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Abstract

A common strategy for improving model robustness is
through data augmentations. Data augmentations encour-
age models to learn desired invariances, such as invariance
to horizontal flipping or small changes in color. Recent work
has shown that arbitrary style transfer can be used as a form
of data augmentation to encourage invariance to textures by
creating painting-like images from photographs. However, a
stylized photograph is not quite the same as an artist-created
painting. Artists depict perceptually meaningful cues in
paintings so that humans can recognize salient components
in scenes, an emphasis which is not enforced in style transfer.
Therefore, we study how style transfer and paintings differ
in their impact on model robustness. First, we investigate
the role of paintings as style images for stylization-based
data augmentation. We find that style transfer functions well
even without paintings as style images. Second, we show
that learning from paintings as a form of perceptual data
augmentation can improve model robustness. Finally, we
investigate the invariances learned from stylization and from
paintings, and show that models learn different invariances
from these differing forms of data. Our results provide in-
sights into how stylization improves model robustness, and
provide evidence that artist-created paintings can be a valu-
able source of data for model robustness. Code and data are
available at: https://github.com/hubertsgithub/

style_painting_robustness

1. Introduction

Model robustness can be defined as the capability of a

model to generalize to unseen image distributions. These can

be the result of real-world effects, like weather and camera

noise [13], adversarial noise [23], or distribution shifts due to

differences in environments in which the images are captured.

The performance of standard recognition models can degrade

drastically in these settings, but robust models are critical for

applications such as self-driving or medical diagnostics.

A common strategy is to improve generalization through

data augmentation [45, 8, 14, 23]. Conventional data aug-

mentation applies transformations to encourage invariance

to heuristic rules (e.g., flipping for invariance to image mir-

roring). Recent work has found that image stylization can

encourage models to learn invariance to texture [10]. While

style transfer has focused on visual fidelity [17], we argue

that current style transfer models do not yet fully capture

the essence of artistic paintings. For example, a family of

style transfer algorithms act by manipulating feature distri-

butions to create a stylized photo which holistically mimics

a painting [22] – in effect, mid-level textures are manipu-

lated in the stylized photo. However, paintings are more

than a style filter applied to a photo. An artist can choose

lighting, contours, and scene context to convey realism in

important scene regions while foregoing perceptual details

less important areas. This artistic manipulation can affect

our perceptual understanding of the scene.

In this paper, we explore a series of hypotheses to un-

derstand how style transfer and paintings impact model ro-

bustness. Fig. 1 illustrates that various types of images can

differently affect model robustness. First, we examine how

style images play a role in stylization-based data augmenta-

tion in Section 4. Second, we investigate the role of paintings

as a form of training data, and contrast it to other artforms

such as sketches in Section 5. Finally, we probe models to

empirically understand their learned invariances, and discuss

how style transfer and artistic paintings can contribute to

robust natural image recognition models in Section 6. Our

contributions are:

• We demonstrate that arbitrary style transfer can be used

as effective data augmentation even without painting

style images. We attribute their effectiveness to the

diversity of style images rather than artistic style.

• We argue that paintings can be considered a form of

perceptual data augmentation, and demonstrate that it

can improve model robustness. We contrast paintings

with other forms of art such as sketches.

• We explore the invariances learned from arbitrary style

transfer, learned artistic style transfer, and paintings.

We find that models do not learn the same invariances

from stylized photos and paintings, and show that the

learned invariances are complementary.

2. Related Work

Model Robustness. Recent work in robustness for CNNs

has focused on both adversarial robustness [5] as well as

robustness to real-world transformations [13, 11]. This view
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Figure 1: What invariances are learned from real and fake paintings? Left: Natural photographs (black), paintings

(magenta), and stylized photographs (olive/red/blue) from the Materials dataset (Section 3.2), Right: Relative robustness to

various types of transformations for models trained with different sets of images with respect to a model trained on only natural

photos. Stylization algorithms can transform photographs into painting-like images, but it is not clear that models will learn

the same invariances from these images. This paper explores a series of hypotheses to understand the different ways in which

style transfer and paintings improve model robustness.

of model robustness is human-centric, where the settings

considered are those where the human visual system has been

shown to be robust (e.g., [30, 11, 10]), rather than enforcing

model robustness under arbitrary settings. A related line

of work is in domain generalization, where the task is to

generalize to unseen domains, (e.g., [12, 25, 21, 20]), by

learning a shared representation on a set of seen domains.

