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Abstract

Numerical integration is a foundational technique in sci-

entific computing and is at the core of many computer vi-

sion applications. Among these applications, neural volume

rendering has recently been proposed as a new paradigm

for view synthesis, achieving photorealistic image quality.

However, a fundamental obstacle to making these methods

practical is the extreme computational and memory require-

ments caused by the required volume integrations along the

rendered rays during training and inference. Millions of

rays, each requiring hundreds of forward passes through

a neural network are needed to approximate those inte-

grations with Monte Carlo sampling. Here, we propose

automatic integration, a new framework for learning effi-

cient, closed-form solutions to integrals using coordinate-

based neural networks. For training, we instantiate the

computational graph corresponding to the derivative of the

coordinate-based network. The graph is fitted to the sig-

nal to integrate. After optimization, we reassemble the

graph to obtain a network that represents the antideriva-

tive. By the fundamental theorem of calculus, this enables

the calculation of any definite integral in two evaluations of

the network. Applying this approach to neural rendering,

we improve a tradeoff between rendering speed and image

quality: improving render times by greater than 10× with a

tradeoff of reduced image quality.

1. Introduction

Image-based rendering and novel view synthesis are

fundamental problems in computer vision and graphics

(e.g., [5, 54]). The ability to interpolate and extrapolate a

sparse set of images depicting a 3D scene has broad appli-

cations in entertainment, virtual and augmented reality, and

many other applications. Emerging neural rendering tech-

niques have recently enabled photorealistic image quality

for these tasks (see Sec. 2).

*Equal contribution.

http://www.computationalimaging.org/publications/

automatic-integration/
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Figure 1. Automatic integration for neural volume rendering. Dur-

ing training, a grad network is optimized to represent multi-view

images. At test time, we instantiate a corresponding integral net-

work to rapidly evaluate per-ray integrals through the volume.

Although state-of-the-art neural volume rendering tech-

niques offer unprecedented image quality, they are also ex-

tremely slow and memory inefficient [37]. This is a fun-

damental obstacle to making these methods practical. The

primary computational bottleneck for neural volume render-

ing is the evaluation of integrals along the rendered rays

during training and inference required by the volume ren-

dering equation [33]. Approximate integration using Monte

Carlo sampling is typically used for this purpose, requiring

hundreds of forward passes through the neural network rep-

resenting the volume for each of the millions of rays that

need to be rendered for a single frame. Here, we develop

a general and efficient framework for approximate integra-

tion. Applied to the specific problem of neural volume ren-

dering, our framework improves a tradeoff between render-

ing speed and image quality, allowing a greater than 10×
speedup in the rendering process, though with a reduction

in image quality.
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Our integration framework builds on previous work

demonstrating that coordinate-based networks (sometimes

also referred to as implicit neural representations) can repre-

sent signals (e.g., images, audio waveforms, or 3D shapes)

and their derivatives. That is, taking the derivative of the

coordinate-based network accurately models the derivative

of the original signal. This property has recently been

shown for coordinate-based networks with periodic activa-

tion functions [51], but we show that it also extends to a

family of networks with different nonlinear activation func-

tions (Sec 3.4 and supplemental).

We observe that taking the derivative of a coordinate-

based network results in a new computational graph, a “grad

network”, which shares the parameters of the original net-

work. Now, consider that we use as our network a mul-

tilayer perceptron (MLP). Taking its derivative results in a

grad network which can be trained on a signal that we wish

to integrate. By reassembling the grad network parameters

back into the original MLP, we construct a neural network

that represents the antiderivative of the signal to integrate.

This procedure results in a closed-form solution for the

antiderivative, which, by the fundamental theorem of calcu-

lus, enables the calculation of any definite integral in two

evaluations of the MLP. Inspired by techniques for auto-

matic differentiation (AutoDiff), we call this procedure au-

tomatic integration or AutoInt. Although the mechanisms

of AutoInt and AutoDiff are very different, both approaches

enable the calculation of integrals or derivatives in an auto-

mated manner that does not rely on traditional numerical

techniques, such as sampling or finite differences.

