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Abstract

Class-Incremental Learning (CIL) aims to learn a classi-

fication model with the number of classes increasing phase-

by-phase. An inherent problem in CIL is the stability-

plasticity dilemma between the learning of old and new

classes, i.e., high-plasticity models easily forget old classes,

but high-stability models are weak to learn new classes.

We alleviate this issue by proposing a novel network ar-

chitecture called Adaptive Aggregation Networks (AANets)

in which we explicitly build two types of residual blocks at

each residual level (taking ResNet as the baseline architec-

ture): a stable block and a plastic block. We aggregate the

output feature maps from these two blocks and then feed the

results to the next-level blocks. We adapt the aggregation

weights in order to balance these two types of blocks, i.e.,

to balance stability and plasticity, dynamically. We conduct

extensive experiments on three CIL benchmarks: CIFAR-

100, ImageNet-Subset, and ImageNet, and show that many

existing CIL methods can be straightforwardly incorpo-

rated into the architecture of AANets to boost their perfor-

mances1.

1. Introduction

AI systems are expected to work in an incremental

manner when the amount of knowledge increases over

time. They should be capable of learning new concepts

while maintaining the ability to recognize previous ones.

However, deep-neural-network-based systems often suffer

from serious forgetting problems (called “catastrophic for-

getting”) when they are continuously updated using new

coming data. This is due to two facts: (i) the updates

can override the knowledge acquired from the previous

data [19, 27, 28, 33, 40], and (ii) the model can not replay

the entire previous data to regain the old knowledge.

To encourage solving these problems, [34] defined a

1Code: https://class-il.mpi-inf.mpg.de/

class-incremental learning (CIL) protocol for image clas-

sification where the training data of different classes grad-

ually come phase-by-phase. In each phase, the classifier is

re-trained on new class data, and then evaluated on the test

data of both old and new classes. To prevent trivial algo-

rithms such as storing all old data for replaying, there is a

strict memory budget due to which a tiny set of exemplars

of old classes can be saved in the memory. This memory

constraint causes a serious data imbalance problem between

old and new classes, and indirectly causes the main problem

of CIL – the stability-plasticity dilemma [29]. In particular,

higher plasticity results in the forgetting of old classes [27],

while higher stability weakens the model from learning the

data of new classes (that contain a large number of samples).

Existing CIL works try to balance stability and plasticity us-

ing data strategies. For example, as illustrated in Figure 1

(a) and (b), some early methods train their models on the

imbalanced dataset where there is only a small set of exem-

plars for old classes [23, 34], and recent methods include a

fine-tuning step using a balanced subset of exemplars sam-

pled from all classes [4, 11, 16]. However, these data strate-

gies are still limited in terms of effectiveness. For example,

when using the models trained after 25 phases, LUCIR [16]

and Mnemonics [25] “forget” the initial 50 classes by 30%
and 20%, respectively, on the ImageNet dataset [37].

In this paper, we address the stability-plasticity dilemma

by introducing a novel network architecture called Adaptive

Aggregation Networks (AANets). Taking the ResNet [14]

as an example of baseline architectures, we explicitly build

two residual blocks (at each residual level) in AANets: one

for maintaining the knowledge of old classes (i.e., the stabil-

ity) and the other for learning new classes (i.e., the plastic-

ity), as shown in Figure 1 (c). We achieve these by allowing

these two blocks to have different levels of learnability, i.e.,

less learnable parameters in the stable block but more in the

plastic one. We apply aggregation weights to the output fea-

ture maps of these blocks, sum them up, and pass the result

maps to the next residual level. In this way, we are able

to dynamically balance the usage of these blocks by updat-
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ing their aggregation weights. To achieve auto-updating, we

take the weights as hyperparameters and optimize them in

an end-to-end manner [12, 25, 48].

Technically, the overall optimization of AANets is

bilevel. Level-1 is to learn the network parameters for two

types of residual blocks, and level-2 is to adapt their aggre-

gation weights. More specifically, level-1 is the standard

optimization of network parameters, for which we use all

the data available in the phase. Level-2 aims to balance the

usage of the two types of blocks, for which we optimize the

aggregation weights using a balanced subset (by downsam-

pling the data of new classes), as illustrated in Figure 1 (c).

We formulate these two levels in a bilevel optimization pro-

gram (BOP) [41] that solves two optimization problems al-

ternatively, i.e., update network parameters with aggrega-

tion weights fixed, and then switch. For evaluation, we con-

duct CIL experiments on three widely-used benchmarks,

CIFAR-100, ImageNet-Subset, and ImageNet. We find that

many existing CIL methods, e.g., iCaRL [34], LUCIR [16],

Mnemonics Training [25], and PODNet [11], can be di-

rectly incorporated in the architecture of AANets, yield-

ing consistent performance improvements. We observe that

a straightforward plug-in causes memory overheads, e.g.,

26% and 15% respectively for CIFAR-100 and ImageNet-

Subset. For a fair comparison, we conduct additional exper-

iments under the settings of zero overhead (e.g., by reducing

the number of old exemplars for training AANets), and vali-

date that our approach still achieves top performance across

all datasets.

