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Abstract

Indoor scene semantic parsing from RGB images is very

challenging due to occlusions, object distortion, and view-

point variations. Going beyond prior works that leverage ge-

ometry information, typically paired depth maps, we present

a new approach, a 3D-to-2D distillation framework, that

enables us to leverage 3D features extracted from large-

scale 3D data repositories (e.g., ScanNet-v2) to enhance

2D features extracted from RGB images. Our work has

three novel contributions. First, we distill 3D knowledge

from a pretrained 3D network to supervise a 2D network

to learn simulated 3D features from 2D features during the

training, so the 2D network can infer without requiring 3D

data. Second, we design a two-stage dimension normaliza-

tion scheme to calibrate the 2D and 3D features for better

integration. Third, we design a semantic-aware adversarial

training model to extend our framework for training with un-

paired 3D data. Extensive experiments on various datasets,

ScanNet-V2, S3DIS, and NYU-v2, demonstrate the superior-

ity of our approach. Also, experimental results show that our

3D-to-2D distillation improves the model generalization.

1. Introduction

Indoor scene parsing from images plays an important role

in many applications such as robot navigation and augmented

reality. Though a considerable amount of advancements

have been obtained with convolutional neural networks, this

task is still very challenging, since the task inherently suffers

from various issues, including distorted object shapes, severe

occlusions, viewpoint variations, and scale ambiguities.

One approach to address the issues is to leverage auxiliary

geometric information to obtain structured information that

complements the RGB input. For the auxiliary input, existing

methods typically employ the depth map that associates with

the input RGB image. However, earlier methods [15, 11,

6, 37, 41, 47, 10] require the availability of the depth map
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Figure 1. Compared with extracting features solely from the input

image (a) for semantic parsing, our new approach (b) efficiently

distills 3D features learned from a large-scale 3D data repository to

train the 2D CNN to learn to enhance its features for better semantic

parsing. Our framework needs point cloud inputs only in training

but not in testing, and the point cloud can be paired or unpaired.

inputs not only in the training but also in the testing. As a

result, they have limited applicability to general situations,

in which depth is not available. This is in contrast to the

ubiquity of 2D images, which can be readily obtained by the

many photo-taking devices around us.

To get rid of the constraint, several methods [50, 58, 54,

59, 22] propose to predict a depth map from the RGB input,

then leverage the predicted depth to boost the scene parsing

performance. However, depth prediction from a single image

is already a very challenging task on its own. Hence, the

performance of these methods largely depends on the quality

of the predicted depth. Also, the additional depth prediction

raises the overall complexity of the network.

Besides the above issues, a common limitation of the prior

works is that they only explore the depth map as the auxiliary

geometry cue. Yet, a depth map can only give a partial view

of a 3D scene, so issues like occlusions and viewpoint varia-

tions are severe. Further, they all require paired RGB-depth

data in training. So, they are limited for use on datasets with
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depth maps, which require tedious manual preparation, e.g.,

hardware setups, complicated calibrations, etc.

In this work, we present the first flexible and lightweight

framework (see Figure 1), namely 3D-to-2D distillation, to

distill occlusion-free, viewpoint-invariant 3D representations

derived from 3D point clouds for embedding into 2D CNN

features by training the network to learn to simulate 3D fea-

tures from the input image. Our approach leverages existing

large-scale 3D data repositories such as ScanNet-v2 [8] and

S3DIS [1] and recent advancements in 3D scene understand-

ing [14, 7, 17, 21] for 3D feature extraction, and allows the

use of unpaired 3D data to train the network.

For the 2D CNN to effectively learn to simulate 3D fea-

tures, our 3D-to-2D distillation framework incorporates a

two-stage dimension normalization (DN) module to explic-

itly align the statistical distributions of the 2D and 3D fea-

tures. So, we can effectively reduce the numerical distribu-

tion gap between the 2D and 3D features, as they are from

different data modalities and neural network models. Also,

a Semantic Aware Adversarial Loss (SAAL) is designed to

serve as the objective of model optimization without paired

2D-3D data to make the framework flexible to leverage ex-

isting 3D data repository and boost its applicability.

We conduct extensive experiments on indoor scene pars-

ing datasets ScanNet-v2 [8], S3DIS [1], and NYU-v2 [44].

