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Abstract

Image composition plays a common but important role

in photo editing. To acquire photo-realistic composite im-

ages, one must adjust the appearance and visual style of

the foreground to be compatible with the background. Ex-

isting deep learning methods for harmonizing composite

images directly learn an image mapping network from the

composite to real one, without explicit exploration on vi-

sual style consistency between the background and the fore-

ground images. To ensure the visual style consistency be-

tween the foreground and the background, in this paper, we

treat image harmonization as a style transfer problem. In

particular, we propose a simple yet effective Region-aware

Adaptive Instance Normalization (RAIN) module, which ex-

plicitly formulates the visual style from the background and

adaptively applies them to the foreground. With our set-

tings, our RAIN module can be used as a drop-in module for

existing image harmonization networks and is able to bring

significant improvements. Extensive experiments on the ex-

isting image harmonization benchmark datasets shows the

superior capability of the proposed method. Code is avail-

able at https://github.com/junleen/RainNet.

1. Introduction

Image composition is one of the most common opera-

tions in image editing [39, 3] and data augmentation [6, 42],

etc. However, generating a realistic composite image by

taking an object from one image and combining it with a

new background image usually requires professional com-

positors to adjust the appearance of the foreground objects

by photo editing software like Adobe Photoshop, and ensure

the realism of the generated image. To alleviate this burden,

image harmonization is introduced for adjusting the fore-

ground and making it seamlessly integrated into the new im-

age with less human involvement, especially for non-expert

users.

However, what makes a composite image appear more

realistic? In this paper, we present a new perspective for
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Figure 1. Illustration of our motivation. If we want to put a police

car into these images with different visual style , we must ensure

that the car is compatible with the background images (small-sized

images with red boundaries in the top row). Simple cut-and-paste

operations introduce unrealistic results (top row). Our method

aims to adaptively learn high-level visual style from different back-

grounds and produce harmonious composite images (bottom row).

image harmonization. Let us take Fig. 1 for example. Fig. 1

shows three different real photos (small-sized images with

red border) that hold different visual properties. When an

unbefitting foreground object with special visual properties

is pasted into a new image with incompatible visual fea-

tures, we can easily distinguish it from real photos. This

is an unsolved problem and has emerged for years, which

we call visual style discrepancy. Specifically, in this paper,

we define the visual style of an image as visual properties

including illumination, color temperature, saturation, hue,

texture etc., which varies from image to image. To make

a composite image look more realistic, we must ensure a

more consistent visual style between the foreground and the

background.

Abundant image harmonization approaches have been

proposed for improving the realism of composite images.

Traditional methods address the harmonization problem by

transferring statistics of hand-crafted features between fore-

ground and background regions, such as color [26, 27, 39,

30]. However, these methods only work in simple cases
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where the foreground image is already consistent with the

background image. Recently, more deep learning-based

methods [2, 3, 32, 43] have been proposed for generating

harmonious images in an end-to-end manner. Zhu et al. [43]

propose to adopt a discriminative model to predict the real-

ism of a compsite image and assist optimization of color

adjustment. Tsai et al. [32] propose an end-to-end learning

approach for image harmonization while only constraining

semantic information learning in the encoder. Cun et al. [3]

adopt a spatial-separated attention module to enforce the

network to learn the foreground and background features

separately, failing to ensure the style consistency between

these two parts. To sum up, none of these methods really

consider the realism from the perspective of visual style

consistency. Cong et al. [2] propose to use a domain ver-

ification discriminator and adversarial loss [10] to improve

domain-consistency between foreground and background

regions but neglect to explicitly transform the foreground

features in the generator. However, performance improve-

ment brought by such an auxiliary discriminator is limited

(i.e., 0.27dB for PSNR, which is revealed in [2]).

To address these issues, in this work, we reframe image

harmonization as a background-to-foreground style trans-

fer problem, where we render the foreground image to hold

similar visual style of the background image. Taking style

guidance from background information is of great impor-

tance because the foreground image should be converted to

own different appearances when pasted into different back-

ground images (as illustrated in Fig. 1). To generate style-

consistent and realistic-looking composite images, we ex-

pect a unified transferring operation to adaptively adjust the

style of the foreground objects to be in perfect harmony with

new background images even collected in different envi-

ronments. Therefore, in this work, we propose a learnable

layer, named Region-aware Adaptive Instance Normaliza-

tion (RAIN) layer, to learn the style from background im-

ages and apply it to the foreground objects. By taking con-

volutional features and the foreground mask as input, the

RAIN layer aligns the channel-wise mean and variance of

the foreground activation to match those learned from the

background. The details of the proposed RAIN module are

presented in Fig. 3. It is worth mentioning that our RAIN

layer can be easily applied to existing image harmonization

networks and encourage performance improvements.