Our contribution is three-fold: 1) a novel and generic

network architecture called AANets specially designed for

tackling the stability-plasticity dilemma in CIL tasks; 2) a

BOP-based formulation and an end-to-end training solution

for optimizing AANets; and 3) extensive experiments on

three CIL benchmarks by incorporating four baseline meth-

ods in the architecture of AANets.

2. Related Work

Incremental learning aims to learn efficient machine mod-

els from the data that gradually come in a sequence of train-

ing phases. Closely related topics are referred to as contin-

ual learning [10, 26] and lifelong learning [2, 7, 22]. Recent

incremental learning approaches are either task-based, i.e.,

all-class data come but are from a different dataset for each

new phase [5,6,8,17,23,35,40,54], or class-based i.e., each

phase has the data of a new set of classes coming from the

identical dataset [4, 16, 18, 25, 34, 48, 53]. The latter one

is typically called class-incremental learning (CIL), and our

work is based on this setting. Related methods mainly focus

on how to solve the problems of forgetting old data. Based

on their specific methods, they can be categorized into three

classes: regularization-based, replay-based, and parameter-

isolation-based [9, 30].

Regularization-based methods introduce regularization

terms in the loss function to consolidate previous knowl-

edge when learning new data. Li et al. [23] proposed the

regularization term of knowledge distillation [15]. Hou et

al. [16] introduced a series of new regularization terms such

as for less-forgetting constraint and inter-class separation to

mitigate the negative effects caused by the data imbalance

between old and new classes. Douillard et al. [11] proposed

an effective spatial- based distillation loss applied through-

out the model and also a representation comprising multiple

proxy vectors for each object class. Tao et al. [44] built the

framework with a topology-preserving loss to maintain the

topology in the feature space. Yu et al. [51] estimated the

drift of previous classes during the training of new classes.

Replay-based methods store a tiny subset of old data, and

replay the model on them (together with new class data) to

reduce the forgetting. Rebuffi et al. [34] picked the nearest

neighbors to the average sample per class to build this sub-

set. Liu et al. [25] parameterized the samples in the subset,

and then meta-optimized them automatically in an end-to-

end manner taking the representation ability of the whole

set as the meta-learning objective. Belouadah et al. [3] pro-

posed to leverage a second memory to store statistics of old

classes in rather compact formats.

Parameter-isolation-based methods are used in task-based

incremental learning (but not CIL). Related methods ded-

icate different model parameters for different incremental

phases, to prevent model forgetting (caused by parameter

overwritten). If no constraints on the size of the neural net-

work is given, one can grow new branches for new tasks

while freezing old branches. Rusu et al. [38] proposed “pro-

gressive networks” to integrate the desiderata of different

tasks directly into the networks. Abati et al. [1] equipped

each convolution layer with task-specific gating modules

that select specific filters to learn each new task. Ra-

jasegaran et al. [31] progressively chose the optimal paths

for the new task while encouraging to share parameters

across tasks. Xu et al. [49] searched for the best neural net-

work architecture for each coming task by leveraging rein-

forcement learning strategies. Our differences with these

methods include the following aspects. We focus on class-

incremental learning, and more importantly, our approach

does not continuously increase the network size. We val-

idate in the experiments that under a strict memory bud-

get, our approach can surpass many related methods and its

plug-in versions on these related methods can bring consis-

tent performance improvements.

Bilevel Optimization Program can be used to optimize hy-

perparameters of deep models. Technically, the network

parameters are updated at one level and the key hyperpa-

rameters are updated at another level [13,21,24,45,46,52].

Recently, a few bilevel-optimization-based approaches have

emerged for tackling incremental learning tasks. Wu et
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Figure 1. Conceptual illustrations of different CIL methods. (a) Conventional methods use all available data (which are imbalanced among

classes) to train the model [16,34] (b) Recent methods [4,11,16,25] follow this convention but add a fine-tuning step on a balanced subset

of all classes. (c) The proposed Adaptive Aggregation Networks (AANets) is a new architecture and it applies a different data strategy:

using all available data to update the parameters of plastic and stable blocks, and the balanced set of exemplars to adapt the aggregation

weights for these blocks. Our key lies in that adapted weights can balance the usage of the plastic and stable blocks, i.e., balance between

plasticity and stability. *: herding is the method to choose exemplars [47], and can be replaced by others, e.g., mnemonics training in [25].

We highlight that in the implementation of AANets, we strictly control the memory (i.e., the sizes of input data and residual blocks)

within the same budget as the other methods. Please refer to the details in the section of experiments.

al. [48] learned a bias correction layer for incremental learn-

ing models using a bilevel optimization framework. Ra-

jasegaran et al. [32] incrementally learned new tasks while

learning a generic model to retain the knowledge from all

tasks. Riemer et al. [36] learned network updates that are

well-aligned with previous phases, such as to avoid learning

towards any distracting directions. In our work, we apply

the bilevel optimization program to update the aggregation

weights in our AANets.