With only a negligible amount of extra computation cost,

our approach consistently outperforms the baselines includ-

ing the state-of-the-art depth-assisted semantic parsing ap-

proach [22] and our two baselines that leverage depth maps,

manifesting the superiority of our approach. Besides, our

further in-depth experiments on a depth reconstruction task

implies that our framework can effectively embed 3D rep-

resentations into 2D features and produce much better re-

construction results. More importantly, our model obtains

a significant performance gain (19.08% vs. 27.22% mIoU),

even when evaluated on data from an unseen domain, sug-

gesting that the 3D information embedded by our 3D-to-2D

distillation helps promote the generalizability of CNNs.

2. Related Work

Semantic segmentation. The computer vision community

has gained remarkable achievements on semantic segmen-

tation [29, 55, 33, 38, 2, 4, 61, 62, 51, 63, 56, 57, 49]. PSP-

Net [62] is a representative work that has inspired many

follow-ups. In this work, we adopt PSPNet as the baseline

model for semantic segmentation, as it has an open-source

repository with good reproducibility and delivers competi-

tive performance even compared with the latest works.

3D semantic segmentation. Methods for 3D semantic

segmentation are generally point-based or voxel-based.

Point-based networks adopt raw point clouds as input. Along

this line of works, [35, 36] are pioneering ones. Later, var-

ious convolution-based methods [25, 46, 53, 3] were pro-

posed for 3D semantic segmentation on point clouds. Re-

cently, Kundu et al. [23] proposed to fuse features from

multiple 2D views for 3D semantic segmentation.

On the other hand, Voxel-based networks first voxelize the

raw data into regular 3D grids for feature learning [39, 14, 45,

9, 64]. The recently-proposed methods MinkowskiNet [7]

and OccuSeg [17] are two of the representative works in

this branch. In this work, we adopt PointWeb [60] and

MinkowskiNet [7] as the architectures for extracting point-

based and voxel-based 3D features, respectively.

Knowledge distillation. Our work shares a similar spirit

as knowledge distillation techniques [19, 42, 16, 30, 12, 18,

28] in that we both aim to transfer features from a source

model (i.e., the teacher model in knowledge distillation or

the 3D network in our work) to a target model (i.e., the

student model in knowledge distillation or the 2D network

in our work) to enhance the performance of the target model.

However, conventional knowledge distillation techniques

are designed typically for scenarios, in which (i) the source

data to be distilled has the same modality [19, 42, 16, 30] or

similar modalities [12] as the target, (ii) the two networks for

the feature extraction have the same or similar architecture

(e.g., convolution neural networks), and (iii) the distillation

objective typically requires paired source-target data.

Recently, cross-modality distillation has also been studied

in [32, 13, 40]. However, their methods are not suitable

in our, since they cannot distinguish features of different

categories. To this end, we propose to associate 2D and 3D

features by the object category and formulate the SAAL to

enable unpaired training. The experimental result shows

that our approach outperforms the most recent semantic

segmentation knowledge distillation method [28].

3. Method

This section presents our proposed 3D-to-2D distillation

framework for effective distillation of 3D features learned

from point clouds to improve the performance of 2D indoor

scene parsing. Figure 2 shows the overall architecture of the

framework. During the training, our framework takes a 2D

image and a 3D point cloud as its inputs. To begin, we use a

3D CNN to extract 3D feature f3D from the input 3D point

cloud (blue region in Figure 2). On the other hand, we use a

2D CNN to extract 2D feature f2D from the input image, and

produce also simulated 3D feature f3D_sim in the 2D network

(orange region in Figure 2). For the 2D CNN, we adopt PSP-

Net [62] for the case of semantic segmentation, whereas for

the 3D CNN, we may adopt different 3D architectures, such

as PointWeb [60] and MinkowskiNet [7]. Also, note that

DN1 and DN2 are our dimension normalization modules.

An important insight in our approach is that during the

training, we use f3D to supervise the generation of f3D_sim, so
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Figure 2. Overview of our 3D-to-2D distillation framework for 2D semantic segmentation. During the training, the framework takes a 2D

image and a 3D point cloud as inputs. We transfer 3D feature f3D from the 3D network (blue) to the 2D network (orange) with an L2 loss

(for paired 2D-3D data), such that the 2D network can learn to produce simulated 3D feature f3D_sim from the 2D image and we do not need

f3D and 3D point cloud input during the inference. Also, note the two dimension normalization modules (DN1 and DN2) for aligning 2D-3D

features, and the optional module on top-right for training with unpaired 2D-3D data using the semantic-aware adversarial loss.