The primary benefit of AutoInt is that it allows eval-

uating arbitrary definite integrals quickly by querying the

network representing the antiderivative. This concept could

have important applications across science and engineering;

here, we focus on the specific application of neural vol-

ume rendering. For this application, efficiently evaluating

integrals amounts to accelerating rendering (i.e., inference)

times, which is crucial for making these techniques more

competitive with traditional real-time graphics pipelines.

However, our framework still requires a slow training pro-

cess to optimize a network for a given set of posed 2D im-

ages.

Specifically, our contributions include the following.

• We introduce a framework for automatic integration

that learns closed-form integral solutions. To this end,

we explore new network architectures and training

strategies.

• Using automatic integration, we propose a new model

and parameterization for neural volume rendering that

is efficient in computation and memory.

• We improve a tradeoff between neural rendering speed

and image quality, demonstrating rendering rates that

are an order of magnitude faster than previous im-

plementations [37], though with a reduction in image

quality.

2. Related Work

Neural Rendering. Over the last few years, end-to-end

differentiable computer vision pipelines have emerged as a

powerful paradigm wherein a differentiable or neural scene

representation is optimized via differentiable rendering with

posed 2D images (see e.g., [56] for a survey). Neural scene

representations often use an explicit 3D proxy geometry,

such as multi-plane [15, 36, 62] or multi-sphere [2, 4] im-

ages or a voxel grid of features [31, 52]. Explicit neural

scene representations can be rendered quickly, but they are

fundamentally limited by the large amount of memory they

consume and thus may not scale well.

As an alternative, coordinate-based networks, or im-

plicit neural representations, have been proposed as a con-

tinuous and memory-efficient approach. Here, the scene

is parameterized using neural networks, and 3D aware-

ness is often enforced through inductive biases. The abil-

ity to represent details in a scene is limited by the ca-

pacity of the network architecture rather than the resolu-

tion of a voxel grid, for example. Such representations

have been explored for modeling shape parts [16, 17], ob-

jects [3, 6, 10, 19, 25, 27, 30, 34, 35, 40, 42, 43, 49, 53, 60],

or scenes [14, 21, 29, 37, 45, 51]. Coordinate-based net-

works have also been explored in the context of generative

frameworks [7, 9, 20, 38, 39, 50].

The method closest to our application is neural radiance

fields (NeRF) [37]. NeRF is a neural rendering framework

that combines a volume represented by a coordinate-based

network with a neural volume renderer to achieve state-of-

the-art image quality for view synthesis tasks. Specifically,

NeRF uses ReLU-based multilayer perceptrons (MLPs)

with a positional encoding strategy to represent 3D scenes.

Rendering an image from such a representation is done

by evaluating the volume rendering equation [33], which

requires integrating along rays passing through the neural

volume parameterized by the MLP. This integration is per-

formed using Monte Carlo sampling, which requires hun-

dreds of forward passes through the MLP for each ray.

However, this procedure is extremely slow, requiring days

to train a representation of a single scene from multi-view

images. Rendering a frame from a pre-optimized represen-

tation requires tens of seconds to minutes.

Here, we leverage automatic integration, or AutoInt, to

significantly speed up the evaluation of integrals along rays.

AutoInt reduces the number of network queries required to

evaluate integrals (e.g., using Monte Carlo sampling) from

hundreds to just two, greatly speeding up inference for neu-

ral rendering.
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Figure 2. AutoInt pipeline. After (1) defining an integral network

architecture, (2) AutoInt builds the corresponding grad network,

which is (3) optimized to represent a function. (4) Definite in-

tegrals can then be computed by evaluating the integral network,

which shares parameters with its grad network.

Integration Techniques. In general, integration is much

more challenging than differentiation. Whereas automatic

differentiation primarily builds on the chain rule, there are

many different strategies for integration, including vari-

able substitution, integration by parts, partial fractions, etc.

Heuristics can be used to choose one or a combination of

these strategies for any specific problem. Closed-form so-

lutions to finding general antiderivatives exist only for a rel-

atively small class of functions and, when possible, involve

a rather complex algorithm, such as the Risch or Risch-

Norman algorithm [41, 47, 48]. Perhaps the most common

approach to computing integrals in practice is numerical in-

tegration, for example using Riemann sums, quadratures, or

Monte-Carlo methods [11]. In these sampling-based meth-

ods, the number of samples trades off accuracy for runtime.