3. Adaptive Aggregation Networks (AANets)

Class-Incremental Learning (CIL) usually assumes (N+
1) learning phases in total, i.e., one initial phase and N in-

cremental phases during which the number of classes grad-

ually increases [11, 16, 18, 25]. In the initial phase, data

D0 is available to train the first model Θ0. There is a strict

memory budget in CIL systems, so after the phase, only a

small subset of D0 (exemplars denoted as E0) can be stored

in the memory and used as replay samples in later phases.

Specifically in the i-th (i � 1) phase, we load the exem-

plars of old classes E0:i�1 = {E0, . . . , Ei�1} to train model

Θi together with new class data Di. Then, we evaluate the

trained model on the test data containing both old and new

classes. We repeat such training and evaluation through all

phases.

The key issue of CIL is that the models trained at new

phases easily “forget” old classes. To tackle this, we intro-

duce a novel architecture called AANets. AANets is based

on a ResNet-type architecture, and each of its residual lev-

els is composed of two types of residual blocks: a plastic

one to adapt to new class data and a stable one to main-

tain the knowledge learned from old classes. The details of

this architecture are elaborated in Section 3.1. The steps for

optimizing AANets are given in Section 3.2.

3.1. Architecture Details

In Figure 2, we provide an illustrative example of our

AANets with three residual levels. The inputs x[0] are the

images and the outputs x[3] are the features used to train

classifiers. Each of our residual “levels” consists of two par-

allel residual “blocks” (of the original ResNet [14]): the or-

ange one (called plastic block) will have its parameters fully

adapted to new class data, while the blue one (called stable

block) has its parameters partially fixed in order to maintain

the knowledge learned from old classes. After feeding the

inputs to Level 1, we obtain two sets of feature maps respec-

tively from two blocks, and aggregate them after applying

the aggregation weights α[1]. Then, we feed the resulted

maps to Level 2 and repeat the aggregation. We apply the

same steps for Level 3. Finally, we pool the resulted maps

obtained from Level 3 to train classifiers. Below we elab-

orate the details of this dual-branch design as well as the

steps for feature extraction and aggregation.

Stable and Plastic Blocks. We deploy a pair of stable and

plastic blocks at each residual level, aiming to balance be-

tween the plasticity, i.e., for learning new classes, and sta-

bility, i.e., for not forgetting the knowledge of old classes.

We achieve these two types of blocks by allowing different

levels of learnability, i.e., less learnable parameters in the

stable block but more in the plastic. We detail the operations

in the following. In any CIL phase, Let η and φ represent

the learnable parameters of plastic and stable blocks, re-

spectively. η contains all the convolutional weights, while φ

contains only the neuron-level scaling weights [43]. Specif-

ically, these scaling weights are applied on the model θbase
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Level 1 Level 2 Level 3

Figure 2. An example architecture of AANets with three levels of residual blocks. At each level, we compute the feature maps from a

stable block (φ � θbase, blue) as well as a plastic block (η, orange), respectively, aggregate the maps with adapted weights, and feed the

result maps to the next level. The outputs of the final level are used to train classifiers. We highlight that this is a logical architecture of

AANets, and in real implementations, we strictly control the memory (i.e., the sizes of input data and residual blocks) within the

same budget as related works which deploy plain ResNets. Please refer to the details in the section of experiments.

obtained in the 0-th phase2. As a result, the number of learn-

able parameters φ is much less than that of η. For example,

when using 3 ⇥ 3 neurons in θbase, the number of learn-

able parameters φ is only 1
3⇥3 of the number of full network

parameters (while η has the full network parameters). We

further elaborate on these in the following paragraph.

Neuron-level Scaling Weights. For stable blocks, we learn

its neuron parameters in the 0-th phase and freeze them in

the other N phases. In these N phases, we apply a small set

of scaling weights φ at the neuron-level, i.e., each weight

for scaling one neuron in θbase. We aim to preserve the

structural pattern within the neuron and slowly adapt the

knowledge of the whole blocks to new class data. Specifi-

cally, we assume the q-th layer of θbase contains R neurons,

so we have R neuron weights as {Wq,r}
R
r=1. For concise-

ness, we denote them as Wq . For Wq , we learn R scaling

weights denoted as φq Let Xq�1 and Xq be the input and

output feature maps of the q-th layer, respectively. We apply

φq to Wq as follows,

Xq = (Wq � φq)Xq�1, (1)

where � donates the element-wise multiplication. Assum-

ing there are Q layers in total, the overall scaling weights

can be denoted as φ = {φq}
Q
q=1.