While a common justification for domain generalization is

model robustness, domain generalization is subtly different.

Domain generalization algorithms assume the target domain

is unspecified, and do not rely on domain-specific signals at

inference time. However, robust natural image recognition

can benefit from learning from natural images directly.

Data Augmentation. Data augmentations are transforma-

tions applied to images to enforce useful model invariances.

Beyond basic transformations like flipping, recent work in

data augmentation has focused on more complex augmen-

tations such as image occlusion [8], class-mixing [45], and

compositions of transformations [14]. Data-driven augmen-

tations such as adversarial or stylization transformations

[42, 23, 15] can also be used to model nuanced invariances.

Style Transfer. Style transfer aims to transform photos

into painting-like images by transferring artistic styles.

While increasing attention has been given to arbitrary style

transfer (e.g., [15, 33, 31, 35, 39]) which aims to efficiently

transfer unseen styles, artist-specific style transfer models

(e.g., [29, 18]) are typically able to better capture nuances

from a collections of images. Beyond its role as a tool

for artistic creation, stylization has also been used as a

form of data augmentation to enforce invariances to tex-

tures [10], as well as regularization for tasks such as human

re-identification [16].

3. Preliminaries

3.1. Evaluating Robustness

We evaluate robustness to common image corruptions

and distribution shifts from the training distribution. These

settings serve as a proxy for real-world robustness. Further-

more, the behavior of models on these scenarios gives us

insight into the invariances learned – for example, a model

which is robust to noise has likely learned to be more invari-

ant to (i.e., to rely little on) high-frequency signals in an im-

age. All experiments use an ImageNet-pretrained ResNet18

architecture, and results are averaged over three independent

runs. For complete training details and experiments with

alternative architectures, please refer to the supplementary.

Common Image Corruptions. Common image corrup-

tions are inspired by transformations that can be encountered

in real-world settings [13]. There are 15 corruptions which

span 4 broad categories (noise, blur, weather, and digital)

with 5 severity levels per corruption. We use the released

code to corrupt our test images. Figure 2 illustrates these

corruptions. For each corruption, we compute the mean ac-

curacy over each severity, and then compute the mean over

each set of broad corruption categories C. Given a model Θ,

the mean corruption accuracy is:

AccMean(Θ) =
1

4

∑

C

AccC(Θ) (1)

where AccC(Θ) =
1

5nC

∑

corr∈C

5
∑

s=1

Acc(Θ,Dcorr,s)

Dcorr,s denotes the test dataset of images transformed by

corruption corr with severity s.
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Small Distribution Shifts. Out-of-distribution pho-

tographs will be used to evaluate robustness to small

domain shifts not unlike the domain shifts that models

must overcome when they are used in different real world

environments. For the PACS dataset, we use a subset of the

YFCC100M dataset [37] as the out-of-distribution test set.

This subset is curated by downloading 100 images per class

and then manually filtering to remove irrelevant retrievals

down to 50 images per class. This test set is released for

reproducibility. For the Materials dataset, we use the Flickr

Material Database (FMD) [30] as the out-of-distribution test

set.

Figure 2: Image Corruptions. Top-Left to Bottom-Right:

Noise(×3), Blur(×4), Weather(×4), Digital(×4).

3.2. Datasets

We select datasets which contain both photographs and

paintings, and conduct experiments across two recognition

tasks (object classification and material classification).

Object Classification. We use the PACS dataset [20]

which consists of 10K images across 7 categories and 4

domains (photographs, paintings, cartoons, and sketches).

Material Classification. We construct a dataset from ex-

isting large-scale photograph datasets [2, 3, 4], and a large-

scale painting dataset with material annotations [38]. We

will refer to this dataset as ‘Materials’. This dataset con-

sists of 120K images across 10 categories and 2 domains

(photographs and paintings). See supplementary for details.

[10] found that stylization-based augmentation can reduce

bias towards textures, but material recognition relies on tex-

ture understanding [1]. As such, it is interesting to explore

whether stylization can improve robustness for this task.

3.3. Notation

Some common notation used throughout is given here.

Let Dn be a set of natural photographs and Dp be a set of

paintings. For each image x, its class label is denoted by yx.