Since neural networks are universal function approxima-

tors, and are themselves functions, they can also be inte-

grated analytically. Previous work has explored theory and

connections between shallow neural networks and integral

formulations for function approximation [12, 22]. Other

work has derived closed-form solutions for integrals of sim-

ple single-layer or two-layer neural networks [55, 58]. As

we shall demonstrate, our work is not limited to a fixed

number of layers or a specific architecture. Instead, we

directly train a grad network architecture for which the in-

tegral network is known by construction.

3. AutoInt for Neural Integration

In this section, we introduce a fundamentally new ap-

proach to compute and evaluate antiderivatives and definite

integrals of coordinate-based neural networks.

3.1. Principles

We consider a coordinate-based network, i.e., a neural

network with parameters θ mapping low-dimensional in-

put coordinates to a low-dimensional output Φθ : Rdin 7→
R

dout . We assume this network admits a (sub-)gradient

with respect to its input x ∈ R
din , and we denote by

Ψi
θ = ∂Φθ/∂xi its derivative with respect to the coordinate

xi. Then, by the fundamental theorem of calculus we have

that

Φθ(x) =

∫

∂Φθ

∂xi

(x) dxi =

∫

Ψi
θ(x) dxi. (1)

This equation relates the coordinate-based network Φθ to its

partial derivative Ψi
θ and, hence, Φθ is an antiderivative of

Ψi
θ.

A key idea is that the partial derivative Ψi
θ is it-

self a coordinate-based network, mapping the same low-

dimensional input coordinates x ∈ R
din to the same low-

dimensional output space Rdout . In other words, Ψi
θ is a

different neural network that shares its parameters θ with Φθ

while also satisfying Equation 1. Now, rather than optimiz-

ing the coordinate-based network Φθ, we optimize Ψi
θ to

represent a target signal, and we reassemble the optimized

parameters (i.e., weights and biases) θ to form Φθ.

As a result, Φθ is a network that represents an antideriva-

tive of Ψi
θ. We call this procedure of training Ψi

θ and re-

assembling θ to construct the antiderivative automatic inte-

gration. How to reassemble θ depends on the network ar-

chitecture used for Φθ, and is addressed in the next section.

3.2. The Integral and Grad networks

Coordinate-based neural networks are usually formed

from multilayer perceptron (MLP), or fully connected, ar-

chitectures:

Φθ(x) = Wn(φn−1 ◦ φn−2 ◦ · · · ◦ φ0)(x), (2)

with φk : RMk 7→ R
Nk being the k-th layer of the neural

network defined as φk(y) = NLk(Wky + bk) using the

parameters θ = {Wk ∈ R
Nk×Mk ,bk ∈ R

Mk , ∀k} and the

nonlinearity NL, which is a function applied point-wise to

all the elements of a vector.

The computational graph of a 3-hidden-layer MLP rep-

resenting Φθ is shown in Figure 2. Operations are indicated

as nodes and dependencies as directed edges. Here, the

arrows of the directed edges point towards nodes that must

be computed first.

For this MLP, the form of the network Ψi
θ = ∂Φθ/∂xi

can be found using the chain rule

Ψi
θ(x) = φ̂n−1 ◦ (φn−2 ◦ . . . φ0)(x)⊙ . . .

· · · ⊙ φ̂1 ◦ φ0(x)⊙W0 ei, (3)

where ⊙ indicates the Hadamard product, φ̂k(y) =
WT

k NL
′
k−1

(Wk−1y+bk−1) and ei ∈ R
din is the unit vec-

tor that has 0’s everywhere but at the i-th component. The
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Figure 3. AutoInt for computed tomography. Left: illustration of the parameterization. Center: sinograms computed for integral networks

using different activation functions. In all cases, the ground truth (GT) sinogram is subsampled 8× and the optimized integral network is

sampled to interpolate missing measurements. The Swish activation performs best in terms of peak signal-to-noise ratio (PSNR). Right: a

1D scanline of the sinogram shows that Swish interpolates missing data best while sine activations [51] tend to overfit the measurements.

corresponding computational graph is shown in Figure 2.