that the 2D network can learn to produce f3D_sim that looks

like f3D. In this way, we do not need the point cloud input

and 3D network when we use our framework to test on a

2D image; the 2D network alone can generate f3D_sim solely

from the image input. Also, to resolve the statistical differ-

ence between the 2D and 3D inputs, we design a two-stage

dimension normalization module (DN1 and DN2) to effec-

tively transform features before and after f3D_sim (Figure 2),

so that the statistical distributions of the 2D and 3D features

in the 2D network are better aligned to facilitate the learning

of the simulated 3D feature and also its integration with the

remaining part of the 2D network. Further, we design a

semantic-aware adversarial loss as an optional module in the

training (Figure 2 (top right )) to extend our framework for

training with 2D-3D inputs that are unpaired.

In this section, we first present how our framework is

trained with paired 2D-3D inputs (Section 3.1). Then, we

present our dimension normalization modules in Section 3.2

and how we extend the framework for unpaired training with

the semantic aware adversarial loss in Section 3.3.

3.1. Training Objectives with Paired 2D3D Data

Since 3D feature f3D extracted from the input point cloud

is point-wise in the 3D space, we cannot directly associate it

with 2D feature f2D and likewise the simulated 3D feature

f3D_sim, which are both defined in 2D image space. To de-

termine the associations, if paired 2D-3D data is available

in the training, we can use the given camera parameters to

transform and project the 3D points to the 2D image space.

In this way, we can determine the pixel location associated

with each point in the input point cloud, and obtain f3D_i,

which denotes the projected 3D feature at pixel i. If more

than one point projects to the same pixel, we consider only

the point that is the nearest to the camera, since it should

correspond to the visible pixel in the image input.

Then, we adopt an L2 regression loss between f3D and

f3D_sim to supervise the generation of f3D_sim in the 2D net-

work. Clearly, the projected 3D points are sparse in the

image space, so we locate the pixels covered by the points

and perform the regression only on the covered pixels:

Lp =
∑

i

||f3D_i − f3D_sim_i||
2

2
, (1)

where i indexes the pixels covered by the projected 3D points

and Lp denotes the loss to guide the generation of f3D_sim.

To train the whole framework for the semantic segmenta-

tion task, we employ the cross-entropy loss below:

Ls =
∑

i

∑

c

−✶i,c log pi,c, (2)

where pi,c denotes the probability of pixel i belonging to

category c and ✶i,c is an indicator function that equals 1 if

the ground-truth category of pixel i is c; otherwise, it is zero.

3.2. Dimension Normalization

To resolve the statistical difference between 2D and 3D

representations induced by different data modalities and

neural network architectures, we design the dimension nor-

malization modules DN1 and DN2 to explicitly calibrate the

distribution of the 2D and 3D features; see Figure 2.

Figure 3 illustrates the technical details. Give a batch

of N feature maps as inputs to DN1 or DN2, each of the

dimensions H (height), W (width), and C (channels), we

compute channel-wise means and variances of the feature

map over the N , H , and W dimensions: (µ2D, σ2D) for the

input 2D feature map to DN1 or (µ3D, σ3D) for the input

3D feature map to DN2. On the other hand, as shown in

Figure 2, DN1 receives statistics (µ̄3D, σ̄3D) of the 3D feature

f3D, whereas DN2 receives statistics (µ̄2D, σ̄2D) of the 2D

feature f2D. Below, we detail the procedure inside each DN:
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BN AdaBN DN

x̂ = γ x−µ2D

σ2D
+ β x̂ = γ x−µ̄3D

σ̄3D
+ β x̂3D = ∆σ3D(σ̄3D

x−µ2D

σ2D
+ µ̄3D) + ∆µ3D, x̂2D = ∆σ2D(σ̄2D

x−µ3D

σ3D
+ µ̄2D) + ∆µ2D

Table 1. Batch Normalization (BN), Adaptive Batch Normalization (AdaBN), and Dimension Normalization (DN). γ, β and ∆ are learnable

parameters, whereas µ and σ indicate mean and variance.

𝜎3𝐷 𝜇3𝐷 ∆𝜎3𝐷 ∆𝜇3𝐷DN1
Normalize 

with 𝜇2𝐷 & 𝜎2𝐷2𝐷𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝜎2𝐷 𝜇2𝐷 ∆𝜎2𝐷 ∆𝜇2𝐷DN2

Normalize 

with 𝜇3𝐷 & 𝜎3𝐷S𝑖𝑚𝑢. 3𝐷𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

S𝑖𝑚𝑢. 3𝐷𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
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Figure 3. Dimension normalization modules. Note that ⊗ means

element-wise multiplication; ⊕ means element-wise addition; and

Conv1 to Conv3 are additional convolutional layers.