Finally, let l(ŷ, y) denote the cross entropy loss.

4. Style Transfer as Data Augmentation

Style transfer aims to transform the style of an image into

the style of another set of images [17]. There is evidence

[10] that training on stylized images [15] can improve object

recognition on ImageNet by encouraging networks to focus

more on shape than texture. In this view, we can consider

style transfer as a form of data augmentation. Style transfer

is often applied with painting style images from datasets

such as Wikiart [36, 43]. In its role as a tool to mimic artistic

creation, this is certainly appropriate. However, in its role as

a form of data augmentation, it is not strictly necessary for

the style images to be paintings. Indeed, arbitrary stylization

methods can be applied to any pair of content and style

images (hence ‘arbitrary’). Although work such as [10]

utilize style transfer in the conventional manner with painting

styles, it’s important to ask whether models can learn robust

invariances from photo style images alone.

To answer this question in a general way, we experiment

with three representative deep-learning based arbitrary style

transfer methods. Each of these methods act in deep fea-

ture space, but follow a different paradigm: AdaIN [15]

transfers style by matching the mean and standard deviation

of features, ETNet [33] iteratively refines a stylized image

by computing residual error maps, and TPFR [35] transfers

style by recombining features in the content image to match

those of the style image. We explore the following:

• Hypothesis H1. Painting styles are necessary for

stylization-based augmentation to improve robustness.

• Hypothesis H2. Style image diversity is important.

4.1. Are Painting Style Images Necessary?

We experiment with: (a) a network trained with photos

plus photos stylized by paintings and (b) a network trained

with photos plus photos stylized by other photos. We will

refer to (b) as “intradomain stylization” as photos are being

stylized by other photos from within the same domain. For

reference, we also consider (c) a network trained with pho-

tos alone (no stylization). Specifically, let φ(x, xs) be an

arbitrary stylization algorithm which stylizes content image

x with style image xs. For a network Θ, the objectives are

given by:

(a)min
Θ

Ex,xs∼Dn,Dp

[1

2

(

l(Θ(x), yx) + l(Θ(φ(x, xs)), yx)
)]

(b)min
Θ

Ex,xs∼Dn,Dn

[1

2

(

l(Θ(x), yx) + l(Θ(φ(x, xs)), yx)
)]

(c)min
Θ

Ex∼Dn

[

l(Θ(x), yx)
]

(2)

In practice, we approximate the objectives by sampling xs

once for each x instead of minimizing over all independent

combinations of x and xs.

The results are shown in Fig. 3. Across both PACS and

Materials, we find that intradomain stylization significantly

improves robustness over the photo-only baseline. With a

large dataset (Materials), we find that intradomain stylization

can meet or even exceed the performance of conventional

painting-based stylization. Thus, in contrast to common

practice, stylization-based data augmentation does not need

painting style images. This finding is also supported by

recent work which shows that online feature moment match-

ing across different training images is an effective form of
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data augmentation [19] (which we can frame as roughly

equivalent to intradomain stylization with AdaIN), and work

which shows stylization with images from non-painting do-

mains (including intradomain stylization) can be useful for

domain generalization [32]. We have shown explicitly here

that intradomain stylization can replace painting stylization

for robust natural image recognition when enough data is

available.

Answer to H1: Intradomain stylization can improve net-

work robustness to an extent that is comparable to painting

stylization when there is sufficient data – that is, paintings

do not play a unique role when arbitrary style transfer is

used as data augmentation.

Num Data Samples

Figure 3: Stylization: Painting vs Photo Styles. Left:

PACS, Right: Materials. In general, intradomain stylization

(red/green/yellow) improves robustness over no stylization

(blue). Further, when sufficient data is available (Materi-

als), intradomain stylization (dashed lines) results in similar

robustness gains to conventional painting stylization (solid

lines). This means that paintings are not uniquely responsi-

ble for robustness gains from stylization.

4.2. The Role of Style Diversity

The finding that intradomain stylization can be compara-

ble to painting stylization leads to the hypothesis that it is

the diversity in image statistics between style and content

images that plays a key role. For example, consider AdaIN

– the extent to which images are transformed by stylization

depends on the magnitude of the difference in feature dis-

tribution moments between the content image and the style

image. This is why intradomain stylization is comparable to

painting stylization on a large dataset like Materials.

