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Abstract

We present VX2TEXT, a framework for text generation

from multimodal inputs consisting of video plus text, speech,

or audio. In order to leverage transformer networks, which

have been shown to be effective at modeling language, each

modality is first converted into a set of language embed-

dings by a learnable tokenizer. This allows our approach

to perform multimodal fusion in the language space, thus

eliminating the need for ad-hoc cross-modal fusion mod-

ules. To address the non-differentiability of tokenization

on continuous inputs (e.g., video or audio), we utilize a

relaxation scheme that enables end-to-end training. Fur-

thermore, unlike prior encoder-only models, our network

includes an autoregressive decoder to generate open-ended

text from the multimodal embeddings fused by the language

encoder. This renders our approach fully generative and

makes it directly applicable to different “video+x to text”

problems without the need to design specialized network

heads for each task. The proposed framework is not only

conceptually simple but also remarkably effective: experi-

ments demonstrate that our approach based on a single ar-

chitecture outperforms the state-of-the-art on three video-

based text-generation tasks—captioning, question answer-

ing and audio-visual scene-aware dialog.

1. Introduction

Among the fundamental goals of AI is the development

of conversational multimodal systems that can reliably per-

ceive the real-world and communicate with humans in nat-

ural language. Progress in this area has been dramatically

advanced in recent years by the introduction of large-scale

benchmarks assessing the ability to interpret audiovisual in-

formation and translate this understanding to natural lan-

guage. Prime examples include datasets for image or video

captioning [10, 38, 51, 24, 56, 28], question answering

(QA) [5, 13, 54, 58, 19, 36, 46, 26], as well as audio-visual

dialog [11, 1]. In order to perform well on such bench-

marks, the model must accomplish several goals: (1) ex-

tract salient information from each individual modality, (2)

effectively combine the different cues to address the given

query, and (3) generate and present the results in human-

comprehensible text.

In this paper, we present VX2TEXT, a simple video-

based approach that embeds these three steps in a unified,

end-to-end trainable framework. Objectives (1) and (2) are

accomplished by utilizing modality-specific classifiers to

convert the semantics from each input signal into a common

semantic language space, which enables the application of

powerful language models to directly interpret multimodal

content. Specifically, our approach takes the textual labels

of the top classes predicted by each classifier pretrained on

existing datasets [9, 14] and transforms them into word em-

beddings, using a pretrained language model [12, 40]. The

benefit of this solution is that it opens up the possibility to

carry out multimodal fusion by means of powerful language

encoders such as T5 [40] without the need to design spe-

cialized cross-modal network modules [33, 29, 57, 35] or

to resort to pretext tasks to learn to combine the different

input signals [44, 55, 29]. Not only is such a design much

simpler but it also leads to better performance compared to

prior approaches.

In order to fulfill objective (3), we employ a generative

text decoder [40], which transforms the multimodal features

computed by the encoder into text, thus realizing the goal

of generating results in human-comprehensible language.

While prior multimodal works based on encoder-only ar-

chitectures [44, 45, 33] are limited to operate in settings in-

volving selection from a fixed set of text candidates, our

generative approach can be used for open-ended sentence

generation as, e.g., required in dialog applications. In addi-

tion, the use of a text decoder allows us to tackle different

“video+x to text” problems (e.g., answering and generat-

ing questions, dialog, as well as captioning) with the same

architecture, without having to design specialized network

heads for each task.

We integrate these conceptually-distinct steps into a sin-

gle architecture, which we train end-to-end. To achieve this,
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we adopt a differential tokenization on continuous modali-

ties (e.g., audio or video) which renders the entire model—

including the modality-specific classifiers—trainable with

respect to the final objective. Our experiments demonstrate

that our unified framework trained end-to-end produces sig-

nificant performance gains over separately learned modules.

Our VX2TEXT based on a single architecture trained in a

generative fashion without any multimodal pretext pretrain-

ing outperforms the state-of-the-art on three different text-

generation tasks—captioning, QA and dialog.

