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Abstract

Encouraging progress in few-shot semantic segmenta-

tion has been made by leveraging features learned upon

base classes with sufficient training data to represent novel

classes with few-shot examples. However, this feature shar-

ing mechanism inevitably causes semantic aliasing between

novel classes when they have similar compositions of se-

mantic concepts. In this paper, we reformulate few-shot seg-

mentation as a semantic reconstruction problem, and con-

vert base class features into a series of basis vectors which

span a class-level semantic space for novel class recon-

struction. By introducing contrastive loss, we maximize the

orthogonality of basis vectors while minimizing semantic

aliasing between classes. Within the reconstructed repre-

sentation space, we further suppress interference from other

classes by projecting query features to the support vector

for precise semantic activation. Our proposed approach,

referred to as anti-aliasing semantic reconstruction (ASR),

provides a systematic yet interpretable solution for few-shot

learning problems. Extensive experiments on PASCAL VOC

and MS COCO datasets show that ASR achieves strong re-

sults compared with the prior works. Code will be released

at github.com/Bibkiller/ASR.

1. Introduction

Over the past few years, we have witnessed the sub-

stantial progress of object detection and semantic segmen-

tation [45, 46, 28, 48, 1, 14]. This can be attributed to

convolutional neural networks (CNNs) with excellent rep-

resentation capability and the availability of large datasets

with concise mask annotations, especially. However, an-

notating a large number of object masks is expensive and

infeasible in some scenarios (e.g., computer-aided diagno-

sis systems). Few-shot semantic segmentation, which aims

to generalize a model pre-trained on base classes of suffi-
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Figure 1. Comparison of conventional methods and our ASR

method. While conventional methods represent novel classes

(e.g., cat and dog) within the feature space specified for base

classes without considering the semantic aliasing, ASR imple-

ments semantic reconstruction by constructing a class-level se-

mantic space where basis vectors are orthogonal and the semantic

interference is reduced.

cient data to novel classes with only a few examples, has

emerged as a promising technique.

In few-shot segmentation, the generalization process is

to utilize features learned upon base classes with sufficient

training data to represent novel classes. However, for the

overlapped semantics among features, the intricate many-

to-many correspondence between features and classes in-

evitably causes semantic aliasing1 between novel classes

when they have similar compositions of semantic concepts.

For example, a cat and a dog appear in the same query im-

1Semantic aliasing refers to an effect that causes classes to be indistin-

guishable due to the sharing of semantics among features.
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age are confused because they correspond to the similar fea-

tures of the base classes for bears and sheep, which results

in false segmentation, Fig. 1(left).

In this paper, we reformulate the few-shot segmentation

task as a semantic reconstruction problem and propose an

anti-aliasing semantic reconstruction (ASR) approach. To

fulfil semantic reconstruction, we first span a class-level se-

mantic space. During the training phase, convolutional fea-

ture channels are categorized into channel groups, each of

which is optimized for constructing a basis vector corre-

sponding to a base class. This suppresses the semantic over-

lap between feature channels. We further introduce a con-

trastive loss to enhance the orthogonality of basis vectors

and improve their representation capability. In the space,

the semantic vectors of novel classes are represented by

weighted basis vector reconstruction. Due to the potential

class-level semantic similarity, the novel class will be re-

constructed by its semantic-proximal base classes. In this

way, novel classes inherit the orthogonality of base classes

and are distinguishable, Fig. 1(middle right).

To suppress interfering semantics from the background

or other classes within the same query image, we further

propose the semantic filtering module, which projects query

feature vectors to the reconstructed support vector. As

the support images have precise semantics guided by the

ground-truth annotations, the projection operation divorces

interfering semantics, which facilities the activation of tar-

get object classes, Fig. 1(bottom right). In the metric learn-

ing framework, ASR implements semantic anti-aliasing be-

tween novel classes and within query images, providing a

systematic solution for few-shot learning, Fig. 2. Such anti-

aliasing can be analyzed from perspectives of vector orthog-

onality and sparse reconstruction, making ASR an inter-

pretable approach.

The contributions of this study include:

• We propose a systematic and interpretable anti-

aliasing semantic reconstruction (ASR) approach for

few-shot semantic segmentation, by converting the

base class features into a series of basis vectors for se-

mantic reconstruction.