We test this hypothesis by restricting the style photo for

intradomain stylization to be drawn from images that share

the same class label as the content image. With this restric-

tion, the style images are likely to be more similar to the

content image given that they share similar semantic content.

Let Dy
n be the subset of natural photographs with class label

y. Then, the objective is given by:

min
Θ

Ex∼Dn

[

Exs∼D
yx
n

[1

2

(

l(Θ(x), yx) + l(Θ(φ(x, xs)), yx)
)]

]

(3)

In general, we find that this restriction does indeed reduce

the effectiveness of intradomain stylization (Fig. 4). As

an exception, TPFR does not appear to rely heavily on the

choice of style images. This can be explained by the adver-

sarial loss used in TPFR – the decoder is trained explicitly

to fool a style discriminator that discriminates between styl-

ized images and real paintings during training. Therefore, it

is possible that the decoder is encoding painting-like style

signals regardless of the style image used. This also sug-

gests that a style transfer algorithm which explicitly transfers

painting styles can be useful instead of relying on a diverse

style dataset during training (we explore this in Section 6).

In general, biases in stylization models can contribute to

improved robustness independently of style images.

Answer to H2: Access to style images which are diverse

with respect to content images is key for stylization-based

augmentation. Against conventional wisdom, style images

need not contain statistics that manifest as visible textures

or artistic style per se. As long as each style image is suf-

ficiently different from its corresponding content image, it

will suffice. “Sufficiently different” means “depicting differ-

ent semantic content” in our analysis here. Interestingly, we

found that style differences measured by the Gram matrix

distance between a stylized image and its original counter-

part do not correlate with robustness (see supplementary) –

further analysis is left for future work.

Num Data Samples

Figure 4: Stylization: Unrestricted vs Intraclass Styles.

Left: PACS, Right: Materials. Across both datasets, restrict-

ing style images to the class as content images (dashed lines)

results in smaller robustness gains compared to unrestricted

stylization (solid lines). This reduction in robustness is ex-

plained by the reduction in diversity between content images

and style images.

5. Paintings as Perceptual Data Augmentation

In Section 4, we found that stylization as data augmenta-

tion works well as long as the set of style images are diverse.

This diversity does not necessarily depend on the image

statistics found specifically in paintings. If sufficiently di-

verse mid-level statistics is found by stylization with photos,

then perhaps photos can fulfill the role of paintings entirely.

Instead, we argue that paintings are more than just a set

of mid-level style features overlaid on top of a photograph.

Our key insight is that perceptually realistic paintings can be
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considered a form of ‘perceptual’ data augmentation. Uncon-

strained by physical reality, artists are free to depict varying

level of perceptual realism [6]. Paintings are perceptually

realistic in regions where the artist has deemed viewer atten-

tion should be focused. For example, a painting of a giraffe

might include perceptually relevant details on the giraffe

itself while the background is depicted in an less realistc and

more abstract manner. In a collection of paintings, important

cues for objects or materials of interest are depicted fre-

quently in a perceptually sound manner while unimportant

details are abstracted away.

Even so, the domain shift between paintings and photos

can be problematic, and it is likely that models trained on

paintings will fail to perform well on photos if domain shift

is not accounted for. Furthermore, many of the arguments

made for paintings above can also apply to other artforms,

and it is interesting to consider alternatives. We explore the

following:

• Hypothesis H3. (a) Learning from paintings improves

natural image robustness after accounting for domain

shift, and (b) this improvement is greater than that found

from photos alone.

• Hypothesis H4. Other artforms can encode similar

invariances to paintings.

5.1. Learning Robust Natural Image Recognition
From Paintings

A classifier trained directly on both photos and paintings

is required to learn boundaries that satisfy both of these

domains. Consequently, the accuracy on photographs can

suffer. Since our goal is to train a robust model for nat-

ural image classification, we alleviate this by considering

two alternatives: (a) a shared feature extractor with multi-

ple domain-specific classifiers (multitask learning) or (b) a

photo-only classifier that is finetuned after shared feature

learning. For reference, we also consider the default option

of training (c) a joint classifier on both photos and paintings.