2. Related Work

Significant progress has been made in the area of vi-

sion and language, especially in the design of multimodal

conversational agents that interact with humans in natural

language, e.g., for question answering (QA) [5, 13, 54, 58,

19, 36, 46, 26] and audio-visual dialog [11, 1]. Several ap-

proaches have been introduced for these tasks [34, 3, 23, 42,

16, 41, 25, 52, 20, 27, 30, 55, 17, 31].

For example, Shah et al. [42] have proposed to lever-

age the cycle-consistency of question answering and ques-

tion generation to improve the robustness of image ques-

tion answering models on rephrased questions. Differently

from our approach, the actual question and answer sen-

tences are not decoded. Yang et al. [52] have explored an

encoder-only model using multimodal fusion of BERT rep-

resentations and visual features for video QA [26]. Being a

discriminative approach, it is limited to selecting from the

provided answer choices. Le et al. [25] proposed a multi-

modal attentional generative model, which fuses informa-

tion from texts and audiovisual features and generates re-

sponses for audiovisual scene-aware dialog. While this and

a few other recent works [55] have leveraged decoders for

text-generation from multimodal inputs, we believe we are

the first to empirically demonstrate via systematic ablations

the performance improvements achieved by means of gen-

erative learning with decoding, compared to discriminative

learning applied to the same encoder model. Furthermore,

we note that the networks proposed in [25, 55] include

specialized cross-modal blocks which, as noted above, ap-

proach the task quite differently from our method. Experi-

mental comparisons to these prior works show the superior

performance of our design.

There is also a family of multimodal transformer mod-

els [44, 55, 29, 45, 33, 31] leveraging pretext tasks inspired

by the language domain [12, 39, 40]. These works rely

on costly pretext training on large-scale datasets to learn

multimodal representations. Conversely, our VX2TEXT can

perform multimodal fusion in a unified language space and

does not require multimodal pretext training.

We note that we are not the first to propose using labels

of categories recognized from the audiovisual channels as

input to language models. For example, detected object la-

bels have been employed for image captioning [53, 4] and

also video QA [26]. However, differently from these prior

works, we adopt a differentiable tokenization on continu-

ous modalities which makes the entire model trainable end-

to-end with respect to the final objective. Our experiments

demonstrate the performance benefits of our approach.

3. Technical Approach

Our goal is to design a unified framework that can gener-

ate open-ended text from video and accompanying modal-

ities, e.g., audio, speech, or dialog history. We are specifi-

cally interested in tasks such as video captioning, question

answering and audio-visual scene-aware dialog.

Formally, let x = {x1,x2, ...,xM} be a multimodal in-

put sample, where xm denotes the m-th modality. We spec-

ify the task that we want our model to address using a spe-

cial task token t ∈ {Answer, Caption,Dialog, ...}. Our

goal is then to train a model F(t,x1,x2, ...,xM ;W) that

generates a sequence of text tokens y = [y1,y2, ...,yN ]
representing the output for task t. W denotes the trainable

parameters. Depending on the task, our generated text may

be in the form of answers, questions, interactive responses

in a dialog, or captions.

At a high-level, our approach can be summarized in

three steps. First, we leverage pretrained modality-specific

classifiers to obtain most probable category predictions for

each modality. We then embed the textual names of the

predicted categories into a semantic language space via

our proposed differentiable tokenization scheme, which en-

ables end-to-end training of the whole system including the

modality-specific classifiers. Finally, we employ a genera-

tive encoder-decoder language model [40] for mapping the

embedding vectors from the multiple modalities into free-

form text. This allows us to reformulate different “video+x

to text” problems as a single sequence-to-sequence task. We

now present each of these steps in more detail.

3.1. Differentiable Tokenization

Most prior methods [25, 52, 29] rely on extra cross-

modal fusion modules for combining input signals from dif-

ferent modalities. This renders the integration of different

modalities burdensome and computational costly. Instead,

we propose to perform multimodal fusion by mapping the

different input signals into a common semantic language

space through a simple scheme. We first leverage modality-

specific classifiers trained to predict a large set of categories

over predefined language vocabularies. These include video

models trained to recognize a large collection of actions [9],

or audio classifiers distinguishing a broad set of sound cat-

egories [14]. Afterwards, we can utilize existing language

embedding models to map the top textual categories pre-

dicted by each modality-specific classifier into a common

semantic language space.
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Figure 1. Illustration of our proposed framework. VX2TEXT receives as input a task specifier, and video with accompanying modalities,

such as audio and speech. Each modality is converted into a set of tokens by means of modality-specific classifiers and a differentiable

tokenization scheme that enables end-to-end training. Finally, an encoder-decoder architecture performs multimodal fusion in the language

space and generates as output open-ended text addressing the given task.