As we noted, despite having a different architecture (and

vastly different number of nodes) the two networks share

the same parameters. We refer to the network associated

with Φθ as the integral network and the neural network as-

sociated with Ψi
θ as the grad network. Homologous nodes

in their graphs are shown in the same color. This color

scheme explicitly shows how the grad network parameters

are reassembled to create the integral network after training.

3.3. Evaluating Antiderivatives & Definite Integrals

To compute the antiderivative and definite integrals of

a function f in the AutoInt framework, one first chooses

the specifics of the MLP architecture (number of layers,

number of features, type of nonlinearities) for an integral

network Φθ. The grad network Ψi
θ is then instantiated from

this integral network based on AutoDiff. In practice, we

developed a custom AutoDiff framework that traces the in-

tegral network and explicitly instantiates the corresponding

grad network while maintaining the shared parameters (ad-

ditional details in the supplemental). Once instantiated, pa-

rameters of the grad network are optimized to fit a signal

of interest using conventional AutoDiff and optimization

tools [44]. Specifically we optimize a loss of the form

θ∗ = arg minθ L
(

Ψi
θ(x), f(x)

)

. (4)

Here, L is a cost function that aims at penalizing discrepan-

cies between the target signal f(x) we wish to integrate and

the coordinate-based network Ψi
θ.

Once trained, the grad network approximates the signal,

that is Ψi
θ∗ ≈ f(x), ∀x. Therefore, the antiderivative of f

can be calculated as
∫

f(x) dxi ≈

∫

Ψi
θ∗(x) dxi = Φθ∗(x). (5)

This corresponds to evaluating the integral network at x

using weights θ∗. Furthermore, any definite integral of the

signal f can be calculated using only two evaluations of Φθ,

according to the Newton–Leibniz formula

∫

b

a

f(x) dxi = Φθ(b)− Φθ(a). (6)

We also note that AutoInt extends to integrating high-

dimensional signals using a generalized fundamental the-

orem of calculus, which we describe in the supplemental.

3.4. Example in Computed Tomography

In tomography, integrals are at the core of the imaging

model: measurements are line integrals of the absorption of

a medium along rays that go through it. In particular, in a

parallel beam setup, assuming a 2D medium of absorption

f(x, y) ∈ R+, measurements can be modeled as

s(ρ, α) =

∫ tf

tn

f (x(t), y(t)) dt, (7)

and (x, y) is on the ray (ρ, α) ∈ [−1, 1]×[0, π] by satisfying

x(t) cos(α) + y(t) sin(α) = ρ with α being the orientation

of the ray and ρ its eccentricity with respect to the origin

as shown in Figure 3. The measurement s is called a sino-

gram, and this particular integral is referred to as the Radon

transform of f [24].

The inverse problem of computed tomography involves

recovering the absorption f given a sinogram. Here, for

illustrative purposes, we will look at a tomography problem

in which a grad network is trained on a sparse set of mea-

surements and the integral network is evaluated to produce

unseen ones. Sparse-view tomography is a standard recon-

struction problem [18], and this setup is analogous to the

novel view synthesis problem we solve in Section 4.

We consider a dataset of measurements D =
{(ρi, αi, s(ρi, αi)}i<D corresponding to D sparsely sam-

pled rays. We train a grad network using the AutoInt frame-

work. For this purpose, we instantiate a grad network Ψθ

whose input is a tuple (ρ, α, t). It is trained to match the

dataset of measurements

θ∗ = arg minθ

∑

i<D

∥

∥

∥

( 1

T

∑

tj<T

Ψt
θ(ρi, αi, tj)

)

−s(ρi, αi)
∥

∥

∥

2

2

.

(8)

Thus, at training time, the grad network is evaluated T times

in a Monte Carlo fashion with tj ∼ U([tn, tf ]). At infer-

ence, just two evaluations of Φθ∗ yield the integral

s(ρ, α) = Φθ∗(ρ, α, tf )− Φθ∗(ρ, α, tn). (9)
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Results in Figure 3 show that the two evaluations of the

integral network Φθ∗ can faithfully reproduce supervised

measurements and generalize to unseen data. Generaliza-

tion, however depends on the type of nonlinearity used. We

show that Swish [46] with normalized positional encoding

(details in Sec. 5) generalizes well, and SIREN [51] fits the

measurements better but fails to generalize to unseen views.