Feature Extraction and Aggregation. We elaborate on

the process of feature extraction and aggregation across all

residual levels in the AANets, as illustrated in Figure 2. Let

F
[k]
µ (·) denote the transformation function of the residual

block parameterized as µ at the Level k. Given a batch of

training images x[0], we feed them to AANets to compute

the feature maps at the k-th level (through the stable and

plastic blocks respectively) as follows,

x
[k]
φ = F

[k]
φ�θbase

(x[k�1]); x[k]
η = F [k]

η (x[k�1]). (2)

The transferability (of the knowledge learned from old

classes) is different at different levels of neural net-

works [50]. Therefore, it makes more sense to apply dif-

ferent aggregation weights for different levels of residual

2Related work [11,16,25] learned Θ0 in the 0-th phase using half of the

total classes. We follow the same way to train Θ0 and freeze it as θbase.

blocks. Let α
[k]
φ and α

[k]
η denote the aggregation weights of

the stable and plastic blocks, respectively, at the k-th level.

Then, the weighted sum of x
[k]
φ and x

[k]
η can be derived as

follows,

x[k] = α
[k]
φ · x

[k]
φ + α[k]

η · x[k]
η . (3)

In our illustrative example in Figure 2, there are three pairs

of weights to learn at each phase. Hence, it becomes in-

creasingly challenging to choose these weights manually

if multiple phases are involved. In this paper, we propose

an learning strategy to automatically adapt these weights,

i.e., optimizing the weights for different blocks in different

phases, see details in Section 3.2.

3.2. Optimization Steps

In each incremental phase, we optimize two groups of

learnable parameters in AANets: (a) the neuron-level scal-

ing weights φ for the stable blocks and the convolutional

weights η on the plastic blocks; (b) the feature aggregation

weights α. The former is for network parameters and the

latter is for hyperparameters. In this paper, we formulate

the overall optimization process as a bilevel optimization

program (BOP) [13, 25].

The Formulation of BOP. In AANets, the network param-

eters [φ, η] are trained using the aggregation weights α as

hyperparameters. In turn, α can be updated when temporar-

ily fixing network parameters [φ, η]. In this way, the opti-

mality of [φ, η] imposes a constraint on α and vise versa.

Ideally, in the i-th phase, the CIL system aims to learn the

optimal αi and [φi, ηi] that minimize the classification loss

on all training samples seen so far, i.e., Di [D0:i�1, so the

ideal BOP can be formulated as,

min
αi

L(αi,φ
⇤

i , η
⇤

i ;D0:i�1 [Di) (4a)

s.t. [φ⇤

i , η
⇤

i ] = argmin
[φi,ηi]

L(αi,φi, ηi;D0:i�1 [Di), (4b)

where L(·) denotes the loss function, e.g., cross-entropy

loss. Please note that for the conciseness of the formula-

tion, we use φi to represent φi � θbase (same in the fol-

2547



lowing equations). We call Problem 4a and Problem 4b the

upper-level and lower-level problems, respectively.

Data Strategy. To solve Problem 4, we need to use D0:i�1.

However, in the setting of CIL [11, 16, 34], we cannot ac-

cess D0:i�1 but only a small set of exemplars E0:i�1, e.g., 20
samples of each old class. Directly replacing D0:i�1 [ Di

with E0:i�1 [ Di in Problem 4 will lead to the forgetting

problem for the old classes. To alleviate this issue, we pro-

pose a new data strategy in which we use different training

data splits to learn different groups of parameters: 1) in the

upper-level problem, αi is used to balance the stable and

the plastic blocks, so we use the balanced subset to update

it, i.e., learning αi on E0:i�1[Ei adaptively; 2) in the lower-

level problem, [φi, ηi] are the network parameters used for

feature extraction, so we leverage all the available data to

train them, i.e., base-training [φi, ηi] on E0:i�1 [Di. Based

on these, we can reformulate the ideal BOP in Problem 4 as

a solvable BOP as follows,

min
αi

L(αi,φ
⇤

i , η
⇤

i ; E0:i�1 [ Ei) (5a)

s.t. [φ⇤

i , η
⇤

i ] = argmin
[φi,ηi]

L(αi,φi, ηi; E0:i�1 [Di), (5b)

where Problem 5a is the upper-level problem and Prob-

lem 5b is the lower-level problem we are going to solve.

Updating Parameters. We solve Problem 5 by alterna-

tively updating two groups of parameters (αi and [φ, η])
across epochs, e.g., if αi is updated in the j-th epoch, then

[φ, η] will be updated in the (j + 1)-th epoch, until both of

them converge. Taking the i-th phase as an example, we ini-

tialize αi,φi, ηi with αi�1,φi�1, ηi�1, respectively. Please

note that φ0 is initialized with ones, following [42,43]; η0 is

initialized with θbase; and α0 is initialized with 0.5. Based

on our Data Strategy, we use all available data in the cur-

rent phase to solve the lower-level problem, i.e., training

[φi, ηi] as follows,

[φi, ηi] [φi, ηi]� γ1r[φi,ηi]L(αi,φi, ηi; E0:i�1 [Di).
(6)

Then, we use a balanced exemplar set to solve the upper-

level problem, i.e., training αi as follows,

αi  αi � γ2rαi
L(αi,φi, ηi; E0:i�1 [ Ei), (7)

where γ1 and γ2 are the lower-level and upper-level learning

rates, respectively.