Although conceptually simple, this approach has a few

weaknesses. First, the pretrained modality-specific clas-

sifiers may not generalize to the target data. Second,

the selection of the top categories from each classifier is

not differentiable and thus prevents us from finetuning the

modality-specific classifiers with respect to our target task.

To address these limitations, we propose a differentiable to-

kenization scheme, which enables end-to-end training of the

whole system including the modality-specific classifiers.

Let us denote with {N1,N2, ...,NM} a set of modality-

specific networks. For each modality m we use a network

model Nm pretrained for a classification task on a prede-

fined category space Cm = {1, ..., Cm}. Let pm(c|x) ∈
[0, 1] be the normalized probabilistic output of Nm(xm) for

category c ∈ {1, ..., Cm}, such that
∑Cm

c=1
pm(c|x) = 1.

We convert these classification predictions into a set of text-

embedding vectors by (1) sampling Km categories (without

replacement) from the probabilistic outputs for each modal-

ity m and then (2) embedding the names of the sampled

categories via a matrix multiplication:

ekm = WT

mckm. (1)

where Wm ∈ R
Cm×D is a learned D-dimensional em-

bedding of Cm category tokens and ckm is a one-hot vector

that encodes the name of the k-th sampled category from

modality m.

Note that the sampling process is necessary during train-

ing because directly selecting top predictions will drop the

rich information in the predicted distributions and bias the

training process [18]. In order to make the sampling dif-

ferentiable, we leverage the Gumbel-Softmax trick [18] and

a differentiable approximation of tokenization [8]. Specif-

ically, we reparameterize the predicted probability distri-

bution pm ∈ R1×Cm by adding Gumbel noise gm ∈
R1×Cm to it, where gm = − log (− log (u)) with u ∼
Uniform(0, 1). We then sample the top Km categories from

the reparameterized distribution p̃m ∈ R1×Cm for each

modality m.

With this re-parameterized distribution, selecting the top

Km categories is equivalent to sampling Km categories

from the original distribution. For detailed proof, we refer

the reader to [22]. However, the process of selecting the top

Km categories is still not differentiable. To address this is-

sue, we use a Straight-Through Estimator [18]. Specifically,

during forward propagation, we sample top Km categories

as described above. Instead, during backward propagation

we estimate the gradient for each category c as:

G ≈ ∇Wm

exp (log pm(c|x) + gm(c))
∑|Cm|

c′
exp (log pm(c′|x) + gm(c′))

. (2)

This leads to a unified formulation, which enables end-

to-end learning of the entire system including the modality-

specific classifiers. Furthermore, note that the embedding

transformation Wm can be initialized using a pretrained

language embedding space [40]. This simple procedure
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provides the advantage of converting all modalities into the

same semantic language space, thus eliminating the need

for designing complex cross-modal fusion blocks. Further-

more, we can seamlessly leverage powerful language en-

coders for our target task, which is highly beneficial.

3.2. Generative EncoderDecoder

With the different modalities embedded in the same lan-

guage space, we can directly use a text encoder to fuse the

multimodal information. We collect the embedding vector

et representing the task definition t together with the em-

beddings computed from the different modalities into a se-

quence of L vectors which we feed into the text encoder

FEn:

z = FEn(et, eS, e
1

1
, ..., eK1

1
, eS, ..., eS, e

1

M , ..., eKM

M
), (3)

where eS is the embedding of a special “separator” token,

and z ∈ R
L×d

′

is a sequence of L vectors with a dimen-

sionality d′. The features z produced by the text encoder

capture task-specific information from multiple modalities.