The contributions of this work are as follows. 1) To the

best of our knowledge, we are the first to introduce the style

concept of background images and regard the image har-

monization task as a style transferring problem. 2) We pro-

pose a novel Region-aware Adaptive Instance Normaliza-

tion (RAIN) method, which captures the style information

only from the background features and applies it to the fore-

ground for image harmonization tasks. Our RAIN module

is simple yet effective and can be used as a plug-and-play

module for existing image harmonization networks to en-

hance their performance. 3) Extensive experiments demon-

strate that our method surpasses the state-of-the-art methods

by a large margin.

2. Related work

Image harmonization aims to adjust a foreground image to

seamlessly match a background image. Traditional meth-

ods mainly focus on matching the appearance of the fore-

ground with background regions based on handful of hand-

crafted heuristics, such as color statistics [27, 26, 39], gra-

dient information [15, 25, 31], multi-scale statistical fea-

tures [30], semantic information [32, 33]. These methods

directly match appearance to harmonize a composite image

while paying less attention to visual realism. Johnson et

al. [17] introduce a data-driven approach to improve the re-

alism of computer-generated images by retrieving a small

number of real images from an image dataset and transfer

the features of color, tone, texture, etc. Lalonde et al. [19]

predict the realism of images by learning global and local

statistics from natural images. With the advances of deep

learning, more deep learning-based methods [3, 2, 32, 43]

draw much attention due to their impressive results. Dif-

ferent from these works, we start from the perspective of

background-to-foreground style transfer, and push the limit

of image harmonization performance by introducing a novel

RAIN module, which separates our approach from previous

methods.

Neural style transfer is designed to render a photo with

special visual style captured from artistic creations while

retaining the content information from the original image.

Earlier style transfer methods concentrate on texture syn-

thesis or transfer [7, 8, 20, 34]. Gatys et al. [9] first in-

troduce a method to match feature statistics in pre-trained

convolutional networks and demonstrate impressive artistic

style transfer. To achieve the goal of real-time style transfer,

Johnson et al. [16] propose a novel feed-forward perceptual

loss with a pre-trained VGG network [29]. Later, Huang et

al. [11] propose Adaptive Instance Normalization (AdaIN)

to achieve arbitrary style transfer from the perspective of

feature normalization. Besides AdaIN, other normalization

methods [5, 35] were also proposed for fast stylization and

later adopted in various vision tasks [12, 21, 22, 41, 38].

Normalization layers include unconditional normalization

(Batch Normalization (BN) [13], Instance Normalization

(IN) [35], Layer Normalization (LN) [1], Group Normaliza-

tion (GN) [37], etc.) and conditional normalization (Con-

ditional Batch Normalization (CBN) [4], Conditional In-

stance Normalization (CIN) [5], SPADE [23], Region Nor-

malization (RN) [40], and AdaIN [11], etc.). Note that un-

conditional normalization aligns the mean and variance of

feaures without guidance from external data. On the con-
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Trans. Conv.-TanhReLU-Trans. Conv.-RAIN Attention BlockLReLU-Conv.-INConv.

Figure 2. Overview of the proposed generator. We provide a detailed structure of our RainNet to ensure better understanding and repro-

ducibility. The bottom legend: Conv.= Convolution, Trans. = Transposed.

trary, conditional normalization [4, 5, 11, 23] requires ex-

ternal data to provide affine parameters, which embed new

information from the external data. SPADE [23] applies

spatially-varying transformations from semantic masks for

image synthesis, which cannot be used in our image har-

monization task due to the irregular shapes of foreground

objects. RN [40] is designed for image inpainting which

aims to alleviate the mean and variance shift problem but

it does not consider the semantic connection between the

background and the foreground. AdaIN [11] is proposed for

real-time image stylization which uses a pre-trained VGG

network to extract style code. However, it is not practi-

cal for our task because the style defined in this work is

considered to be consistent with image realism instead of

texture. Besides, the background image with one region re-

moved cannot be extracted by a pre-trained network, which

will introduce new problems of mean and variance shift. In

this paper, we seek ways to establish a connection between

the background and the foreground. Therefore, we regard

image harmonization as a new style transfer task in which

we transfer style from the background to the foreground in-

stance.

