results are reported in Table

3. We simply use the medium value of two LDEs (AL and

IL) to represent the LDE.

We can find even with only one frame annotated, the pro-

posed model can get satisfying results, when compared with

the state-of-the-art. However, results on end-systolic are

much worse than on end-diastolic, which means the second

annotated frame affects the tracking branch a lot.

5.6. Annotation Sparsity Analysis

Sparsity of annotation: As the number of in-between

unannotated frames is random ranging from 5 to 20, such

number may influence the tracking branch, while the de-

tection branch may not be affected. Therefore, to analyze

the influence of annotation sparsity on tracking, we just

start from the ground truth location of the first frame (end-

diastolic) to do the tracking. The whole model does not

change. We get the predicted location in the second an-

notated frame (end-systolic), and use the location deviation

errors (LE) on this frame for different sequences with differ-

ent annotation sparsity for evaluation. Results can be found

in Table 4.

We observe that the proposed method is not affected by

the annotation sparsity. The Average LDEs for different se-

quences are generally the same around 0.25 cm. The av-

erage LDE/frame is the Average LDE divided by the in-

between frame number. As the reciprocal loss is gener-

ated every three frames, whenever a large error is generated

from the tracking branch, the discrepancy between detected

and tracked location will also be large, which brings a sig-
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Table 1: Statistical comparison with the state-of-the-art methods. Errors (’cm’) for different sequences are sorted in ascending order.

Evaluation criteria are the Length Error (LE) and the Location Deviation Error (LDE) of Inferolateral/Anteroseptal Landmarks (IL/AL)

Method Frame Criterion(cm) Mean± std min 25% Median 75% 90% max

LDE of AL 1.28 ± 1.43 0.01 0.51 0.96 1.60 2.26 11.71

Proposed RDT end-diastolic LDE of IL 1.16±1.27 0.06 0.40 0.88 1.48 2.15 10.67

LE of LVID 0.81±1.04 0.00 0.25 0.51 1.00 1.63 8.07

CenterNet LDE of AL 1.79 ± 1.96 0.07 0.72 1.21 2.04 3.81 13.62

[25] end-diastolic LDE of IL 1.71±1.82 0.09 0.61 1.34 2.49 3.13 12.60

LE of LVID 1.22±1.94 0.03 0.44 1.15 1.81 2.24 10.33

Unet+C-Ynet LDE of AL 2.29±3.02 0.05 0.68 1.41 2.35 5.21 19.01

[10] end-diastolic LDE of IL 3.72±4.05 0.07 0.78 1.91 5.26 10.89 18.81

LE of LVID 2.39±2.61 0.00 0.64 1.38 3.28 5.77 12.16

Modified U-Net LDE of AL 5.15±4.86 0.10 1.27 2.99 8.18 12.72 19.76

[7] end-diastolic LDE of IL 5.36±4.74 0.03 1.01 4.13 8.86 12.31 17.22

LE of LVID 3.40 ± 3.02 0.02 0.97 2.49 5.07 7.63 15.17

LDE of AL 1.44 ± 1.30 0.06 0.66 1.16 1.75 2.67 10.37

Proposed RDT end-systolic LDE of IL 1.13±1.22 0.06 0.51 0.90 1.25 1.89 10.10

LE of LVID 1.09±0.95 0.00 0.37 0.90 1.51 2.43 5.81

CenterNet LDE of AL 1.90 ± 1.64 0.09 0.98 1.73 2.98 3.75 13.57

[25] end-systolic LDE of IL 2.03±2.21 0.12 0.92 1.98 3.68 4.42 14.54

LE of LVID 1.83±1.48 0.06 0.95 1.78 2.93 4.31 9.25

Unet+C-Ynet LDE of AL 2.78±2.87 0.14 0.98 1.82 3.29 5.85 19.8

[10] end-systolic LDE of IL 3.42±3.80 0.06 0.78 1.74 4.71 9.73 17.33

LE of LVID 2.45±2.61 0.00 0.73 1.41 3.02 5.14 11.51

Modified U-Net LDE of AL 5.05±4.34 0.16 1.42 2.90 8.47 12.04 16.79

[7] end-systolic LDE of IL 5.72±4.59 0.03 1.70 4.65 9.26 12.24 17.91

LE of LVID 3.87±3.21 0.03 1.64 3.02 5.18 8.39 19.38

Table 2: Ablation study for Ad-T and Rec-L.

Frame Criterion(cm) Ad-T Rec-L mean median

LDE-AL × × 3.22 4.50

LDE-IL × × 5.02 6.74

LE × × 2.65 3.53

LDE-AL × X 1.70 1.95

ED LDE-IL × X 1.76 2.02

LE × X 1.00 1.04

LDE-AL X X 1.28 0.96

LDE-IL X X 1.16 0.88

LE X X 0.81 0.51

LDE-AL × × 3.17 3.85

LDE-IL × × 4.79 6.94

LE × × 2.36 3.47

LDE-AL × X 1.76 1.92

ES LDE-IL × X 1.88 1.94

LE × X 1.41 1.54

LDE-AL X X 1.44 1.75

LDE-IL X X 1.13 1.25

LE X X 1.09 0.90

Table 3: Statistics analysis for model trained by one frame only.

Frame Criterion(cm) Mean± std min Medium

ED LDE 1.59±1.85 0.04 0.95

LE 1.04±1.20 0.02 0.68

ES LDE 1.76±1.49 0.10 1.34

LE 1.77±1.39 0.01 1.49

nificant reciprocal loss. Such loss overcomes the problem

brought by large annotation sparsity.

Sparsity of reciprocal loss: The frequency for applying

reciprocal loss for in-between unannotated frames is also

important. A comparison can be found in Table 5. We can

Table 4: Analysis for the annotation sparsity.

Annotation rate 5-8 8-12 12-16 16-20

Average LDE (cm)/ sequence 0.23 0.26 0.24 0.27

Average LDE (cm) /frame 0.031 0.025 0.021 0.018

Table 5: Analysis for the sparsity of reciprocal loss.

Loss rate 2 3 4 5

Average LDE (cm)/ sequence 0.46 0.25 0.29 0.38

find that only when the reciprocal loss is applied every three

frames, the results are best. Therefore, we empirically set

such rate as 3. The reciprocal loss should not be applied too

densely or with a large sparsity.

6. Conclusion

In this paper, we proposed a novel reciprocal landmark

detection and tracking model. The model is designed to

tackle the data and annotation scarcity problem for ultra-

sound sequences. The model achieves reliable landmark

detection and tracking with only around 2,000 annotated

frames (995 sequences) for training. For each sequence,

only two key frames are annotated. The model is optimized

by a novel adversarial training way, which can better ex-

ploit the training data’s limited information. The compar-

ison with state-of-the-art and analysis of results verify the

effectiveness of our proposed method.
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[15] Christian Payer, Darko Štern, Horst Bischof, and Martin

Urschler. Regressing heatmaps for multiple landmark local-

ization using cnns. In International Conference on Medi-

cal Image Computing and Computer-Assisted Intervention,

pages 230–238. Springer, 2016.

[16] Tomas Pfister, James Charles, and Andrew Zisserman. Flow-

ing convnets for human pose estimation in videos. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1913–1921, 2015.

[17] Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E Petersen,

Stefan K Piechnik, Stefan Neubauer, and Daniel Rueckert.

Joint learning of motion estimation and segmentation for car-

diac mr image sequences. In International Conference on

Medical Image Computing and Computer-Assisted Interven-

tion, pages 472–480. Springer, 2018.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234–241.

Springer, 2015.
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