Afterwards, we feed the new representation z to the de-

coder for text generation. Our decoder generates results in

an auto-regressive manner, meaning that it uses previously

decoded outputs as part of its input. Formally, we can write

this as follows:

ĥi = FDe(z, h̃1, ..., h̃i−1), (4)

where ĥi ∈ R
T

′

is the i-th decoded distribution over a

dictionary of T ′ tokens and {h̃1, ..., h̃i−1} are discrete his-

tory tokens. The decoding process will terminate when the

“End-of-Sequence” token is generated.

3.3. Training

During training, we follow the common practice of

teacher-forcing [49, 40], which means that we replace the

decoding history with ground-truth tokens hi in the corre-

sponding positions:

ĥi = FDe(z,h1, ...,hi−1), (5)

Our entire system is then trained with a standard cross-

entropy loss:

L = min
w

1

n

∑

i

Cross-Entropy(ĥi,hi), (6)

where n is the number of valid tokens. Note, that this de-

sign supports generation of text with variable length. While

here we show the objective for a single training sample, in

practice we optimize over mini-batches of samples.

3.4. Inference

Most previous multimodal transformers [55, 29] rely on

task-specific heads to tackle different tasks. Specifically, the

heads designed for generative tasks typically differ substan-

tially from those used in discriminative settings. However,

our VX2TEXT seamlessly addresses both types of tasks

without the need to change its architecture.

For generative tasks, e.g., captioning and video dialog,

we follow previous works and use Beam Search [41, 25]

(with beam width set to 5) or Greedy Decoding [28] to gen-

erate coherent sentences. Instead, for discriminative tasks,

e.g., question answering on TVQA, the model is required to

pick the most probable answer from a provided candidate

set. In such cases, we include the entire set of candidate

answers as additional input to the model (using separator

tokens to mark them) and then evaluate each candidate out-

put under the probability distribution defined by the autore-

gressive decoder. Finally, we select the highest-probability

answer among the choices as the prediction. In this way,

with a unified encoder-decoder structure, our model can

handle both generative and discriminative tasks. In our ex-

periments we demonstrate that the knowledge stored in the

decoder helps our generative VX2TEXT outperform its dis-

criminative counterpart as well as previous discriminative

models (see Sections 4.4 and 4.5).

3.5. Implementation Details

We use R(2+1)D-34 [47, 15] trained on Kinetics [9] as

our video backbone network, with the 400 action categories

of Kinetics as the video vocabulary. We follow the video

preprocessing procedure described in [15] to sample a clip

of 32 frames. We sample Kv = 12 predicted categories

from the pool to represent the action/events in videos.

As the audio backbone, we use CNN14 [21] trained on

AudioSet [14] to recognize 527 acoustic events. Audio seg-

ments are sampled at 16,000 Hz from corresponding video

clips. They are then processed to extract Log-mel spectro-

grams which are fed into the CNN. We use Ka = 6 pre-

dicted categories to represent the acoustic events in audio

segments. We provide analyses on the hyperparameters Kv

and Ka in the Appendix.

We note that our VX2TEXT is not constrained to use the

tokens of the predefined categories for each modality. In

the Appendix we present experiments where we map each

modality into the the full vocabulary of tokens by using the

predefined categories merely as an initialization. We show

that this more general scheme yields equivalent results.

We use T5-base [40] as our text transformer including

the text token embedding layer, the encoder and the decoder.

We use pretrained weights provided in HuggingFace [50]

for initialization of the text transformer. We note that, ex-

cept for these initializations, we do not use any form of pre-

training and that the optimization of the model is done on
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Figure 2. Impact of different combinations of multimodal inputs on the performance of VX2TEXT for the task of audio-visual scene-aware

dialog on the AVSD validation set. (Best viewed in colors.) Each modality contributes to elevate the performance, especially the video

input.

64

66

68

70

72

74

To
p-

1 
Ac

cu
ra

cy
 (%

)

Question + Speech
Question + Speech + Video
Question + Speech + Video + Audio

Figure 3. Video question answering performance of VX2TEXT

on the TVQA validation set for different combinations of input

modalities. (Best viewed in colors.)

each individual task using the given training set.