• The purpose of DN1 is to transform the input 2D fea-

ture to align its distribution with that of the 3D feature

for effective feature learning. Here, we first use two

convolution layers of 3×3 and 1×1 (Conv1 in Figure 3)

to transform the input features to have the same chan-

nel dimension as the penultimate layer in 3D network

f3D. Then, we normalize the transformed features by

µ2D and σ2D, and use µ̄3D and σ̄3D to scale and adjust

the normalized features. Ideally, µ̄3D and σ̄3D should

correspond to f3D. However, f3D is available only in

the training but not in the inference, so we pre-compute

µ̄3D and σ̄3D globally over the entire data, and use the

pre-computed values in both training and inference. As

a result, we further use learnable parameters ∆σ3D and

∆µ3D in DN1 to adjust the features, followed by two

subsequent convolution layers of 3×3 and 1×1 (Conv2
in Figure 3) to produce the simulated 3D features.

• The purpose of DN2 is to calibrate the learned 3D fea-

ture f3D_sim back to f2D for smooth 2D-3D feature con-

catenation. Its structure follows that of DN1 (Figure 3),

except that we do not need any additional convolutional

layer to pre-transform the input feature.

Different from standard batch normalization (BN) [20],

which further learns a linear transform to enhance the rep-

resentative capability as shown in Table 1, our 3D-to-2D

distillation module modulates the normalized distribution

with a global pre-calculated 3D statistics σ̄3D and µ̄3D and

then uses learnable offsets ∆σ3D and ∆µ3D to further ad-

just the result. With 3D-to-2D distillation, we can explicitly

align the distributions of the 2D and 3D features. Yet, our

approach still retains the advantage of BN by normalizing

features in a batch-wise manner during the training. Then,

during the inference, µ2D and σ2D are replaced by the accu-

mulated µ̄2D and σ̄2D similar to BN.

Relation to BN and AdaBN. Fundamentally, BN is pro-

posed to facilitate the training of deep neural networks by

normalizing the data distribution in a batch as shown in Ta-

ble 1. It helps to reduce the internal co-variant shift [20] or

smooth the objective function [43]. However, BN is domain-

dependent, which has side-effects in our cross-modality

knowledge transfer task. Further, AdaBN [26] is proposed

for domain adaptation. In the inference stage, AdaBN uses

(µ̄3D, σ̄3D) of the target domain instead of the accumulated

(µ̄2D, σ̄2D) in the source domain to normalize the features.

AdaBN is designed for the case, in which the model is trained

in the source domain and tested in the target domain, which

is different from our setup where training and inference are

both performed in the 2D domain.

3.3. Adversarial Training with Unpaired Data

With paired 2D-3D data, we can distill 3D feature with

an L2 loss, since we can correspond the 2D and 3D features

in the same image domain. However, paired 2D-3D data are

typically expensive to acquire in a large quantity, given the

amount of works needed in data collection, calibration, and

annotation. To this end, we design a new adversarial training

approach to correlate 2D and 3D features and supervise the

generation of the simulated 3D features.

There are two key insights in our approach. First, we

observe that existing 2D and 3D datasets usually have com-

mon object categories, e.g., ScanNet-v2 [8] has 20 object

categories in its 3D point clouds, whereas NYU-v2 [44] has

40 object categories in its 2D images; the 20 categories in

ScanNet-v2 can all be found in the categories in NYU-v2.

Hence, we propose to correspond 2D and 3D features by

their associated object categories. Second, given a 3D fea-

ture of a certain category and another 2D feature of the same

category, we propose a novel adversarial training model with

a per-category discriminator. The goal of our model is to

generate simulated 3D features solely from the 2D features,

such that the discriminator cannot differentiate the 3D fea-

tures from the simulated one of the same category. In this

way, the 2D network should learn to generate simulated 3D

features solely without requiring paired 2D-3D data.

Figure 2 (top-right) shows the optional module we de-

signed for unpaired training. It has N individual discrimina-

tors, where N is the number of object categories common to

the 2D and 3D data. We implement each discriminator using

six fully-connected layers and denote the discriminator of

category c as Dc. There are two kinds of inputs to Dc: (i)

a 3D feature vector f3D_i from 3D network or (ii) a simu-

lated 3D feature vector f3D_sim_j from 2D network, and both

should belong to category c. For each input to Dc, it should
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predict a confidence score that indicates whether the input

feature vector comes from the 2D or 3D network.