Note that both the nonlinearity NL and its derivative

NL
′ appear in the grad network architectures (Eq. (3) and

Figure 2). This implies that integral networks with ReLU

nonlinearities have step functions appearing in the grad

network, possibly making training Ψθ difficult because of

nodes with (constant) zero-valued derivatives. We explore

several other nonlinearities here (with additional details in

the supplemental), and show that Swish heuristically per-

forms best in the grad networks used in our application. Yet,

we believe the study of nonlinearities in grad networks to be

an important avenue for future work.

4. Neural Volume Rendering

Combining volume rendering techniques with

coordinate-based networks has proved to be a powerful

technique for neural rendering and view synthesis [37].

Here, we briefly overview volume rendering and describe

an approximate volume rendering model that enables our

efficient rendering approach using AutoInt.

4.1. Volume Rendering

Classical volume rendering techniques are derived from

the radiative transfer equation [8] with an assumption

of minimal scattering in an absorptive and emissive

medium [13, 33]. We adopt a rendering model based on

tracing rays through the volume [23, 37], where the emis-

sion and absorption along camera rays produce color values

that are assigned to rendered pixels.

The volume itself is represented as a high-dimensional

function parameterized by position, x ∈ R
3, and view-

ing direction d. We also define the camera rays that tra-

verse the volume from an origin point o to a ray position

r(t) = o + td. At each position in the volume, an ab-

sorption coefficient, σ ∈ R+, gives the probability per dif-

ferential unit length that a ray is absorbed (i.e., terminates)

upon interaction with an infinitesimal particle. Finally, an

emissive radiance field c = (r, g, b) ∈ [0, 1]3, describes the

color of emitted light at each point in space in all directions.

Rendering from the volume requires integrating the

emissive radiance along the ray while also accounting for

absorption. The transmittance T describes the net reduction

from absorption from the ray origin to the ray position r(t),
and is given as

T (t) = exp

(

−

∫ t

tn

σ
(

r(s)
)

ds

)

, (10)

where tn indicates a near bound along the ray. With this

expression, we can define the volume rendering equation

(VRE), which describes the color C of a rendered camera

ray.

C(r) =

∫ tf

tn

T (t)σ(r(t)) c(r(t),d) dt. (11)

Conventionally, the VRE is computed numerically by Rie-

mann sums, quadratures, or Monte-Carlo methods [11],

whose accuracy thus largely depends on the number of sam-

ples taken along the ray.

4.2. Approximate Volume Rendering for Automatic
Integration

Automatic integration allows us to efficiently evaluate

definite integrals using a closed-form solution for the an-

tiderivative. However, the VRE cannot be directly evaluated

with AutoInt because it consists of multiple nested integra-

tions: the integration of radiance along the ray weighted by

integrals of cumulative transmittance. We therefore choose

to approximate this integral in piecewise sections that can

each be efficiently evaluated using AutoInt. For N piece-

wise sections along a ray, we give the approximate VRE

and transmittance as

C̃(r) =

N
∑

i=1

σ̄i c̄iT̄i δi, T̄i = exp



−

i−1
∑

j=1

σ̄jδj



 , (12)

where

σ̄i = δ−1

i

∫ ti

ti−1

σ(t) dt and c̄i = δ−1

i

∫ ti

ti−1

c(t) dt,

and δi = ti − ti−1 is the length of each piecewise interval

along the ray. Equation 12 can also be viewed as a repeated

alpha compositing operation with alpha values of σ̄iδi. Af-

ter some simplification and substitution into Equation 12

(see supplemental), we have the following expression for

the piecewise VRE:

C̃(r) =

N
∑

i=1

δ−1

i

∫ ti

ti−1

σ(t) dt ·

∫ ti

ti−1

c(t) dt (13)

·
i−1
∏

j=1

exp

(

−

∫ tj

tj−1

σ(s) ds

)

.

While this piecewise expression is only an approximation to

the full VRE, it enables us to use AutoInt to efficiently eval-

uate each piecewise integral over absorption and radiance.