We use a batch size of 6 examples per GPU, and dis-

tribute the training over 32 NVIDIA V100 GPUs. We use

Adam with a learning rate of 0.0001 to optimize our mod-

els. We train our models for 40 epochs, with the learning

rate divided by 10 at the 20-th and 30-th epochs. Training

on AVSD, TVQA, and TVC with our default settings takes

about 12, 15, and 20 hours, respectively.

4. Experiments

In this section, we evaluate the effectiveness of

VX2TEXT on three distinct tasks: (1) video-based ques-

tion answering, (2) audio-visual scene-aware dialog, and

(3) video captioning. We use three benchmark datasets:

TVQA, AVSD, and TVC for these three tasks, respectively.

4.1. Datasets and Evaluation Metrics

Audio-Visual Scene-Aware Dialog. AVSD [2] is a

benchmark of human dialogs describing videos in the Cha-

rades dataset [43]. The dialogs are in the form of 10

question-answer (QA) pairs per video. The questions are

formulated by a human subject who has not observed the

video. The questions aim at collecting as much information

as possible about the content of the video. A person who

has seen the video provides detailed answers to the ques-

tions through the dialog. Algorithms are evaluated on this

benchmark by their ability to answer the questions in textual

form. As in prior work [41], we adopt the following evalua-

tion metrics: BLEU-{1,2,3,4} [37], CIDEr [48], METEOR

[7], and ROUGE-L [32].

Video Question Answering. TVQA [26] is a dataset

of video clips collected from 6 TV series. Given a video

clip and its corresponding speech, the goal of this task is

to answer a multiple-choice question about the clip. Each

video clip has 7 questions, with 5 candidate answers per

question. In total, the dataset consists of 152,500 QA pairs

from 21,800 clips. The speech data comes in the form of

manually annotated transcripts.

Video Captioning. TVC [28] is a recently introduced

benchmark for video captioning. The TVC dataset includes

the same set of videos as TVQA, but the videos are seg-

mented into clips in a different way. We follow the protocol

introduced in previous work [28] and include the speech

consisting of manual transcripts as input to our model. We

adopt the following evaluation metrics: BLEU-{1,2,3,4}
[37], CIDEr[48], METEOR [7], and ROUGE-L [32].

4.2. Assessing the Importance of Each Modality

We begin by studying the effect of individual modali-

ties on video-based text generation performance. We do

so by training and testing our model with different com-

binations of inputs. Results are shown in Figure 2 for the

AVSD dataset, and in Figure 3 for the TVQA dataset. Based

on these results, we observe that each modality provides

a performance gain for both tasks. This is especially no-

ticeable for the AVSD benchmark, which was specifically

designed for multimodal understanding. Furthermore, note

that the addition of the video modality yields a very sig-

nificant gain under all metrics on AVSD compared to the

version of our model relying only on textual input (question

and history). This trend also holds on the TVQA dataset.

Finally, we also observe that leveraging the history of pre-

vious QA pairs is highly beneficial on AVSD. This suggests

that our model successfully incorporates information from

previous QA pairs in the dialog.

Although previous studies [26, 41] have shown that

these benchmarks are somewhat biased to input text, our

model improves from text-only settings significantly, e.g.,

by 14.4% on AVSD and by 3.5% on TVQA. The larger

gain compared to prior works [26, 41] reveals the strength

of our proposed video encoding and fusion strategy.

4.3. The Effect of Differentiable Tokenization

In this section, we demonstrate the usefulness of our

proposed Differentiable Tokenization scheme. For this
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Figure 6. Comparison between a Discriminative variant of our

VX2TEXT and the default Generative version on TVQA. The gen-

erative version achieves much higher accuracy for all training set

sizes. Furthermore, the generative formulation enables multi-task

learning (see “Question Answering & Generation” and “Cycle-

consistency”) with the same model. This yields further improve-

ments in accuracy, especially for small training sets.

purpose, we consider and test two comparative baselines.