Before we present how we train the whole framework for

unpaired data, we first denote Φ2D as the 2D network. During

the training, the 3D network is fixed, and we alternatively

train Φ2D and the set of discriminators {Dc}, similar to the

way the generator (like Φ2D) and discriminator (like Dc’s)

are trained in a conventional GAN model.

• When we train the discriminators, we fix Φ2D and use

the following objective to train each Dc:

Ladv(Dc) = −
∑

i

Nc,i log(1−Dc(f3D_sim_i))

−
∑

j

Mc,j log(Dc(f3D_j)),
(3)

where Nc,i (or Mc,j) equals 1, if the 2D pixel i (or

3D point j) belongs to category c; otherwise, it equals

0. Note that we treat f3D_sim_i as a negative sample

and f3D_j as a positive sample, so the goal of Dc is to

learn to differentiate them; by then, Φ2D should learn

to generate better f3D_sim_i to deceive {Dc}.

• When we train the 2D network Φ2D, we fix all Dc’s and

use the following objective in the training:

Ladv(Φ2D) = −
∑

i

∑

c

Nc,i log(Dc(f3D_sim_i)). (4)

Overall, to train Φ2D, the overall loss is constructed by com-

bining the softmax-cross entropy loss [62] for semantic seg-

mentation with the paired regression loss Lp or with the

adversarial loss Ladv(Φ2D), if paired data is unavailable. The

loss weights are validated on a small validation set.

4. Experiments and Results

Datasets We conduct experiments on three indoor scene

parsing datasets—ScanNet-v2 [8], S3DIS [1], and NYU-

v2 [31]. ScanNet-v2 [8] contains 1,513 scenes with 3D scans

and 2D images. S3DIS [1] contains 3D scans with associated

2D images of 271 rooms, and each 3D point and 2D pixel

are annotated as one of the 13 categories in the dataset. To

be noted, for both datasets, we can only obtain sparse paired

2D-3D points, due to the calibration and projection issues

as illustrated in the supplementary material. Only 16.38%
and 10.57% of 2D pixels have corresponding 3D points in

ScanNet-v2 and S3DIS, respectively. NYU-v2 [31] contains

1,449 images without reconstructed 3D scene.

Implementation details. We implement our framework

using PyTorch [34], and train all the models and baselines

with the SGD optimizer. The batch size is 16 and the initial

learning rate is 0.01, which is scheduled based on the “poly”

learning rate policy with power 0.9 [62]. Since different

SOTA depth 

prediction
PSPNet-50

2D feature

(b) Cascade

(a) Multitask

PSPNet-50 C

C

C concatenation

Figure 4. Illustrating the Multitask and Cascade approaches of

leveraging depth for 2D semantic segmentation.

datasets have different number of training samples, we train

models with different number of epochs on different datasets

to equalize the number of training iterations: ScanNet-v2

for 50 epochs; S3DIS for 20 epochs on Area 1,2,3,4,6; and

NYU-v2 with the officially split training samples for 300

epochs. By default, we empirically set the loss weights on

Ls, Ladv and Lp as 1, 0.01 and 0.03, respectively.

Network architectures. By default, we adopt the repre-

sentative architecture PSPNet-50 [62] for semantic segmen-

tation. For 3D feature extraction, we employ the voxel-based

architecture, i.e., MinkowskiNet [7] on ScanNet [8], and the

point-based architecture, i.e., PointWeb [60] on S3DIS. The

3D network weights are fixed during the training.

4.1. Comparing with Related GeometryAssisted
and Knowledge Distillation Methods

First, we present extensive experiments to compare our

3D-to-2D distillation approach with major competitors. They

are alternative ways of leveraging depth or 3D information

to enrich 2D features for semantic segmentation. In these ex-

periments, we use the latest large-scale indoor scene parsing

dataset ScanNet-v2 [8], which provides paired 2D-3D data

for training various models for semantic segmentation.

(i) Baseline: the original PSPNet-50 model [62].

(ii) Multitask: we use PSPNet-50 to additionally predict a

depth map (Figure 4 (a)), which is supervised by using

data from ScanNet-v2; this model is similar to ours, in

the sense that we replace the simulated 3D feature in

our model by a depth map prediction.