3.3. Algorithm

In Algorithm 1, we summarize the overall training steps

of the proposed AANets in the i-th incremental learning

phase (where i 2 [1, ..., N ]). Lines 1-4 show the pre-

processing including loading new data and old exemplars

(Line 1), initializing the two groups of learnable parame-

ters (Lines 2-3), and selecting the exemplars for new classes

Algorithm 1: AANets (in the i-th phase)

Input: New class data Di; old class exemplars

E0:i�1; old parameters αi�1, φi�1, ηi�1;

base model θbase.

Output: new parameters αi, φi, ηi; new class

exemplars Ei.
1 Get Di and load E0:i�1 from memory;

2 Initialize [φi, ηi] with [φi�1, ηi�1];
3 Initialize αi with αi�1;

4 Select exemplars Ei $ Di, e.g. by herding [16, 34]

or mnemonics training [25];

5 for epochs do

6 for mini-batches in E0:i�1 [Di do

7 Train [φi, ηi] on E0:i�1 [Di by Eq. 6;

8 end

9 for mini-batches in E0:i�1 [ Ei do

10 Learn αi on E0:i�1 [ Ei by Eq. 7;

11 end

12 end

13 Update exemplars Ei, e.g. by herding [16, 34] or

mnemonics training [25];

14 Replace E0:i�1 with E0:i�1 [ Ei in the memory.

(Line 4). Lines 5-12 optimize alternatively between the net-

work parameters and the Adaptive Aggregation weights. In

specific, Lines 6-8 and Lines 9-11 execute the training for

solving the upper-level and lower-level problems, respec-

tively. Lines 13-14 update the exemplars and save them to

the memory.

4. Experiments

We evaluate the proposed AANets on three CIL bench-

marks, i.e., CIFAR-100 [20], ImageNet-Subset [34] and Im-

ageNet [37]. We incorporate AANets into four baseline

methods and boost their model performances consistently

for all settings. Below we describe the datasets and im-

plementation details (Section 4.1), followed by the results

and analyses (Section 4.2) which include a detailed abla-

tion study, extensive comparisons to related methods, and

some visualization of the results.

4.1. Datasets and Implementation Details

Datasets. We conduct CIL experiments on two datasets,

CIFAR-100 [20] and ImageNet [37], following closely re-

lated work [11, 16, 25]. CIFAR-100 contains 60, 000 sam-

ples of 32 ⇥ 32 color images for 100 classes. There are

500 training and 100 test samples for each class. ImageNet

contains around 1.3 million samples of 224⇥ 224 color im-

ages for 1000 classes. There are approximately 1, 300 train-

ing and 50 test samples for each class. ImageNet is used

in two CIL settings: one based on a subset of 100 classes
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Row Ablation Setting
CIFAR-100 (acc.%) ImageNet-Subset (acc.%)

Memory FLOPs #Param N=5 10 25 Memory FLOPs #Param N=5 10 25

1 single-branch “all” [16] 7.64MB 70M 469K 63.17 60.14 57.54 330MB 1.82G 11.2M 70.84 68.32 61.44

2 “all” + “all” 9.43MB 140M 938K 64.49 61.89 58.87 372MB 3.64G 22.4M 69.72 66.69 63.29

3 “all” + “scaling” 9.66MB 140M 530K 66.74 65.29 63.50 378MB 3.64G 12.6M 72.55 69.22 67.60

4 “all” + “frozen” 9.43MB 140M 469K 65.62 64.05 63.67 372MB 3.64G 11.2M 71.71 69.87 67.92

5 “scaling” + “frozen” 9.66MB 140M 60K 64.71 63.65 62.89 378MB 3.64G 1.4M 73.01 71.65 70.30

6 w/o balanced E 9.66MB 140M 530K 65.91 64.70 63.08 378MB 3.64G 12.6M 70.30 69.92 66.89

7 w/o adapted α 9.66MB 140M 530K 65.89 64.49 62.89 378MB 3.64G 12.6M 70.31 68.71 66.34

8 strict memory budget 7.64MB 140M 530K 66.46 65.38 61.79 330MB 3.64G 12.6M 72.21 69.10 67.10

Table 1. Ablation study. The baseline (Row 1) is LUCIR [16]. “all”, “scaling”, and “frozen” denote three types of blocks and they have

different numbers of learnable parameters, e.g., “all” means all convolutional weights and biases are learnable. If we name them as A, B,

and C, we use A+B in the table to denote the setting of using A-type and B-type blocks respectively as plastic and stable blocks. See more

details in Section 4.2 Ablation settings. Adapted α are applied on Rows 3-8. “all”+“scaling” is the default setting of Rows 6-8. “#Param”

indicates the number of learnable parameters. “Memory” denotes the peak memory for storing the exemplars and the learnable & frozen

network parameters during the model training through all phases. Please refer to more results in the supplementary materials.