3. Our approach

Our goal is to learn a mapping network for the fore-

ground image and ensure that the foreground image is com-

patible with the background. To achieve this goal, we in-

troduce our Region-aware Adaptive Instance Normalization

(RAIN) for improving the performance of basic networks.

3.1. Problem formulation

We consider a foreground image and a background im-

age as If and Ib respectively. The foreground mask is de-

noted by M , which indicates the region to be harmonized

in the composite image Ic. Accordingly, the background

mask is M̄ = 1 − M . The object composition process is

formulated as Ic = M ◦ If + (1 − M) ◦ Ib, where ◦ is

the Hadamard product. In this paper, we define the harmo-

nization model as generator G, and the harmonized image

as Î = G(Ic,M), where G is a learnable model that we

expect to optimize for making Î close to the ground truth

image I by ‖G(Ic,M)− I‖1.

3.2. Region­aware Adaptive Instance Normaliza­
tion (RAIN)

The input of our normalization module consists of two

parts, i.e., the foreground mask, and the convolutional fea-

tures (see in Fig. 3). Without loss of generality, we take

the RAIN module in the i-th layer of G for example. Let

F i ∈ R
Hi

×W i
×Ci

be the activations and M i ∈ R
Hi

×W i

be the resized foreground mask in the i-th layer, where

Hi,W i, Ci denote the height, width, and number of chan-

nels of feature F i, respectively. We propose a simple yet ef-

fective normalizing method called Region-aware Adaptive

Instance Normalization (RAIN).

As depicted in Fig. 3, we first multiply the input features

F i by the foreground mask and its corresponding back-

ground mask. Then we normalize the foreground features

by IN [35], and then affine the normalized features with

learned scale and bias from the background features. The

new activation value F̄ i at site (h,w, c) in the foreground

region is computed by:

F̄ i
h,w,c = γi

c

F i
h,w,c − µi

c

σi
c

+ βi
c, (1)

where µi
c and σi

c are the channel-wise mean and variance of

the foreground feature in i-th layer:

µi
c =

1

#{M i = 1}

∑

h,w

F i
h,w,c ◦M

i
h,w, (2)
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Figure 3. Our RAIN module takes the input feature F i and resized

mask M i as input. Then we obtain the statistical style parameters

γi and βi from only background features. The produced γi and

βi are multiplied and added to the normalized foreground features

in a channel-wise manner.

σi
c =

√

1

#{M i = 1}

∑

h,w

(F i
h,w,c ◦M

i
h,w − µi

c)
2 + ǫ. (3)

The expression #{x = k} means the number of pixels

which equal to value k in x. The γi
c and βi

c are the mean

and standard deviation of the activations of the background

in channel c of layer i:

γi
c =

1

#{M̄ i = 1}

∑

h,w

F i
h,w,c ◦ M̄

i
h,w (4)

βi
c =

√

1

#{M̄ i = 1}

∑

h,w

(F i
h,w,c ◦ M̄

i
h,w − γi

c)
2 + ǫ (5)

where M̄ i is the background mask in i-th layer.

Our method is different from AdaIN in two aspects.

First, our method focuses on transferring the visual style

from background to foreground only within the same image

while AdaIN considers the style of features from another

whole external image. Second, AdaIN uses a pre-trained

VGG network to extract and calculate the statistics of the

features, which cannot be directly employed in our task.

Contrarily, our RAIN is designed and trained for image har-

monization, such that the style parameters are better fitted

for the foreground adjustment operations. Moreover, com-

prehensive experimental results demonstrate the efficacy of

the proposed method.

RainNet. We take a simple U-Net [28, 14] alike network

without any feature normalization layers as our basic net-

work architecture. Following [2, 3], in this work, we add

three attention blocks in the decoder part for our Baseline

network. Theoretically, our RAIN module can be applied in

any layers of the basic network. In this work, we train our

baseline with different normalization methods and exploit

the design strategy of implementing our RAIN module to

obtain the best model, denoted as RainNet. The structure of

our RainNet is depicted in Fig. 2.