(iii) Cascade: we use a state-of-the-art depth prediction

method [24]1 to predict a depth map and take the pre-

dicted depth map as an auxiliary input to assist PSPNet

(Figure 4 (b)); so, this approach also does not require

3D data in the inference like ours, but the knowledge

comes from the depth map predicted by [24].

(iv) Geo-Aware [22]: this is the most recent method that

distills features from depth maps for assisting 2D se-

mantic segmentation; since code is not available, we

1https : / / paperswithcode . com / sota / monocular -

depth-estimation-on-nyu-depth-v2
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Method mIoU

Baseline PSPNet-50 53.40

Multitask 54.08

Depth methods Cascade 53.72

Geo-Aware [22] 56.90

KD Structured KD 56.36

Ours 3D-2D Distillation 58.22

Table 2. Comparing the semantic segmentation performance (on

ScanNet-v2 validation set) of various methods that use depth/3D in-

formation to assist the segmentation: two alternative methods (Mul-

titask and Cascade) that predict depth maps, a depth-distillation

method Geo-Aware [22], and Structured KD, which is a variant

of [28]. All the methods are based on the ResNet-50 backbone.

simply report its ScanNet-v2 result on its paper in Ta-

ble 2. Also, this method is finetuned on NYU-v2, so it

leveraged more data than ours (ScanNet-v2 only).

(v) Structured KD: we adopt the most recent knowledge

distillation approach for semantic segmentation [28];

since it is designed for distilling 2D information, we

replace its teacher net with a 3D network to distill 3D

information for comparison with our approach.

Table 2 reports the semantic segmentation performance

of our approach and the competitors on the ScanNet-v2

validation set. Our approach outperforms all of them, and

these results reveal the following:

• Comparing with Multi-task, we can show that our full

approach of predicting the simulated 3D features leads

to better results than explicitly predicting a depth map

using the same paired data. This result demonstrates

the richness of simulated 3D features from 3D point

clouds, as compared with 2.5D depth maps.

• Comparing with Cascade, we can show that even we use

the state-of-the-art depth prediction network [24] to pro-

vide the predicted depth map, the predicted depth map

(which is 2.5D) cannot assist the PSPNet for seman-

tic segmentation, as good as the simulated 3D features

generated by our 3D-to-2D distillation approach.

• Comparing with Geo-Aware [22], we show again that

distilling features from point clouds can lead to a better

performance. Note that Multitask, Cascade, and Geo-

Aware are all depth-assisted methods.

• Comparing with Structured KD, we show that our 3D-

to-2D distillation approach can lead to a higher per-

formance than simply adopting a general knowledge

distillation model. To be noted, Structured KD also

adopts an adversarial objective to align the global seg-

mentation map; see Section 4.4.

4.2. Further Evaluations with Sparse Paired Data

Next, we conduct further experiments on the latest large-

scale indoor scene parsing dataset—ScanNet-v2 and S3DIS.

Method mIoU

FCN-8s [29] 45.87

ParseNet [27] 47.72

DeepLab-v2 [4] 43.89

AdapNet [48] 47.28

DeepLab-v3 [5] 50.09

AdapNet++ [47] 52.92

Ours (w/ PSPNet-50) 57.76

Table 3. Comparing our method with existing 2D image-based

semantic segmentation methods on the ScanNet-v2 validation set.

We follow the settings in [47], where the size of the input image is

384×768 without left-right flip and multi-scale test.

Method mIoU

HRNet [49] + OCR [56] 60.56

HRNet [49] + OCR [56] + Our 3D-2D distillation 61.36

Table 4. We adopt our method into the state-of-the-art 2D seman-

tic segmentation approach, HRNet [49] + OCR [56], and further

boost its performance. The networks use HRNet-W48 [49] as the

backbone, with a comparable network complexity as ResNet-101.

Method PSPNet-50 Ours

mIoU 43.65 46.42

Table 5. Semantic segmentation results on S3DIS.

ScanNet-v2 semantic segmentation. First, we compare

our method with several 2D image-based semantic segmen-

tation approaches. Table 3 reports the results, showing that

our model outperforms all of them for 4.8% to 11.8% mIoU.

Further, since our method is generic, we can easily in-

corporate it into existing semantic segmentation architec-

ture. Hence, we adopt it into the state-of-the-art 2D seman-

tic segmentation network—HRNet+OCR [57, 49], which

has demonstrated top performance on various datasets. As

shown in Table 4, our 3D-to-2D distillation approach can

further boost the performance of HRNet+OCR.