(ImageNet-Subset) and the other based on the full set of

1, 000 classes. The 100-class data for ImageNet-Subset are

sampled from ImageNet in the same way as [11, 16].

Architectures. Following the exact settings in [16, 25],

we deploy a 32-layer ResNet as the baseline architecture

(based on which we build the AANets) for CIFAR-100.

This ResNet consists of 1 initial convolution layer and 3
residual blocks (in a single branch). Each block has 10
convolution layers with 3 ⇥ 3 kernels. The number of fil-

ters starts from 16 and is doubled every next block. After

these 3 blocks, there is an average-pooling layer to com-

press the output feature maps to a feature embedding. To

build AANets, we convert these 3 blocks into three levels

of blocks and each level consists of a stable block and a

plastic block, referring to Section 3.1. Similarly, we build

AANets for ImageNet benchmarks but taking an 18-layer

ResNet [14] as the baseline architecture [16, 25]. Please

note that there is no architecture change applied to the clas-

sifiers, i.e., using the same FC layers as in [16, 25].

Hyperparameters and Configuration. The learning rates

γ1 and γ2 are initialized as 0.1 and 1 ⇥ 10�8, respectively.

We impose a constraint on each pair of αη and αφ to make

sure αη + αφ = 1. For fair comparison, our training hyper-

paramters are almost the same as in [11, 25]. Specifically,

on the CIFAR-100 (ImageNet), we train the model for 160
(90) epochs in each phase, and the learning rates are divided

by 10 after 80 (30) and then after 120 (60) epochs. We use

an SGD optimizer with the momentum 0.9 and the batch

size 128 to train the models in all settings.

Memory Budget. By default, we follow the same data

replay settings used in [11, 16, 25, 34], where each time

reserves 20 exemplars per old class. In our “strict mem-

ory budget” settings, we strictly control the memory budget

shared by the exemplars and the model parameters. For ex-

ample, if we incorporate AANets to LUCIR [16], we need

to reduce the number of exemplars to balance the additional

memory used by model parameters (as AANets take around

20% more parameters than plain ResNets). As a result, we

reduce the numbers of exemplars for AANets from 20 to 13,

16 and 19, respectively, for CIFAR-100, ImageNet-Subset,

and ImageNet, in the “strict memory budget” setting. For

example, on CIFAR-100, we use 530k additional parame-

ters, so we need to reduce 530kfloats⇥4bytes/float÷(32⇥
32⇥ 3bytes/image)÷ 100classes ⇡ 7images/class.

Benchmark Protocol. We follow the common protocol

used in [11, 16, 25]. Given a dataset, the model is trained

on half of the classes in the 0-th phase. Then, it learns the

remaining classes evenly in the subsequent N phases. For

N , there are three options as 5, 10, and 25, and the corre-

sponding settings are called “N -phase”. In each phase, the

model is evaluated on the test data for all seen classes. The

average accuracy (over all phases) is reported. For each set-

ting, we run the experiment three times and report averages

and 95% confidence intervals.

4.2. Results and Analyses

Table 1 summarizes the statistics and results in 8 abla-

tive settings. Table 2 presents the results of 4 state-of-the-

art methods w/ and w/o AANets as a plug-in architecture,

and the reported results from some other comparable work.

Figure 3 compares the activation maps (by Grad-CAM [39])

produced by different types of residual blocks and for the

classes seen in different phases. Figure 4 shows the changes

of values of αη and αφ across 10 incremental phases.

Ablation Settings. Table 1 shows the ablation study. By

differentiating the numbers of learnable parameters, we can

have 3 block types: 1) “all” for learning all the convolu-

tional weights and biases; 2) “scaling” for learning neuron-

level scaling weights [43] on the top of a frozen base model

θbase; and 3) “frozen” for using only θbase (always frozen).
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Method
CIFAR-100 ImageNet-Subset ImageNet

N=5 10 25 5 10 25 5 10 25

LwF [23] 49.59 46.98 45.51 53.62 47.64 44.32 44.35 38.90 36.87

BiC [48] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47

TPCIL [44] 65.34 63.58 – 76.27 74.81 – 64.89 62.88 –

iCaRL [34] 57.12±0.50 52.66±0.89 48.22±0.76 65.44±0.35 59.88±0.83 52.97±1.02 51.50±0.43 46.89±0.35 43.14±0.67

w/ AANets (ours) 64.22±0.42 60.26±0.73 56.43±0.81 73.45±0.51 71.78±0.64 69.22±0.83 63.91±0.59 61.28±0.49 56.97±0.86

LUCIR [16] 63.17±0.87 60.14±0.73 57.54±0.43 70.84±0.69 68.32±0.81 61.44±0.91 64.45±0.32 61.57±0.23 56.56±0.36

w/ AANets (ours) 66.74±0.37 65.29±0.43 63.50±0.61 72.55±0.67 69.22±0.72 67.60±0.39 64.94±0.25 62.39±0.61 60.68±0.58