The first, named Multimodal Feature Embedding, uses a

modality-specific fully-connected layer with Layer Normal-

ization [6] to map the continuous predictions of the audio

and video classifiers into the language embedding space.

This scheme is similar to the strategy implemented by the

input embedding modules in HERO [29] and it provides an

alternative way to enable end-to-end training.

For the second baseline, we replace our Differentiable

Tokenization with Frozen Tokenization, which means that

only the text transformer is trained with respect to the tar-

get task, while the modality-specific networks are frozen to

their pretrained configurations. The results are shown in

Figures 4 for AVSD and in Figure 5 for TVQA, using all

available input modalities for both tasks. It can be observed

that Frozen Tokenization achieves better performance than

the Multimodal Feature Embedding. This by itself already

provides evidence of the benefit obtained by mapping all

modalities into the language space using the top predic-

tions of the modality-specific classifiers. However, it can be

noticed that Differentiable Tokenization boosts further the

performance on both tasks by jointly optimizing the entire

model end-to-end.

4.4. The Benefit of a Generative Model

To show the benefits of our unified generative formula-

tion, we present a comparison involving four models trained

and evaluated on TVQA. The first model is our default

VX2TEXT model, denoted here as Generative. The second

model is a discriminative version of our system obtained

by removing the decoder and by attaching a classification

head to the pooled embedding obtained from the encoder.

This variant is trained end-to-end to predict a distribution

over the five candidate answers. It is similar to the approach

taken in HERO [29], except that it uses our Differentiable

Tokenization as modality fusion mechanism. As a refer-

ence, we found that our Discriminative baseline achieves

performance comparable with that of HERO (without pre-

training) on TVQA.

Furthermore, to show the flexibility of our generative for-

mulation, we include two additional variants of VX2TEXT

using multiple generative training objectives. “Generative

(Question Answering & Generation)” has two training ob-

jectives: one is for video question answering and the other

is for video question generation. When generating ques-

tions, our model takes Question as the task token t and

the ground-truth answer as part of the input. In such mode

the system is asked to predict in a generative manner the

ground-truth question from the ground-truth answer.

In “Generative (Cycle-consistency)”, our model per-

forms the following steps: 1) generates answer A′ given the

ground-truth question Q; 2) produces question Q′′ based

on A′; 3) outputs answer A′′ based on Q′′. The final ob-

jective is a linear combination of the Question consistency
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Models Use Caption? CIDERr BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE-L METEOR

MA-VDS [16] No 0.727 0.078 0.109 0.161 0.256 0.277 0.113

Simple [41] No 0.905 0.095 0.130 0.183 0.279 0.303 0.122

VX2TEXT (Ours) No 1.357 0.127 0.166 0.222 0.317 0.356 0.152

MTN [25] Yes 1.249 0.128 0.173 0.241 0.357 0.355 0.162

MTN-TMT [30] Yes 1.357 0.142 - - - 0.371 0.171

VX2TEXT (Ours) Yes 1.605 0.154 0.197 0.260 0.361 0.393 0.178

Table 1. Comparison to the state-of-the-art on the AVSD test set with and without caption as input. Our model achieves the best results

under both settings.

Models # Samples for Multimodal Pretext Val Test

HERO [29] 7.6M 74.8 73.6

TVQA [26] 0 67.7 68.5

STAGE [27] 0 70.5 70.2

HERO [29] 0 70.7 70.3

MSAN [20] 0 71.6 71.1

BERT QA [52] 0 72.4 72.7

VX2TEXT (Ours) 0 74.9 75.0

Table 2. Comparison to the state-of-the-art for the task of Video

Question Answering on both the validation set and the test set of

TVQA. On the test set, VX2TEXT achieves even better perfor-

mance than the version of HERO that leverages 7.6M additional

multimodal samples for pretraining. Top-1 Accuracy (%) is re-

ported.

|Q′′ −Q|, the Answer consistency |A′′ − A| as well as the

Question Answering and Question Generation losses. Such

a multi-loss objective was originally proposed by Shah et

al. [42] for the case of image-based QA. For details of these

two baselines, please refer to our Appendix.