S3DIS semantic segmentation. Further, we experiment

on S3IDS [1] with PointWeb [60] as the 3D network for ex-

tracting 3D features. Results in Table 5 show that our method

helps improve the baseline model, suggesting the generality

and effectiveness of our method for use with different 3D

network architectures on a different dataset.

Qualitative analysis. Visual results on ScanNet-v2 and

S3DIS are shown in Figures 5 and 6, respectively. The se-

mantic segmentation quality has been consistently improved

with our approach. The failure modes of the original PSP-

Net model are largely caused by occlusions (Figure 5: door,

bathtub and toilet, Figure 6: chair and table), uncommon

viewpoints (Figure 5: table), and confusions due to similar

color and texture (Figure 6: column, and chair). In compar-

ison, our approach can successfully segment these objects.

This demonstrates the potential of our distilled 3D feature for

resolving issues with occlusions, viewpoints, and textures.
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Image               GT             PSPNet-50          Ours                           Image                      GT            PSPNet-50      Ours

Figure 5. Visualization of the results on the ScanNet-v2 dataset. As marked by the red boxes, our 3D-to-2D distillation has better performance

for the door, floor, table, and cabinet regions benefited from the rich embedded 3D information.

Image GT PSPNet-50 Ours Image GT PSPNet-50 Ours

ceiling               floor           wall             beam                column           window             door              chair              table             bookcase          sofa                board            clutter

Figure 6. Visualization of the results on S3DIS. Ours show the result of our approach using the ResNet-50 baseline as the backbone.

Method PSPNet-50 Ours

mIoU 49.50 51.70

Table 6. Results on NYU-v2 20 class without paired data.

This demonstrates that our model with distilled 3D fea-

ture can potentially better leverage 3D geometric informa-

tion, such as the shape of objects and thus is more robust to

ambiguities caused by occlusions, viewpoints and texture.

4.3. 3Dto2D Distillation without Paired Data

When paired data is not available, we generally can only

train the 2D network solely with 2D image inputs. With

our adversarial training model (Section 3.3), we may distill

unpaired 3D data to enrich features in the 2D network. This

subsection presents an experiment to compare the perfor-

mance of a 2D network (i.e., PSPNet [62]) when it is trained

(i) without 3D data and (ii) with unpaired 3D data. Here, we

use MinkowskiNet [7] as the 3D network, NYU-v2 as the

2D data, ScanNet-v2 as the 3D data, and the 20 categories

common to both data in training and testing.

From Table 6, we can see that without using any 3D data,

the average performance of PSPNet on NYU-v2 20 classes is

49.50, and using unpaired 3D data (with almost negligible ef-

fort) can enrich the 2D features and improve the performance

by almost 5% relatively, i.e., from 49.50 to 51.70. Note that

this is the very first work that explores the potential of using

unpaired 3D data for 2D semantic segmentation. We did not

explore more sophisticated techniques to further improve

the results, but still, the results demonstrate the possibility

of unpaired data, and we hope that this can open up a new

direction for improving scene parsing from images.

Dataset Ours (w/ BN) Ours (w/ DN)

ScanNet-v2 57.64 58.22

S3DIS 45.57 46.42

NYU-V2† 26.54 27.22

Dataset Ours (w/o semantic) Ours (w/ SAAL)

NYU-v2∗ 50.86 51.84

Table 7. Ablation studies. NYU-v2† is evaluated under the setting

that the model is trained on ScanNet-V2 and tested on NYU-v2.

NYU-v2∗ is evaluated with unpaired 2D-3D data. ScanNet-v2 and

S3IDS results are evaluated on the setting with paired 2D-3D data.

SAAL denotes our semantic aware adversarial loss.

4.4. Ablation Studies

Next, we ablate two major components in our approach:

(i) the dimension normalization modules—we replace the

two DN modules with BNs while keeping the convolu-

tion part in DNs; (ii) the semantic aware adversarial loss

(SAAL)—we create a baseline that adopts a shared discrimi-

nator for all the categories, similar to that in [28].

From the results shown in Table 7, by comparing “Ours

(w/ BN)” vs. “Ours (w/ DN)”, we can see that DN con-

sistently outperforms BN including the generalization to

unseen domains, i.e., NYU-v2†. Then, by comparing our

SAAL with the ablated semantic aware design in the NYU-

v2∗ row, we can see that SAAL boosts the performance,

implying that our adversarial training model helps improve

the discriminative ability of the features, while aligning the

distributions to facilitate feature transfer.