Specifically, let Θf be a feature extractor (i.e., ResNet18

without the final fully connected layer). Let η be a linear

classifier (i.e., a fully connected layer). Then the objective

for (a) is given by:

min
Θf ,ηn,ηp

Exn,xp∼Dn,Dp

[1

2

(

l((ηn ◦Θf )(xn), yxn
)+

l((ηp ◦Θf )(xp), yxp
)
)]

(4)

For (b), two objectives are optimized sequentially:

(i) min
Θf ,ηn

Exn,xp∼Dn,Dp

[1

2

(

l((ηn ◦Θf )(xn), yxn
)+

l((ηn ◦Θf )(xp), yxp
)
)]

(ii) min
ηn

Exn∼Dn

[

l((ηn ◦Θf )(xn), yxn
)
]

(5)

For (c), the objective is simply Eq. 5(i). In all cases, the

model defined by (ηn ◦Θf ) is used at inference time. Both

options (a) and (b) allow paintings to be used for feature

learning while keeping the inference classifier specific to

photos.

Results are summarized in Fig. 5. Despite domain dif-

ferences between photos and paintings, the default classifier

(c) has improved robustness over a classifier that is trained

on photos alone. A finetuned classifier (b) does not yield

much improvement over the default option (c), while domain-

specific classifiers (a) do yield significant improvement. This

suggests that paintings are useful for feature learning since

they can guide the feature extractor towards perceptually

relevant features, but constraining the feature space to jointly

separate photos and paintings across different classes can

restrict the breadth of learned features. The clean accuracy

of a joint classifier (finetuned or not) suffers since it can no

longer rely on some photo-specific features for classifica-

tion. We will use domain-specific classifiers in remaining

experiments unless otherwise specified.1

Answer to H3a: Surprisingly, we find that paintings can

improve model robustness out-of-the-box without accounting

for domain shift. However, accounting for domain shift with

domain-specific classifiers increases both clean accuracy

and robustness significantly.

Num Paintings (Plus 10K Photos)

Figure 5: Learning from Paintings. Left: Clean Accu-

racy, Right: Corruption Accuracy. Domain-specific clas-

sifiers (green) result in the highest robustness while also

improving clean accuracy. “LR normalized” refers to fixed

effective learning rates to account for additional gradients

from the extra classifier head. Even without accounting for

domain shifts, training with paintings improves robustness

(red/yellow). Results are on Materials.

To control for robustness gains from photos, we assume a

1:1 cost for photos:paintings with a fixed annotation budget.

Fig. 6 shows that it is beneficial to allocate up to 50% of

any annotation budget for paintings with respect to model

robustness.

Answer to H3b: Using paintings is cost-effective – annotat-

ing a combination of photos and paintings results in higher

robustness over photos alone for any fixed budget.

5.2. Paintings vs. Other Visual Artforms

Many artforms are created with an artistic emphasis on

perceptually important cues. For example, a line sketch is an

1We experimented with domain-specific classifiers in the context of

stylization, but found they did not improve robustness over a joint classifier.
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Total Data Samples

Figure 6: Trade-off Between Photos and Paintings. Left:

PACS, Right: Materials. For a fixed annotation budget, learn-

ing from both photos and paintings (25%/50% paintings) re-

sults in higher robustness than photos alone (0% paintings),

with <50% of the total number of data samples annotated

achieving the maximal robustness achieved by only photos.

abstraction which focuses on salient contours to depict recog-

nizable objects. While sketches are quite good at abstracting

away unimportant signals, they also abstracts away many

realistic cues in favor of a sparse line-based representation.

In the following experiment, we consider models trained on

photographs with different visual artforms.

Table 1 summarizes results across four datasets. We find

that robustness can be harmed by sparse visual represen-

tations like PACS line sketches or DomainNet quickdraw.

However, DomainNet sketches, which include more realistic

shading and detail, do improve robustness. This is aligned

with our expectation that the inclusion of perceptually rele-

vant cues is important for feature learning. VisDA render-

ings are untextured and shaded with a single directional light

source and ambient lighting. Similar to line sketches, we

find that these minimal renderings reduce model robustness.

Answer to H4: Our results position paintings as a unique

artform for improving model robustness due to their fine

balance between perceptual realism and abstraction.

6. Do Stylized Images and Paintings Induce

Similar Invariances?