Figure 6 shows the performance of these four models as

we vary the number of QA pairs used for training. Our

VX2TEXT model trained in a generative fashion signif-

icantly outperforms its discriminative counterpart for all

training set sizes, but especially so when data is dramati-

cally reduced. For example, the accuracy gap between Gen-

erative and Discriminative is 29.9% (64.1% vs 34.2%) when

using 10% of the training data. We believe that this large

performance difference comes from the beneficial common-

sense knowledge stored in the text decoder.

Moreover, our generative formulation allows VX2TEXT

to be trained with respect to multiple tasks without the need

to change the architecture or add network heads. As shown

in Figure 6, this translates in further performance improve-

ments. For example, with the help of Cycle-consistency, our

VX2TEXT achieves an accuracy of 66.1% (vs the 64.1% of

Generative) when using 10% of the data. Our VX2TEXT

trained with Cycle-consistency using only 50% of the train-

ing samples outperforms the Discriminative model trained

on the full training set (100% of the samples).

4.5. Comparison With the StateoftheArt

We now compare our single architecture separately

trained on the three benchmarks to the state-of-the-art.

AVSD. Our comparative results on this benchmark are

shown in Table 1. Our VX2TEXT significantly improves

over existing methods both with and without text caption

as part of the inputs. Note that the state-of-the-art MTN

system [25] uses complex cross-modal attentional modules

to fuse the information from different modalities. MTN-

TMT [30] leverages complex auxiliary losses to align the

embedding spaces of MTN. However, even without text

caption, which is a very strong information source, our

VX2TEXT achieves already better performance than MTN.

When adding text caption to the input, the performance of

our VX2TEXT is further boosted and it significantly sur-

passes that of MTN-TMT. This further demonstrates the ef-

fectiveness of our simple scheme for modality integration.

TVQA. Since many methods on TVQA use

object/frame-level features, for a fair comparison, we

include detected object categories [26] as an extra modality

of input for VX2TEXT in this evaluation. Due to the

complexity of training object detectors, here we use Frozen

Tokenization and leave the application of Differentiable

Tokenization for future work.

Table 2 shows that on TVQA our VX2TEXT signifi-

cantly outperforms all previous methods on both the val-

idation set and the test set when training is done without

additional multimodal pretext training data. On the test set,

our VX2TEXT yields an improvement of 1.4% compared to

the previous state-of-the-art, represented by the HERO sys-

tem which adopts an expensive multimodal pretext train-

ing on 7.6M additional samples. As reported in [29], this

pretraining takes about 3 weeks. When both models are

trained without multimodal pretext, our VX2TEXT outper-

forms HERO by 4.7%.

TVC. Table 8 shows that on the captioning task of TVC

our VX2TEXT significantly outperforms the state-of-the-art

MMT [28] system. Without pretraining, HERO achieves

performance comparable to that of MMT and inferior to

ours. With multimodal pretraining on additional 7.6M sam-

ples (again requiring 3 weeks), HERO does only slightly

better than our model. Our VX2TEXT also shows good

generalization on the test set. Note that, as done on TVQA,

even here we include object detection predictions as an in-

put modality for our model since the methods considered in

this comparison all have access to frame-level features.
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Models # Samples for Multimodal Pretext
Validation Test

CIDERr BLEU-4 ROUGE-L METEOR CIDERr BLEU-4 ROUGE-L METEOR

HERO [29] 7.6M 0.505 0.123 0.341 0.175 0.500 0.124 0.342 0.176

MMT [28] 0 0.444 0.105 0.324 0.166 0.454 0.109 0.328 0.169

HERO [29] 0 0.436 0.107 0.327 0.164 0.437 0.109 0.326 0.165

VX2TEXT (Ours) 0 0.482 0.116 0.328 0.172 0.483 0.119 0.331 0.174

Table 3. Video captioning performance of VX2TEXT on both the validation set and the test set of TVC. Our model achieves the best

performance among the methods that do not make use of additional samples for multimodal pretraining.

Caption: A person is eating in the doorway. The person then is playing with 

the switch for the light. 

Question: Is the person a man?

GT Answer:  The person visible in the video is a woman, but It sounds as 

though there is a man having a conversation with her.