4.5. Analysis

Further, we conduct an analysis to investigate whether

our 3D-to-2D distillation can embed 3D information into the

2D CNN features and whether the 3D features can improve
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Figure 7. Visualization of depth reconstruction quality. Depth map of PSPNet-50 and ours are both derived from “res-block-4” features.
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Figure 8. PSPNet-50 retains less 3D information in deep layers vs.

shallow layers. (a) SSIM (larger is better) of depth images predicted

from PSPNet-50 feature map in different layers. (b)-(g): Depth

maps predicted from different layers. The PSPNet-50 is pre-trained

for semantic segmentation. Please zoom in to see the details.

the model’s generalizability. To start, we propose a metric

to evaluate how much 3D information is embedded into the

2D CNN features. Our idea is to evaluate the ability of CNN

features for reconstructing depth maps. We build a depth

estimation network with features from each layer as input

and train it to produce the corresponding depth map. Then,

we evaluate the depth reconstruction quality with the Struc-

tural Similarity Index (SSIM) [52]—larger is better. The

reason for adopting SSIM instead of Mean Square Error is

that depth information from a single image has scale ambi-

guities, while SSIM focuses more on structural similarities

with the ground truth rather than the absolute values.

3D features in baseline PSPNet. Taking inputs from

different layers of PSPNet-50 trained on ScanNet-v2 for se-

mantic segmentation, we obtain the depth prediction results

shown in Figure 8. Figure 8 (a) shows that the SSIM value

decreases as the feature map goes deeper. The associated

visualizations in Figures 8 (b)-(g) show that the structure of

the depth map becomes hard to identify when it is derived

from deep features (Figure 8 (g)). Both quantitative and

qualitative results suggest that deep features may retain less

3D information and have a lower capability of reconstructing

depth in comparison with shallow features, even though they

are more directly relevant to the final semantic parsing task.

3D features in our models. Further, we analyze whether

the 2D network in our framework can better leverage 3D

information. We take the deep “res-block-4” feature map of

our model trained on ScanNet-v2. The SSIM is improved

by 24% (baseline: 0.38 vs. our: 0.47) as compared with the

baseline (the red point in Figure 8), and the quality of the

reconstructed depth map is significantly improved as shown

in Figure 7. The object structure and boundary can be better

preserved. With 3D-to-2D distillation, higher quality depth

can be reconstructed from our deep features, suggesting that

Method PSPNet-50 PSPNet-101 Multitask Cascade Ours

mIoU 19.08 20.12 20.30 22.52 27.22

Table 8. Domain generalization results on NYU-v2 20-class using

various models trained on ScanNet-v2.

our approach facilitates the 2D network to better utilize 3D

information when constructing the deep features.

4.6. Effectiveness in Boosting Model Generalization

The analysis in Section 4.5 implies that the embedded

3D information in deep features may help the CNN better

utilize the robust 3D cues, such as shape, for recognition, and

further improve the model’s generalization abilities. Next,

we investigate whether 3D-to-2D distillation can improve

the generalizability of the model. To this end, we directly

evaluate the baseline model and our model when trained on

ScanNet-v2 and tested on NYU-v2. Here, we consider only

the 20 classes common to ScanNet-v2 and NYU-v2.

Comparing Tables 8 and 2, we can see that the perfor-

mance of all methods drops seriously when tested on un-

seen NYU-v2. However, with the 3D-enhanced 2D fea-

tures, our model with the ResNet-50 backbone improves

over PSPNet-50 by 43% for more than 8% mIoU. Also, it

surpasses PSPNet-101 by more than 7% mIoU. The results

imply that the embedded 3D feature helps improve the gener-

alizability of the 2D network, and such improvement cannot

be achieved by using a larger network, i.e., PSPNet-101.

5. Conclusion

This paper presents a novel 3D-to-2D distillation frame-

work that effectively leverages 3D features learned from

3D point clouds to enhance 2D networks for indoor scene

parsing. At testing, the 2D network can infer simulated 3D

features without any 3D data input. To bridge the statistical

distribution gap between the 2D and 3D features, we propose

a two-stage distillation normalization module for effective

feature integration. Further, to broaden the applicability of

our approach, we design an adversarial training model with

the semantic aware adversarial loss to extend our framework

for training with unpaired 2D-3D data. Experiments on

three public indoor datasets suggest the superiority of our

approach in various settings. We hope our further analysis on

3D and generalization could inspire future works on incor-

porating 3D information to improve model generalization.
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