Mnemonics [25] 63.34±0.62 62.28±0.43 60.96±0.72 72.58±0.85 71.37±0.56 69.74±0.39 64.54±0.49 63.01±0.57 61.00±0.71

w/ AANets (ours) 67.59±0.34 65.66±0.61 63.35±0.72 72.91±0.53 71.93±0.37 70.70±0.45 65.23±0.62 63.60±0.71 61.53±0.29

PODNet-CNN [11] 64.83±1.11 63.19±1.31 60.72±1.54 75.54±0.29 74.33±1.05 68.31±2.77 66.95 64.13 59.17

w/ AANets (ours) 66.31±0.87 64.31±0.90 62.31±1.02 76.96±0.53 75.58±0.74 71.78±0.81 67.73±0.71 64.85±0.53 61.78±0.61

Table 2. Average incremental accuracies (%) of four state-of-the-art methods w/ and w/o our AANets as a plug-in architecture. In the

upper block, we present some comparable results reported in some other related works. Please note 1) [11] didn’t report the results for

N=25 on the ImageNet, and we produce the results using their public code; 2) [25] updated their results on arXiv (after fixing a bug in their

code), different from its conference version; 3) for “w/ AANets”, we use “all”+“scaling” blocks corresponding to Row 3 of Table 1; and

4) if applying “strict memory budget”, there is little performance drop. Corresponding results are given in Table 1 and Table S2 in

the supplementary materials.

In Table 1, the pattern of combining blocks is A+B where

A and B stands for the plastic and the stable blocks, respec-

tively. Rows 1 is the baseline method LUCIR [16]. Row 2

is a double-branch version for LUCIR without learning any

aggregation weights. Rows 3-5 are our AANets using dif-

ferent combinations of blocks. Row 6-8 use “all”+“scaling”

under an additional setting as follows. 1) Row 6 uses imbal-

anced data E0:i�1 [Di to train α adaptively. 2) Row 7 uses

fixed weights αη = αφ = 0.5 at each residual level. 3) Row

8 is under the “strict memory budget” setting, where we re-

duce the numbers of exemplars to 14 and 17 for CIFAR-100

and ImageNet-Subset, respectively.

Ablation Results. In Table 1, if comparing the sec-

ond block (ours) to the first block (single-branch and

double-branch baselines), it is obvious that using AANets

can clearly improve the model performance, e.g., “scal-

ing”+“frozen” gains an average of 4.8% over LUCIR for

the ImageNet-Subset, by optimizing 1.4M parameters dur-

ing CIL — only 12.6% of that in LUCIR. Among Rows 3-5,

we can see that for the ImageNet-Subset, models with the

fewest learnable parameters (“scaling”+“frozen”) work the

best. We think this is because we use shallower networks

for learning larger datasets (ResNet-32 for CIFAR-100;

ResNet-18 for ImageNet-Subset), following the Bench-

mark Protocol. In other words, θbase is quite well-trained

with the rich data of half ImageNet-Subset (50 classes in

the 0-th phase), and can offer high-quality features for later

phases. Comparing Row 6 to Row 3 shows the efficiency

of using a balanced subset to optimize α. Comparing Row

7 to Row 3 shows the superiority of learning α (which is

dynamic and optimal) over manually-choosing α.

About the Memory Usage. By comparing Row 3 to Row 1,

we can see that AANets can clearly improve the model per-

formance while introducing small overheads for the mem-

ory, e.g., 26% and 14.5% on the CIFAR-100 and ImageNet-

Subset, respectively. If comparing Row 8 to Row 3, we

find that though the numbers of exemplars are reduced (for

Row 8), the model performance of AANets has a very small

drop, e.g., only 0.3% for the 5-Phase CIL models of CIFAR-

100 and ImageNet-Subset. Therefore, we can conclude that

AANets can achieve rather satisfactory performance under

strict memory control — a desirable feature needed in class-

incremental learning systems.

Comparing to the State-of-the-Art. Table 2 shows that

taking our AANets as a plug-in architecture for 4 state-

of-the-art methods [11, 16, 25, 34] consistently improves

their model performances. E.g., for CIFAR-100, LUCIR

w/ AANets and Mnemonics w/ AANets respectively gains

4.9% and 3.3% improvements on average. From Table 2,

we can see that our approach of using AANets achieves

top performances in all settings. Interestingly, we find that

AANets can boost more performance for simpler baseline

methods, e.g., iCaRL. iCaRL w/ AANets achieves mostly

better results than those of LUCIR on three datasets, even

though the latter method deploys various regularization

techniques.