As shown in Sections 4 and 5, both stylized images and

paintings can improve model robustness. We argued that

paintings are a form of perceptual data augmentation in

which artists manipulate perceptual cues to emphasize salient

regions of scenes. However, it remains unclear whether mod-

els are indeed learning perceptual invariances from paintings

– it is possible that the robustness gains from paintings arise

purely through their mid-level image statistics and textures

instead. If paintings are improving robustness through differ-

ent mechanisms than stylized photos, we can expect different

behavior from models trained on stylized photos and paint-

ings. To investigate how stylized photos and paintings act

on model robustness, we empirically probe models to under-

stand their learned invariances. We explore the following:

• Hypothesis H5. Models trained on stylized photos

and paintings learn different invariances to (a) common

Training Data (# Samples) Mean Corruption Acc (%)

Materials

Photo (30K) 54.73±0.25

Photo + Painting (15K + 15K) 56.31±0.27 (+)
PACS

Photo (1500) 76.16±0.34

Photo + Painting (750 + 750) 79.41±0.55 (+)
Photo + Cartoon (750 + 750) 75.38±0.36 (−)
Photo + Sketch (750 + 750) 73.85±0.39 (−)

DomainNet [27]

Photo (120K) 36.59±0.12

Photo + Painting (90K + 30K) 39.00±0.14 (+)
Photo + Sketch (90K + 30K) 37.57±0.22 (+)
Photo + Clipart (90K + 30K) 37.00±0.07 (+)
Photo + Quickdraw (90K + 30K) 35.87±0.20 (−)
Photo + Infograph (90K + 30K) 34.60±0.18 (−)

VisDA [28]

Photo (30K) 65.97±0.33

Photo + Rendering (15K + 15K) 63.90±0.21 (−)

Table 1: Robustness from Different Artforms. Paintings

improve model robustness while more abstract artforms can

reduce robustness. (+)/(−) indicate whether an artform

improves/reduces model robustness. ± indicates standard

deviation over 3 runs.

image corruptions and (b) viewpoint and lighting shifts,

and so (c) models can learn complementary invariances

by training on both paintings and stylized photos.

• Hypothesis H6. Stylization injects high-frequency sig-

nals that improve model robustness.

6.1. Probing Learned Invariances

To explore the relative invariances learned by different

models, we consider the behavior of models on various types

of common image corruptions. We also consider behavior

on out of distribution images – in general, these images have

a different distribution of viewing angles, viewing scales,

and lighting than the original training photos. We experi-

ment with models trained on paintings and AdaIN-stylized

photos. In addition to arbitrary style transfer, it is natural

to consider learned artistic style transfer. We experiment

with SACL [29], which transfers the style of various artists

independently with separately trained models. We stylize

each photo with a random artist to parallel the real painting

datasets which include multiple artists and styles.

Behavior with respect to common corruptions is summa-

rized in Table 2. Stylization and paintings both consistently

improve robustness to each form of common corruption. On

average, SACL outperforms both AdaIN and paintings, giv-

ing credence to an argument that stylization methods with

strong biases (i.e., learned styles) may be more practical than

real paintings or arbitrary stylization methods that depend on

a diverse style set (c.f. Section 4.2). Observe that the relative

performance of paintings fluctuates between datasets – paint-

ings outperform AdaIN on noise and digital on Materials but
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underperform AdaIN on PACS. As discussed earlier, a collec-

tion of paintings encodes perceptual invariances. Since these

invariances are not agreed upon a priori for every painting, it

follows that a large set of paintings is required to adequately

capture implicitly encoded perceptual invariances. Finally,

all methods are similarly invariant to weather and digital

transformations. This can be explained by their mid-level

statistics. Weather transformations such as snow, fog, and

frost are effectively overlaid textures on an image while dig-

ital transformations such as pixelate and elastic transform

resemble the fuzzy boundaries found in both types of images.

Answer to H5a: Both stylization and paintings improve

robustness to various image corruptions. However, learned

stylization strictly outperforms paintings, suggesting that in-

variances from learned style transfer supersedes those from

paintings with respect to common corruptions.