Why is RAIN effective? Briefly, RAIN helps the model

to capture the visual style information from the background

image and inject it into the foreground, so that the gener-

ated foreground objects are more compatible with the new

background.

Consider a simple case with Region Normalization

(RN) [40] that performs feature normalization for the fore-

ground features and the background features separately. In

each normalization layer, the background features will not

provide any guidance for the model to transform the fore-

ground features. Consequently, the model can only trans-

form the foreground image to hold the average back-ground

visual statistics in the training data, leading to unsatisfac-

tory harmonizing results. However, when performing nor-

malization with BN or IN, the foreground features will be

normalized with the same mean and variance as the back-

ground features, where the mean and variance are statisti-

cally measured from the whole global feature map. Unfor-

tunately, the styles of background features will be shifted

by those statistics from the foreground and limit the style

consistency learning in subsequent layers.

In contrast with other normalization methods, our RAIN

module only transfers the statistics from the background

features to the normalized foreground features, without the

influences from inconsistent foreground objects. As plotted

in Fig. 6, IN and BN outperform RN, while our RAIN out-

performs IN and BN by a large margin, demonstrating the

reasonableness of our aforementioned analysis.

4. Implementation

Datasets. To demonstrate the efficacy of our approach,

we analyze the performance of our model against previ-

ous methods on the benchmark dataset iHarmony4 [2].

According to [2], iHarmony4 consists of 4 sub-datasets

(i.e., HCOCO, HAdobe5K, HFlicker and Hday2night), and

73147 pairs of synthesized composite images and corre-

sponding ground truth images are provided. In our experi-

ments, we follow the train-test split as [2] suggested.

Training. We trained the model by Adam [18] optimizer

with a learning rate of 0.0002, and optimized our model

with the same objective that DoveNet [2] uses. Our model

was optimized for 100 epochs on an Nvidia GTX 2080Ti

GPU, with input images resized to 256×256 and batch size

set to 12. Detailed training objectives of our model are pre-

sented in the supplementary materials.

5. Experimental Results

In this section, we conduct extensive experiments to

demonstrate the efficacy of our method. We first compare

our best model (RainNet) to current state-of-the-art meth-

ods both qualitatively and quantitatively in Sec. 5.1. Then,

we investigate the design choice of RAIN for our generator

in Sec. 5.2. Subjective evaluations and further discussions

are presented in Sec. 5.3 and Sec. 5.4, respectively.
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Method Venue HCOCO HAdobe5k HFlickr Hday2night Average

Input composite - 33.94 28.16 28.32 34.01 31.63

Lalonde and Efros [19] ICCV’07 31.14 29.66 26.43 29.80 30.16

Xue et al. [39] TOG’12 33.32 28.79 28.32 31.24 31.40

Zhu et al. [43] ICCV’15 33.04 27.26 27.52 32.32 30.72

DIH [32] CVPR’17 34.69 32.28 29.55 34.62 33.41

S2AM [3] TIP’20 35.47 33.77 30.03 34.50 34.35

DoveNet [2] CVPR’20 35.83 34.34 30.21 35.18 34.75

Baseline This work 35.03 33.35 29.50 35.02 33.92

RainNet Ours 37.08 36.22 31.64 34.83 36.12

Table 1. Quantitative performance comparisons of PSNR metric on the four sub-datasets of iHarmoni4 [2]. The numbers in red and blue

represent the best and second best performance. As can be found from the results, our approach performs favorably against other methods.

Method Venue
0% ∼5% 5% ∼15% 15% ∼100% Average

MSE fMSE MSE fMSE MSE fMSE MSE fMSE

Lalonde and Efros [19] ICCV’07 41.52 1481.59 120.62 1309.79 444.65 1467.98 150.53 1433.21

Xue et al. [39] TOG’12 31.24 1325.96 132.12 1459.28 479.53 1555.69 155.87 1141.40

Zhu et al. [43] ICCV’15 33.30 1297.65 145.14 1577.70 682.69 2251.76 204.77 1580.17

DIH [32] CVPR’17 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18

S2AM [3] TIP’20 15.09 623.11 48.33 540.54 177.62 592.83 59.67 594.67

DoveNet [2] CVPR’20 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96

Baseline This work 19.21 841.61 64.54 749.36 241.15 803.05 79.97 808.68

RainNet Ours 11.66 550.38 32.05 378.69 117.41 389.80 40.29 469.60

Table 2. We measure the error of different methods in foreground ratio range based on the whole test set. fMSE indicates the mean square

error of the foreground region. The numbers in red and blue indicate the best and second-best results.