Generated Answer: No, the person is a woman.

Question: Does she have long hair?

GT Answer: Yes her hair is past her shoulders and appears to be light brown.

Generated Answer: Yes, the woman's hair is long.

Question: What is she holding?

GT Answer: It is a container of snacks that might be potato chips.

Generated Answer: She is holding a bag of food.

Question: What's on the table next to her?

GT Answer: There are a few things including a lamp and a pumpkin

Generated Answer: I can't tell what is on the table

……

…
… Caption: A person is fixing their vacuum in their laundry room. They put the 

vacuum in a cabinet then sit on a chair.

Question: Is there any sound in the video?

GT Answer: he is talking to someone you can't see for part of the video

Generated Answer: Yes you can hear someone off camera talking to him

Question: What language is he speaking?

GT Answer: I am not sure I can understand them

Generated Answer: I can't tell what language he is speaking

Question: Do they sound like they are arguing?

GT Answer: No they sound like they are possible talking about the vacuum

Generated Answer: No they are not arguing

Question: Does he do anything on the laptop?

GT Answer: The last scene is him sitting looking at it

Generated Answer: No he does not do anything on the laptop

………
…

Figure 7. Examples of generated answers for audio visual scene-aware dialog on the AVSD validation set. Our VX2TEXT successfully

responds in natural language given the multimodal inputs. Faces in the frames are artificially masked for privacy reasons.

Speech Transcripts: UNKNAME : Okay. UNKNAME : Ready? Mmm hmm. 

Brennan: One, two, three. Stark: Can I get a little head support, please? 

Stark: Thank you. 

GT Description 

1:  Brennan lifts the patient out of bed while Kutner looks on.

2: Brennan picks up the patient out of the bed and the other doctor supports 

the patient's head.

3: Brennan lifts up Stark and Stark asks Taub for help.

4: Brennan helps Stark get out of the hospital bed by carrying him and also 

gets Kutner to help him.

Generated Description: Brennan helps Stark get up from the hospital bed.

…
…

…
…

Speech Transcripts: Castle: I'll get him. UNKNAME : Beckett. UNKNAME : 

RYAN: Found enough dog food to keep Royal fat and happy for a while. Ryan: 

Found something else tasty, too. 

GT Description 

1: Castle walks away from Beckett when she answers the phone.

2: As Castle communicates with Barker, Beckett answers her phone and 

begins to speak to Ryan.

3: Ryan tells Beckett what he discovered about the dog.

4: Beckett presses the button on her phone as Castle walks away.

Generated Description: Beckett answers the phone and Ryan tells her he 

found some dog food.

Figure 8. Examples of textual descriptions generated by VX2TEXT for video captioning on the TVC validation set. Our VX2TEXT

generates informative descriptions from multimodal inputs. Faces in the frames are artificially masked for privacy reasons.

4.6. Qualitative Results

As shown in Figures 7 and 8, our VX2TEXT generates

realistic natural text for both audio-visual scene-aware di-

alog and video captioning. It is very encouraging that al-

though our model takes some text inputs, e.g., dialog his-

tories or speech transcripts, the generated text does include

information from other modalities. For example, as Figure 8

shows, our model successfully recognizes the actions, e.g.,

helping to get up or answering the phone, and even grounds

the characters correctly. In the Appendix, we further inves-

tigate and show the semantics of the predicted tokens.

5. Conclusions

In this work we have presented a simple unified frame-

work to address the problem of text generation from video

with additional modalities. Our approach hinges on the idea

of mapping all modalities into a semantic language space

in order to enable the direct application of transformer net-

works, which have been shown to be highly effective at

modeling language problems. We have introduced a mech-

anism of differentiable tokenization to convert the contin-

uous outputs of modality-specific classifiers into the lan-

guage space. This renders our entire model trainable end-

to-end. Our framework applied to a single architecture out-

performs the state-of-the-art on three different video-based

text-generation tasks.
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Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[9] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017.

[10] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.

Microsoft coco captions: Data collection and evaluation

server. arXiv preprint arXiv:1504.00325, 2015.

[11] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh,
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