• We propose semantic span, which reduces the seman-

tic aliasing between base classes for precise novel class

reconstruction. Based on semantic span, we further

propose semantic filtering, to eliminate interfering se-

mantics within the query image.

• ASR improves the prior approaches with significant

margins when applied to commonly used datasets. It

also achieves good performance under the two-way

few-shot segmentation settings.

2. Related Works

Semantic Segmentation. Benefiting from the superi-

ority of fully convolutional networks, semantic segmen-

tation [2, 39, 48] has progressed substantially in recent

years. Relevant research has also provided some fundamen-

tal techniques, such as multi-scale feature aggregation [48]

and atrous spatial pyramid pooling (ASPP) [2], which en-

hance few-shot semantic segmentation. However, these

methods generally require large amounts of pixel-level an-

notations, which hinders their application in many real-

world scenarios.

Few-shot Learning. While meta-learning [36, 27, 8,

15, 44, 38, 21] contributed important optimization meth-

ods and data augmentation [13, 35] aggregated perfor-

mance, metric learning [32, 30, 11, 5] with prototype mod-

els [23, 4, 6, 41, 40, 18] represent the majority of few-shot

learning approaches. In metric learning frameworks, proto-

typical models convert spatial semantic information of ob-

jects to convolutional channels. With prototypes, metric

algorithms aim to obtain a high similarity score for simi-

lar sample pairs while a low similarity score for dissimilar

pairs. For example, Ref. [3] replaced the fully connected

layer with cosine similarity. Ref. [10] devises a few-shot

visual learning system that performs well on both base and

novel classes. DeepEMD [41] proposed the structural dis-

tance between dense image representations. Extra margin

constraints [20, 17] are absorbed into metric learning to

further adjust the inter-class diversity and intra-class vari-

ance. Despite the popularity of metric learning, the seman-

tic aliasing issue caused by the feature sharing mechanism

is unfortunately ignored.

Few-shot Segmentation. Early methods generally uti-

lized a parametric module, which uses features learned

through support image(s) to segment the query image.

In [26] support features were concatenated with the query

image to activate features within object regions for segmen-

tation. PGNet [42] and DAN [33] tackled semantic segmen-

tation with graphs and used graph reasoning to propagate

label information to the query image.

Following few-shot classification, prototype vectors

have been used as semantic representation across feature

channels. In [47], masked average pooling was utilized

to squeeze foreground information within the support im-

age(s) to prototype vectors. CANet [43] consisted of a two-

branch model which performs feature comparison between

the support image(s) and the query image guided by pro-

totypes. PANet [34] offered highly representative proto-

types for each semantic class and performs segmentation

over the query image based on pixel-wise matching. CR-

Net [22] proposed a cross-reference mechanism to concur-

rently make predictions for both the support image(s) and

the query image, enforcing co-occurrence of objects and

thereby improving the semantic transfer.
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Figure 2. Few-shot segmentation flowchart with Anti-aliasing Semantic Reconstruction (ASR). The flowchart defines a metric learning

framework consisting of a support branch (upper) and a query branch (lower), where reconstruction, semantic span, and semantic filtering

modules are plugged. While semantic span reduces the semantic aliasing between base classes driven by contrastive loss, semantic filtering

aims to suppress interfering semantics within the query image. (Best viewed in color)

PMMs [37] and PPNet [24] proposed to decompose ob-

jects into parts and represent such parts with mixed proto-

type vectors to counter semantic mixing. Despite the afore-

mentioned progress, existing methods remain ignorant of

the semantic aliasing issue, which causes false (or missing)

segmentation of object parts. SST [49] and SimProp [9] re-

spectively introduced self-supervised finetuning and simi-

larity propagation, which leverage the category-specific se-

mantic constraints to reduce semantic aliasing. However,

without considering the orthogonality of base class features,

they remain challenged by the semantic aliasing issue.