Method Noise Blur Weather Digital

Materials (30K Samples/Domain)

Photo-Only 43.70±0.65 58.76±0.14 55.25±0.33 61.20±0.69
Photo + AdaIN 47.33±0.22 65.09±0.21 61.78±0.18 61.41±0.16
Photo + SACL 61.87±0.16 64.36±0.20 57.49±0.24 66.55±0.17
Photo + Painting 49.82±0.56 61.03±0.13 56.69±0.10 64.15±0.14

PACS (1.5K Samples/Domain)

Photo-Only 62.64±1.48 72.75±0.04 83.24±0.22 86.33±0.14
Photo + AdaIN 70.17±1.70 81.18±0.20 88.37±0.23 89.32±0.19
Photo + SACL 85.98±0.56 84.61±0.15 89.73±0.33 88.74±0.48
Photo + Painting 68.83±0.83 75.80±0.95 86.88±0.66 87.07±0.14

Table 2: Per-Corruption Accuracy. (blue) SACL gener-

ally outperforms both AdaIN and paintings, particularly on

noise. (red) Paintings can outperform AdaIN on some cor-

ruptions with a large dataset (Materials), but underperform

when fewer images are available (PACS). See main text for

discussion. ± indicates standard deviation over 3 runs.

Performance with respect to out-of-distribution images

is summarized in Fig. 7. In striking contrast to the ro-

bustness against image corruption results above, stylization

consistently harms robustness. The reduced performance of

stylization can be explained by model overfitting to view- or

lighting-specific signals in the original photo dataset, as the

signals in common between a clean photo and its stylized

counterpart are seen twice as often by the network during

training. On the other hand, paintings are not simply a trans-

formed photograph, and thus do not suffer from this prob-

lem. A straightforward explanation of the robustness found

through paintings is in the differences in viewpoints and

lighting depicted compared to photos due to circumstance

(that is, the paintings simply depict more diverse scenes than

the photos). However, paintings are constrained by cultural

norms and artistic conventions [34, 24], so it is unlikely that

artistic paintings contain a more diverse set of viewpoints

than in-the-wild photos. Instead, we argue it is the emphasis

on depicting regions of interest with recognizable character-

istics while de-emphasizing details in the background that is

helping networks to learn better viewpoint invariance from

paintings. The model is better able to learn to focus on the

objects or materials themselves over background context.

Answer to H5b: For viewpoint and lighting transformations

found in out-of-distribution images, using stylization consis-

tently hurts performance while using paintings consistently

improves performance.

Num Samples Per Domain

Figure 7: Out-of-Distribution Accuracy. Left: PACS,

Right: Materials. Training with paintings (red) improves

robustness to out-of-distribution photos while training with

stylized photos (purple/yellow) hurts robustness. Paintings

can improve invariance to viewpoints and lighting by encour-

aging models to focus on objects / materials of interest over

background context. Stylization encourages overfitting, an

effect which can be exacerbated with more training samples.

Since the behavior of models trained on stylized pho-

tos and paintings are indeed different, we explore whether

models trained on both sources of data learn complemen-

tary invariances, or if the differences result in conflicting

behavior. Our results in Table 3 suggests the former.

Answer to H5c: Training with both paintings and stylized

photos improves robustness in a complementary manner.

Method MEAN Corr. OOD

Materials (30K Samples/Domain)

Photo-Only 48.03±0.21 54.73±0.25 41.33±0.62

Photo + SACL 48.56±0.45 62.67±0.03 34.54±0.91

Photo + Painting 50.92±0.22 57.92±0.09 43.92±0.47

Photo + SACL + Painting 51.49±0.69 61.47±0.50 41.50±1.38

PACS (1.5K Samples/Domain)

Photo-Only 79.37±0.17 76.16±0.34 82.57±0.00

Photo + SACL 82.35±0.37 87.27±0.10 77.43±0.84

Photo + Painting 82.54±0.59 79.65±0.49 85.43±0.70

Photo + SACL + Painting 85.42±0.18 87.31±0.30 83.52±0.27

Table 3: Learning from Stylization and Paintings. Train-

ing with both stylized images and paintings improves aver-

age robustness to image corruptions and out-of-distribution

photos, indicating that the invariances learned from these

images are complementary. ± indicates standard deviation

over 3 runs.

6.2. The Role of High Frequency Signals

We have focused our intuitions about the source of in-

variances learned from stylization and paintings through the

visible structure of these images. Existing work has shown

that CNNs can learn to extract features from high frequency

signals in images [40, 23]. It is also well-known that decon-

volutional decoders, such as those used in stylization models,

can introduce artifacts in images [26]. It is difficult to form

intuitions about these signals, but we can measure whether
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they play a significant role in improving model robustness.