In practice, there is a tradeoff between improved computa-

tional efficiency and degraded accuracy of the approxima-

tion as the value of N decreases. We evaluate this tradeoff

in the context of volume rendering and learned novel view

synthesis in Sec. 6.
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Figure 4. Volume rendering pipeline. During training, the grad networks representing volume density σ and color c are optimized for a

given set of multi-view images (top left). For inference, the grad networks’ parameters are reassembled to form the integral networks,

which represent antiderivatives that can be efficiently evaluated to calculate ray integrals through the volume (bottom left). A sampling

network predicts the locations of piecewise sections used for evaluating the definite integrals (right).

5. Optimization Framework

We evaluate the piecewise VRE introduced in the previ-

ous section using an optimization framework overviewed in

Figure 4. At the core of the framework are two MLPs that

are used to compute integrals over values of σ and c as we

detail in the following.

Network Parameterization. Rendering an image from

the high-dimensional volume represented by the MLPs re-

quires evaluating integrals along each ray r(t) in the direc-

tion of t. Thus, the grad network should represent ∂Φθ/∂t,
the partial derivative of the integral network with respect to

the ray parameter. In practice, the networks take as input

the values that define each ray: o, t, and d. Then, positions

along the ray are calculated as x = o+td and passed to the

initial layers of the networks together with d. With this de-

pendency on t, we use our custom AutoDiff implementation

to trace computation through the integral network, define

the computational graph that computes the partial derivative

with respect to t, and instantiate the grad network.

Grad Network Positional Encoding. As demonstrated

by Mildenhall et al. [37], a positional encoding on the in-

put coordinates to the network can significantly improve

the ability of a network to render fine details. We adopt

a similar scheme, where each input coordinate is mapped

into a higher dimensional space as using a function γ(p) :
R 7→ R

2L defined as

γ(p) = (sin(ω0p), cos(ω0p), · · · , sin(ωL−1p), cos(ωL−1p)),
(14)

where ωi = 2iπ and L controls the number of frequen-

cies used to encode each input. We find that using this

scheme directly in the grad network produces poor re-

sults because it introduces an exponentially increasing am-

plitude scaling into the coordinate encoding. This can

easily be seen by calculating the derivative ∂γ/∂p =
(· · ·ωi cos(ωip),−ωi sin(ωip) · · · ). Instead, we use a nor-

malized version of the positional encoding for the integral

network, which improves performance when training the

grad network:

γ̄(p) =
(

· · · , ω−1

i sin(ωip), ω
−1

i cos(ωip), · · ·
)

. (15)

Predictive Sampling. While AutoInt is used at inference

time, at training time, the grad network is optimized by

evaluating the piecewise integrals of Equation 13 using a

quadrature rule discussed by Max [33]:

C̃(r) =

N
∑

i=1

T̄i (1− exp(−σ̄iδi)) c̄i . (16)

We use Monte Carlo sampling to evaluate the integrals σ̄i

and c̄i by querying the networks at many positions within

each interval δi.
However, some intervals δi along the ray contribute more

to a rendered pixel than others. Thus, assuming we use

the same number of samples per interval, we can improve

sample efficiency by strategically adjusting the length of

these intervals to place more samples in positions with large

variations in σ and c.

To this end, we introduce a small sampling net-

work (illustrated in Figure 4), which is implemented

as an MLP S(o,d) that predicts interval lengths δ ∈
R

N . Then, we calculate stratified samples along the

ray by subdividing each interval δi into M bins and

calculating samples ti,j , j = 1, . . . ,M as ti,j ∼
U
(

ti−1 +
j−1

M
δi, ti−1 +

j
M
δi
)

.

14561



#sections N=8 #sections N=16 #sections N=32

23.35dB 23.92dB 24.59dB 25.16dB 26.04dB 26.51dB

Figure 5. Ablation studies. A view of the Lego scene is shown with

a varying number of intervals (N = {8, 16, 32}) without (left half

of the images) and with (right half) the sampling network. PSNR

is computed on the 200 test set views.