Method
0% ∼5% 5% ∼15% 15% ∼30% 30% ∼100% Average

fL1 PSNR SSIM fL1 PSNR SSIM fL1 PSNR SSIM fL1 PSNR SSIM fL1 PSNR SSIM

Baseline 21.76 37.99 0.9951 20.55 32.05 0.9838 20.97 27.85 0.9631 21.49 24.39 0.9285 21.31 33.92 0.9824

+ IN [35] 18.61 39.08 0.9959 16.53 33.75 0.9870 16.34 29.77 0.9711 17.97 25.97 0.9384 17.69 35.32 0.9855

+ BN [13] 17.81 39.48 0.9962 16.79 33.60 0.9876 17.76 29.15 0.9704 19.32. 25.10 0.9395 17.65 35.34 0.9859

+ RN [40] 18.85 38.74 0.9959 17.54 32.85 0.9864 18.77 28.42 0.9673 20.55 24.37 0.9326 18.62 34.57 0.9842

+ RAIN-1 17.10 39.67 0.9963 14.70 34.69 0.9882 14.20 31.02 0.9742 14.92 27.36 0.9478 15.88 36.06 0.9873

+ RAIN-2 17.71 39.39 0.9961 14.88 34.52 0.9882 13.89 31.19 0.9737 14.39 27.72 0.9491 16.16 36.01 0.9871

+ RAIN-3 17.97 39.28 0.9960 15.00 34.54 0.9881 13.82 31.19 0.9743 14.21 27.75 0.9493 16.30 35.95 0.9872

+ RAIN-4 17.95 39.27 0.9959 14.95 34.51 0.9878 13.75 31.23 0.9735 14.75 27.51 0.9469 16.31 35.96 0.9868

+ RAIN-Encoder 19.29 38.81 0.9957 16.64 33.79 0.9869 15.96 30.15 0.9719 16.40 26.72 0.9449 17.89 35.31 0.9861

+ RAIN-Decoder 17.41 39.50 0.9962 14.32 34.89 0.9889 14.18 31.01 0.9746 14.75 27.60 0.9507 15.92 36.12 0.9877

Table 3. Ablation studies. The numbers in red and blue represent the best and second-best performance.

5.1. Comparison with existing methods

Performance on different sub-datasets. To quantitatively

validate our approach, we adopt the evaluation protocols

from previous work [2, 32, 3]. We first train our model on

the whole training set. Then we evaluate the trained model

on given testing images by measuring mean square error

(MSE) and PSNR score for the synthesized images. The

results of all previous methods as well as our RainNet are

given in Table 1. It can be observed that the baseline model

attains comparable performance of DIH [32]. Benefiting

from the proposed RAIN module, our RainNet improves

the baseline by a reduction of 39.68 in MSE metric, and

a performance gain of 2.2 in PSNR for all datasets. Al-

though DoveNet [2] is slightly favorable to our approach in

Hday2night dataset, our model achieves the best results on

HCOCO, HAdobe5k, and HFlickr and outperforms [2] by a

large margin in average performance.

Influence of foreground ratios. We next examine the in-

fluence of different foreground ratios on the harmoniza-

tion models. Following [2], we split the images into three
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Input DIH DoveNet RainNet Ground TruthAMS

Figure 4. Qualitative comparison. We present example results of our RainNet against three state-of-the-art methods. The samples are

taken from the testing dataset of iHarmony4 [2].

Input DIH DoveNet RainNetAMSForeground Mask

Figure 5. Example results on real composite images.. We present real composite images, foreground mask, the results of three state-of-

the-art methods, and the proposed model. The samples are taken from the testing dataset of [32]. Our method achieves better harmonized

visual results than competing methods.

groups according to different foreground ratio ranges, i.e.,

0% ∼5%, 5% ∼15%, and 15% ∼100%. We compare the

performance by metrics of MSE and fMSE. For fMSE, we

only calculate the MSE of the foreground regions. The com-

parison results are presented in Table 2. As can be found, on

one hand, the model performance in terms of MSE down-

grades as the foreground ratios increases while fMSE is less

likely to be influenced by foreground ratios. On the other

hand, our model outperforms [2] by 80.36 in the fMSE met-

ric and improves the performance of the baseline model by
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Figure 6. Comparisons of different normalization methods on

PSNR metric. Without normalization (labeled by None), the

model performance heavily deteriorates.