We apply an ideal circular low-pass filter to zero out

high-frequency components. Given an image I , the filtered

frequency components of the image are:

Xfiltered = F(I)⊙ C (6)

where Cij = 1r<τ (r(i, j))

F denotes the discrete 2D Fourier transform, 1 denotes

the indicator function, and τ is the radius of the low-pass

filter. We set τ = 60 in our experiments. Fig. 8 illustrates im-

ages before and after filtering at image resolution 224× 224.

Note that the filtered images are perceptually identical to the

original images at a glance. Therefore, we can train models

on the filtered images to measure the impact of the visually

negligible high frequency signals which were filtered out.

Table 4 summarizes the results. With filtered images, ro-

bustness against noise drops significantly for models trained

on photos stylized with SACL. This means visible high fre-

quency textures (such as the brush strokes in a Monet stylized

photo) are not enough to explain robustness against noise.

This effect of invisible high-frequency signals on noise is

similar to evidence that learning from adversarial perturba-

tions improves robustness to high frequency corruptions [44].

On the other hand, the effect of high frequency signals on

the noise robustness of paintings is much smaller.

Answer to H6: For learned style transfer, it is the presence

of invisible high frequency signals that are doing the heavy

lifting against noise. In contrast, paintings are primarily

improving invariance towards noise through visible human-

perceivable signals.

Figure 8: Reducing High-Frequency Signals. Top: Origi-

nal Image, Bottom: Low Frequency Image. Columns 1 and

3 are stylized photos; columns 2 and 4 are artist-created

paintings. Reducing the magnitude of sufficiently high fre-

quency components from images does not alter perceptual

quality of images. At a glance, the top and bottom images

are perceived to be identical.

7. Conclusion

In this paper, we have performed an extensive exploration

of style transfer and artistic paintings for model robustness.

We found that style transfer is able to improve model ro-

bustness without painting style images at all (H1). Instead,

Method Noise Blur Weather Digital OOD

Materials (30K Samples/Domain)

Photo-Only 43.70 58.76 55.25 61.20 41.33

Photo+SACL 61.87 64.36 57.49 66.55 34.54

Photo+Painting 49.82 61.03 56.68 64.15 43.92

Photo+SACL (LF) 45.82 64.24 57.06 66.37 36.92

Photo+Painting (LF) 44.95 60.87 56.82 63.69 41.21

PACS (1.5K Samples/Domain)

Photo-Only 62.64 72.75 83.24 86.33 82.57

Photo+SACL 85.98 84.61 89.73 88.74 77.43

Photo+Painting 68.04 74.72 86.26 86.92 85.43

Photo+SACL (LF) 77.55 85.4 88.93 88.53 77.43

Photo+Painting (LF) 71.16 75.97 86.82 87.35 83.71

Table 4: Robustness without High Frequency Signals.

“LF” denotes filtered low frequency images. Photos are

always unfiltered. Filtering invisible high frequency com-

ponents mainly impacts noise robustness. (blue) Filtering

stylized photos significantly reduces noise robustness while

(red) filtering paintings has a relatively smaller effect. See

supplementary for standard deviations.

stylization relies on a combination of diversity between style-

content image pairs and learned biases to improve model

robustness (H2). We further proposed the direct use of paint-

ings as a form of perceptual data augmentation. This prop-

erty of paintings is not easily found from artforms such as

sketches or cartoons due to the fine balance of abstraction

and realism in paintings (H4). We showed that learning

from real paintings can improve robustness, with greater

gains found by accounting for the domain shift between

paintings and photos (H3). Finally, we found that models

learn different invariances from paintings and stylized pho-

tos, and that robustness can be improved by training on both

forms of data (H5,H6).

From a practical standpoint, our results suggest that

learned stylization methods should be considered over arbi-

trary style transfer methods in data augmentation pipelines.

Our results also suggest that training with paintings is

a straightforward way to improve model robustness, and

should be used if they are available.

There are interesting research directions for future explo-

ration. Work has been done to improve the controls avail-

able in style transfer or image editing models [7, 41, 9]. It

would be interesting to apply these controls in a perceptually-

grounded manner when style transfer is applied to mimic

the artistic process. In this paper, we have found that art-

forms like sketches are unable to improve model robustness.

It would be interesting to explore how coarser abstractions

found in art can be leveraged for model robustness, perhaps

by encouraging models to learn a hierarchy of invariances.
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