Fast Grad Network Evaluation. AutoInt can be imple-

mented directly in popular optimization frameworks (e.g.,

PyTorch [44], Tensorflow [1]); however, training the grad

network is generally computationally slow and memory in-

efficient. These inefficiencies stem from the two step pro-

cedure required to compute the grad network output at each

training iteration: (1) a forward pass through the integral

network is computed and then (2) AutoDiff calculates the

derivative of the output with respect to the input variable

of integration. Instead, we implemented a custom AutoDiff

framework on top of PyTorch that parses a given integral

network and explicitly instantiates the grad network mod-

ules with weight sharing (see Figure 2). Then, we evaluate

and train the grad network directly, without the overhead

of the additional per-iteration forward pass and derivative

computation. Compared to the two-step procedure outlined

above, our custom framework improves per-iteration train-

ing speed by a factor of 1.8 and reduces memory consump-

tion by 15% for the volume rendering application. More

details about our AutoInt implementation can be found in

the supplemental, and our code is publicly available1.

Implementation Details. In our framework, a volume

representation is optimized separately for each rendered

scene. To optimize the grad networks, we require a collec-

tion of RGB images taken of the scene from varying camera

positions, and we assume that the camera poses and intrinsic

parameters are known. At training time, we randomly sam-

ple images from the training dataset, and from each image

we randomly sample a number of rays. Then, we optimize

the network to minimize the loss function

L =
∑

r∈R

‖C̃(r)−C(r)‖22, (17)

where C is the ground truth pixel value for the selected ray.

In our implementation, we train the networks using Py-

Torch and the Adam optimizer [26] with a learning rate of

5 × 10−4. The networks representing volume density and

color each have 8 hidden layers with 256 hidden units, we

use a batch size of 4 with 1024 rays sampled from each

image, and we decay the learning rate by a factor of 0.2

1https : / / github . com / computational - imaging /

automatic-integration

NeRF
Neural

Volumes
AutoInt (N=#sections)

N = 8 N = 16 N = 32

PSNR (dB) 31.0 26.1 25.6 26.0 26.8

Memory (GB) 15.6 10.4 15.5 15.0 15.5

Runtime (s/frame) 30 0.3 2.6 4.8 9.3

Table 1. NeRF [37] achieves the best image quality measured by

average peak signal-to-noise ratio (PSNR). Neural Volumes [31] is

faster and slightly more memory efficient, but suffers from lower

image quality. AutoInt allows us to approximate the NeRF solu-

tion with a tradeoff between image quality and runtime defined by

the number of intervals used by our sampling network. Results are

aggregated over the 8 Blender scenes of the NeRF dataset.

VRE Network Type Samples/Forward Passes PSNR (dB) ↑ SSIM ↑ LPIPS ↓

Piecewise
(approx.)

Grad MLP
(proposed)

9, N = 8 25.09 0.900 0.175

17, N = 16 25.48 0.905 0.171

33, N = 32 27.26 0.929 0.135

Piecewise
(approx.) Standard MLP

128, N = 8 29.21 0.952 0.052

128, N = 16 29.97 0.960 0.047

128, N = 32 29.68 0.959 0.049

Full (exact) Grad MLP 128 27.95 0.936 0.082

NeRF

128 30.68 0.968 0.045

32 23.30 0.920 0.093

8 14.62 0.761 0.258

Table 2. Comparison of performance on the Lego scene for dif-

ferent network configurations. We report PSNR/SSIM [59] and

LPIPS [61]. AutoInt uses the piecewise VRE and a grad network

(top rows), and the number of forward passes required at inference

depends on the number of piecewise sections (N ). We also evalu-

ate using a fixed number of samples with the piecewise VRE and

a standard MLP (i.e., Monte Carlo sampling, no grad network),

as well as using the full VRE with a grad network. Finally we

compare to NeRF [37] using varying samples at inference, which

reduces computational requirements.

every 105 iterations. Training and inference are performed

using NVIDIA V100 GPUs. For the sampling network, we

evaluate using M = 128/N samples within each piecewise

interval for N ∈ {2, 4, 8, 16, 32, 64} (see Figure 5, supple-

mental) and find that using 8, 16, or 32 piecewise intervals

produces acceptable results while achieving a significant

computational acceleration with AutoInt. Finally, for the

positional encoding, we use L = 10 and L = 4 for x and

d, respectively.