39.68, 339.08 in MSE, fMSE, respectively.

Qualitative comparisons. We proceed to take a closer

look at model performance and provide qualitative com-

parisons with the previous competing methods. From the

sample results in Fig. 4, it can be easily observed that

our method better integrates the foreground objects into

the background image, achieving much better visual con-

sistency compared to other methods. For instance, in the

second row of Fig. 4, the background image is underex-

posed, while the foreground objects (balloons) are much

brighter, leading to unrealistic visual results. Both DIH

and DoveNet cannot adjust the foreground to be compati-

ble with the dim backgrounds, while S2AM generates the

least realistic result. Our RainNet achieves more photore-

alistic results with context consistency by adaptively learn-

ing the style features from the background and applying to

the foreground objects. Fig. 5 gives another three typical

samples picked from 99 real composited images evaluated

in [32]. Although there is no ground truth image as a ref-

erence, we can still observe significant improvements of vi-

sual style consistency achieved by our approach.

5.2. Ablation study

In this section, we conduct comprehensive ablation stud-

ies to demonstrate the effectiveness of our RAIN mod-

ule. Different from Sec. 5.1, we resort to three alterna-

tive measures (i.e., foreground L1 norm (fL1), PSNR, and

SSIM [36]) for quantitative evaluation.

Efficacy of RAIN. We first investigate the performance

gain brought by our RAIN module compared to other nor-

malization methods, i.e., RN, IN, and BN. To begin with,

we apply RN to the baseline model and observe stable

model training curves and better performance than that

without noralization layers (See in Table 3 and Fig. 6). Note

that RN only performs batch normalization for the back-

ground (foreground) features within all background (fore-

ground) regions, respectively. This operation splits the

background and foreground features and prevents the net-

work from propagating information from the background to

the foreground, thus cannot generalize well in image har-

monization tasks.

We proceed to add IN and BN to the baseline. As can be

found in Table 3 and Fig. 6 (the purple and green curves),

the baseline+IN/BN outperforms the baseline method and

baseline+RN by a large margin. Potential explanations can

be analyzed from two aspects. On one hand, feature normal-

izing operations can help to stabilize and benefit the train-

ing process of deep neural networks, yielding better conver-

gence. On the other hand, performing feature normalization

with IN or BN enables the foreground features to be mod-

ified by the mean and variance statistically measured from

both the foreground features and the background features.

Therefore, the model can learn to adjust the visual proper-

ties of the foreground objects somehow.

Furthermore, we replace the normalization layer in the

decoder network with RAIN while setting the normaliza-

tion layer to IN in the encoder, then train the network un-

der the same settings. The results are plotted in Fig. 6 (red

curve). Obviously, thanks to our novel RAIN module, the

model with RAIN-Decoder outperforms other normaliza-

tion methods and achieves the best performance on average.

Which layer to add RAIN? In order to exploit the best im-

plementation strategy for RAIN, we conduct experiments

by gradually adding and removing the RAIN layers in the

RainNet network. Here we compare several variants that are

boosted by RAIN module in different convolutional stages

(more variants and comparisons are presented in the sup-

plementary materials). Note that in the middle layers of

the generator, the spatial size of convolutional features de-

creases significantly. For instance, when we resize the fore-

ground mask to 4×4, the valid pixels of the foreground

mask are rather rare. Under these circumstances, our RAIN

downgrades to Instance Normalization. So we gradually

remove RAIN layers from the 4 outermost layers in the

encoder and decoder. (a) Baseline+RAIN-Decoder: we

add RAIN layer to the decoder and IN to the encoder. (b)

Baseline+RAIN-Encoder: in contrast to (a), we use RAIN

a layer only for the encoder and use IN for the decoder. (c)

Baseline+RAIN-k: we add k (k=1,2,3,...) RAIN layers to

the outermost four layers of the encoder and decoder, and

IN to the remaining layers. The quantitative comparison re-

sults are provided in Table 3 and Fig. 7. Our observations

can be summarized as follows:

1) Baseline+RAIN-Encoder achieves comparable perfor-

mance of that with IN, while Baseline+RAIN-Decoder out-

performs RAIN-Encoder by a large margin. The differences

indicate the better choices of RAIN for the decoder and IN

for the encoder.