Visualizing Activation Maps. Figure 3 demonstrates

the activation maps visualized by Grad-CAM for the fi-

nal model (obtained after 5 phases) on ImageNet-Subset

(N=5). The visualized samples from left to right are picked

from the classes coming in the 0-th, 3-rd and 5-th phases, re-

spectively. For the 0-th phase samples, the model makes the

prediction according to foreground regions (right) detected

by the stable block and background regions (wrong) by the

2550



Classes seen in Phase 0

image AANets stable plastic

go
ld

fi
n

ch
go

ld
fi

n
ch

q
u

ai
l

image AANets stable plastic

te
rr

ie
r

te
rr

ie
r

d
h

o
le

Classes seen in Phase 3

image AANets stable plastic

A
rc

ti
c 

fo
x

A
rc

ti
c 

fo
x

ca
n

 o
p

en
er

Classes seen in Phase 5

Figure 3. The activation maps using Grad-CAM [39] for the 5-th phase (the last phase) model on ImageNet-Subset (N=5). Samples are

selected from the classes coming in the 0-th phase (left), the 3-rd phase (middle), and the 5-th phase (right), respectively. Green tick (red

cross) means the discriminative features are activated on the object regions successfully (unsuccessfully). ᾱη = 0.428 and ᾱφ = 0.572.
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Figure 4. The values of αη and αφ adapted for each residual level

and in each incremental phase. All curves are smoothed with a

rate of 0.8 for better visualization.

plastic block. This is because, through multiple phases of

full updates, the plastic block forgets the knowledge of these

old samples while the stable block successfully retains it.

This situation is reversed when using that model to recog-

nize the 5-th phase samples. The reason is that the stable

block is far less learnable than the plastic block, and may

fail to adapt to new data. For all shown samples, the model

extracts features as informative as possible in two blocks.

Then, it aggregates these features using the weights adapted

from the balanced dataset, and thus can make a good bal-

ance of the features to achieve the best prediction.

Aggregation Weights (αη and αφ). Figure 4 shows the

values of αη and αφ learned during training 10-phase mod-

els. Each row displays three plots for three residual levels

of AANets respectively. Comparing among columns, we

can see that Level 1 tends to get larger values of αφ, while

Level 3 tends to get larger values of αη . This can be in-

terpreted as lower-level residual blocks learn to stay stabler

which is intuitively correct in deep models. With respect

to the learning activity of CIL models, it is to continuously

transfer the learned knowledge to subsequent phases. The

features at different resolutions (levels in our case) have dif-

ferent transferabilities [50]. Level 1 encodes low-level fea-

tures that are more stable and shareable among all classes.

Level 3 nears the classifiers, and tends to be more plastic

such as to fast to adapt to new classes.

5. Conclusions

We introduce a novel network architecture AANets spe-

cially for CIL. Our main contribution lies in addressing

the issue of stability-plasticity dilemma in CIL by a sim-

ple modification on plain ResNets — applying two types of

residual blocks to respectively and specifically learn stabil-

ity and plasticity at each residual level, and then aggregating

them as a final representation. To achieve efficient aggrega-

tion, we adapt the level-specific and phase-specific weights

in an end-to-end manner. Our overall approach is generic

and can be easily incorporated into existing CIL methods to

boost their performance.
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Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and

Tinne Tuytelaars. A continual learning survey: Defying for-

getting in classification tasks. arXiv, 1909.08383, 2019. 2

[11] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas

Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-

tion for small-tasks incremental learning. In ECCV, 2020. 1,

2, 3, 4, 5, 6, 7, 12, 13

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, pages 1126–1135, 2017. 2

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, pages

2672–2680, 2014. 2, 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 1, 3, 6

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-

ing the knowledge in a neural network. arXiv, 1503.02531,

2015. 2

[16] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and

Dahua Lin. Learning a unified classifier incrementally via

rebalancing. In CVPR, pages 831–839, 2019. 1, 2, 3, 4, 5, 6,

7, 11, 12, 13

[17] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zheng-

wei Tao, Jinwen Ma, Dongyan Zhao, and Rui Yan. Overcom-

ing catastrophic forgetting for continual learning via model

adaptation. In ICLR, 2019. 2

[18] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua,

and Hanwang Zhang. Distilling causal effect of data in class-

incremental learning. In CVPR, 2021. 2, 3

[19] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L.

Hayes, and Christopher Kanan. Measuring catastrophic for-

getting in neural networks. In AAAI, pages 3390–3398, 2018.

1

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 5

[21] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao

Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to

self-train for semi-supervised few-shot classification. In

NeurIPS, pages 10276–10286, 2019. 2

[22] Yingying Li, Xin Chen, and Na Li. Online optimal control

with linear dynamics and predictions: Algorithms and regret

analysis. In NeurIPS, pages 14858–14870, 2019. 2

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 40(12):2935–2947, 2018. 1, 2, 7, 13

[24] Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of

epoch-wise empirical bayes for few-shot learning. In ECCV,

pages 404–421, 2020. 2

[25] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and

Qianru Sun. Mnemonics training: Multi-class incremental

learning without forgetting. In CVPR, pages 12245–12254,

2020. 1, 2, 3, 4, 5, 6, 7, 12, 13

[26] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In NIPS, pages

6467–6476, 2017. 2

[27] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of Learning and Motivation, vol-

ume 24, pages 109–165. Elsevier, 1989. 1

[28] K. McRae and P. Hetherington. Catastrophic interference is

eliminated in pre-trained networks. In CogSci, 1993. 1
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