6. Results

We evaluate AutoInt for volume rendering on a syn-

thetic dataset of scenes with challenging geometries and

reflectance properties. We demonstrate that the approach

allows an improved tradeoff between image quality and ren-

dering speed for neural volume rendering. Rendering times

are improved by greater than 10× compared to the state-of-

the-art [37], though at reduced image quality.

Our training dataset consists of eight objects, each ren-

dered from 100 different camera positions using the Blender

Cycles engine [37]. For the test set, we evaluate on an

additional 200 images. We compare AutoInt to two other

baselines: Neural Radiance Fields (NeRF) [37] and Neural
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Figure 6. Qualitative results. We compare the performance of Neural Volumes [31] and NeRF [37] to AutoInt using N = 8 and N = 32

in our approximate volume rendering equation. AutoInt accurately captures view-dependent effects like specular reflections (green boxes)

and reduces render times by greater than 10× relative to NeRF, though with some reduction in overall image quality.

Volumes [31]. NeRF uses a similar architecture and Monte

Carlo sampling with the full volume rendering model, rather

than our piecewise approximation and AutoInt. Neural Vol-

umes is a voxel-based method that encodes a deep voxel

grid representation of a scene using a convolutional neural

network. Novel views are rendered by applying a learned

warping operator to the voxel grid and sampling voxel val-

ues by marching rays from the camera position.

In Table 1 we report the peak signal-to-noise ratio

(PSNR) averaged across all scenes and test images. AutoInt

outperforms Neural Volumes quantitatively, while achiev-

ing a greater than 10× improvement in render time relative

to NeRF, though with a tradeoff in image quality. Increas-

ing the number of piecewise sections in the approximate

VRE improves render quality at the cost of computation.

We evaluate the effect of the sampling network and the

number of sections in the approximate VRE in Figure 5 for

the Lego scene. Using the sampling network improves per-

formance and sample efficiency by allocating more sections

in regions with large variations in the volume density.

In Table 2 we show the effect of the VRE approximation

and grad network architecture on render quality of the Lego

scene. Using the full VRE achieves similar performance

to the approximate, piecewise VRE with 32 sections. We

attribute most of the difference in performance between our

method and NeRF to the regularized, tree-like structure of

the grad network, which is constrained by weight sharing

between the branches (see Figure 2). While evaluating

NeRF with fewer samples along each ray reduces compu-

tation, rendering quality degrades significantly compared to

using AutoInt with the same number of samples.

We also show qualitative results in Figure 6 for the Mate-

rials and Drums scenes. Again, the quality of the rendered

images improves as the number of sections increases. In the

Materials scene (Figure 6), the proposed technique exhibits

fewer artifacts compared to Neural Volumes. AutoInt also

shows improved modeling of view-dependent effects in the

Drums scene relative to Neural Volumes and NeRF (e.g.,

specular highlights on the symbols). We show additional

results on captured scenes from the Local Light Field Fu-

sion and DeepVoxels datasets [36, 52] in the supplemental.

7. Discussion

In this work, we introduce a new framework for numer-

ical integration in the context of coordinate-based neural

networks. Applied to neural volume rendering, AutoInt en-

ables improvements to computational efficiency by learning

closed-form solutions to integrals. Although these compu-

tational speedups currently come with a tradeoff to image

quality, the method takes steps towards efficient learned in-

tegration using deep network architectures. Our approach is

analogous to conventional methods for fast evaluation of the

VRE; for example, methods based on shear-warping [28]

and the Fourier projection-slice theorem [32, 57]. Similar

to our method, these techniques use approximations (e.g.,

with sampling and interpolation) that trade off image qual-

ity with computationally efficient rendering. Additionally,

we believe our approach is compatible with recent work that

aims to speed up volume rendering by pruning areas of the

volume that do not contain the rendered object [29].

A key idea of AutoInt is that an integral network can

be automatically created after training a corresponding grad

network. Thus, exploring new grad network architectures

that enable fast training with rapid convergence is an im-

portant and promising direction for future work. Moreover,

we believe that AutoInt will be of interest to a wide array

of application areas beyond computer vision, especially for

problems related to inverse rendering, sparse-view tomog-

raphy, and compressive sensing.
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