2) Starting from Baseline+RAIN-Decoder, we decrease the

number of RAIN layers in the decoder, while adding as
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Figure 7. Comparisons of different implementation strategies of

RAIN on PSNR metric.

Method Input DIH [32] S2AM [3] DoveNet [2] RainNet

Total votes 113 203 193 226 354

Preference 10.4% 18.6% 17.7% 20.8% 32.5%

Table 4. Comparisons between our method and other competing

methods under user study.

many RAIN layers to the outermost parts of the encoder,

i.e., Baseline+RAIN-4. The model attains dropped perfor-

mance but still better than Baseline+IN.

3) Baseline+RAIN-1 slightly outperforms Baseline+RAIN-

2, Baseline+RAIN-3, and Baseline+RAIN-4 by minor im-

provements. However, when compared to IN, BN, and RN,

the improvements brought by our RAIN are significant.

From the experimental results, we conclude that adopt-

ing RAIN in the decoder and IN in the encoder or using the

similar structure as Baseline+RAIN-k are better choices.

One probable reason is that some visual-consistency related

features (e.g., color tone, illumination etc.) are likely to be

related to the low-level features extracted in the shallow lay-

ers of convolutional neural networks, so the layers that are

closest to the network’s input and output impose greater im-

pacts on estimation error. Another reason is that the deploy-

ment of the RAIN in the symmetrical layers of the encoder

and decoder helps the concatenated features have the same

mean-variance in the background and foreground regions,

which is helpful for the filters to stabilize the training and

converge to better performance.

Adding RAIN to previous work. To apply RAIN in ex-

isting methods, we conduct experiments with DIH [32].

We first implement DIH (with segmentation branch) in Py-

torch [24] and then train the basic network. In order to add

RAIN to DIH, we replace BN with IN in the encoder, and

RAIN with BN in the harmonization decoder. The perfor-

mance of DIH model reaches to 33.36dB of PSNR while the

new model with RAIN achieves 33.84dB (+0.48dB). De-

tailed illustrations can be found in the supplementary mate-

rials.

5.3. User study

Table 4 shows the user evaluation results on real-world

composited images collected by DIH [32]. Specifically, we

invited 11 volunteers to rate and choose the most realistic

harmonized images from 5 given images. Those 5 images

include the original composite image and its corresponding

4 harmonized versions created by DIH, S2AM, DoveNet,

and Ours. We randomly shuffle the displaying order of 5

images to ensure that the users do not know which model

each image belongs to. Each user is asked to evaluate for

the whole set (99 images). As shown in the Table 4, Rain-

Net attains more votes than the rest, which demonstrates the

effectiveness of the proposed approach.

5.4. Discussions and limitations

Discussions. Obviously, benefiting from RAIN module,

RainNet achieves a higher PSNR score and lower estima-

tion error than previous DoveNet [2] by 1.37dB and 12.07,

respectively. Although we found that parts of these im-

provements are attributed to our generator settings, in which

we only learn to modify the foreground image and copy the

background pixels from the input, thus reducing the error

of the background, we attain lower foregroud estimation er-

rors (fMSE). fMSE is fair for all methods. Furthermore,

comparing to IN, RainNet remarkably improves the perfor-

mance of a baseline model and achieves the best scores on

average, which demonstrates the superiority of the proposed

RAIN module.

Limitations. Despite the improvements, our proposed ap-

proach still faces with two major confusions. First, it is not

very clear why applying RAIN only in the encoder brings

little improvement. Second, our model will soften the sharp

foreground object and reduce the visual style discrepancy

in the samples with dark background and sharp foreground

objects. Future investigation in these issues should be re-

quired.

6. Conclusion

In this paper, we propose to solve the visual style incon-

sistency problem in image harmonization and present a sim-

ple yet effective Region-aware Adaptive Instance Normal-

ization (RAIN) module, which outperforms previous nor-

malization methods by a large margin. We have also ex-

ploited the best implementation choice of RAIN for the

baseline network. Moreover, we demonstrate the efficacy of

RAIN by applying RAIN into existing networks, e.g., DIH,

and observe performance gains over these models.
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