3. The Proposed Method

3.1. Problem Definition

Few-shot semantic segmentation aims to learn a model

(e.g., a network) which can generalize to previously unseen

classes. Given two image sets Dbase and Dnovel, classes in

Dnovel do not appear in Dbase, it requires to train the feature

representation on Dbase (which has sufficient data) and test

on Dnovel (which has only a few annotations). Both Dbase

and Dnovel contain several episodes, each of which consists

of a support set (As
i ,M

s
i )

K

i=1 and a query set (Aq,Mq),
where K,As

i ,M
s
i ,A

q and Mq respectively represent the

shot number, the support image, the support mask, the query

image, and the query mask. For each training episode, the

model is optimized to segment Aq driven by the segmenta-

tion loss Lseg . Segmentation performance is evaluated on

Dnovel across all the test episodes.

3.2. Semantic Reconstruction Framework

We propose a semantic reconstruction framework, where

the semantics of novel classes are explicitly reconstructed

by those of base classes, Fig. 2. Given support and query

images, after extracting convolutional features through a

CNN, the ground-truth mask is multiplied with support fea-

tures in a pixel-wised fashion to filter out background fea-

tures [47, 43, 22, 37, 24]. With a convolutional block we

reduce the number of feature channels and obtain support

features Fs
c ∈ R

H×W×(B×D) and query features Fq ∈
R

H×W×(B×D), where H ×W , B, and D respectively de-

note the size of feature maps, base class number, and fea-

ture channel number. During training phase, c denotes the

base class. And c denotes the novel class during testing

phase. The convolutional block consists of pyramid convo-

lution layers, which captures features from coarse to fine.

To explicitly encode class-related semantics, we averagely

partition the feature channels to B groups, corresponding to

B base classes. The grouped features Fs
c and Fq are fur-

ther spatially squeezed into two vectors vs
c and vq , termed

semantic vectors, by global average pooling, Fig. 2.

Corresponding to B base classes, the semantic vectors

vs
c and vq consists of B sub-vectors {vs

c,b}{b=1,2,...,B} ∈

R
D and {vq

b}{b=1,2,...,B} ∈ R
D. During the training phase,

the sub-vectors are used to construct basis vectors in the

B-dimensional class-level semantic space by the semantic

span module, as explained in Section 3.3, Fig. 2. In the

space, a basis vector (vb) corresponding to the b-th base

class is defined as vb = vs
c,b/||v

s
c,b|| = v

q
b/||v

q
b ||. In the

inference phase, the semantic vector for the c-th class in

support branch can be linearly reconstructed [16], as

v̂s
c =

B
∑

b=1

ws
c,b · vb, (1)

where v̂s
c denotes the reconstructed support seman-

tic vector (reconstructed support vector for short), and
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ws
c,b is the b-th element of the weight vector ws

c =
softmax([||vs

c,1||, ||v
s
c,2||, · · · , ||v

s
c,B ||]). Large ws

c,b indi-

cates that the basis vector, whose corresponding base class

have strong similarity with the c-th class, contributes much

to the reconstruction.

Consistently, given a query image, the corresponding

query features Fq are reconstructed by regarding each lo-

cation on the feature maps as a feature vector. Each

location of feature map is reconstructed as F̂q(x, y) =
∑B

b=1 W
q
b(x, y) · vb, where (x, y) denotes the coordinates

of pixels on the feature map, and W
q
b(x, y) is defined as the

norm of sub-vector F
q
b(x, y). Considering that the query

image contains objects not only belonging to the target class

but also other classes, we exploit the semantic filtering mod-

ule, as illustrated in Section 3.4, to filter out the interfering

components in the reconstructed query features for the c-th
target class semantic segmentation.

3.3. Semantic Span

Within the origin feature space, when base class features

are close to each other, there could be semantic aliasing

among novel classes. To minimize semantic aliasing, we

propose to span a class-level semantic space in the training

phase. To construct a group of basis vectors which tends to

be orthogonal and representative, we propose the semantic

span module (semantic span for short). As shown in Fig. 3,

the semantic span is driven by two loss functions, i.e., se-

mantic decoupling and contrastive losses.

On the one hand, the semantic span targets at construct-

ing basis vectors by regularizing the feature maps so that

each group of features is correlated to a special object class.

To fulfill this purpose, we propose the following semantic

decoupling loss, as

Ldec = log(1 + e−w
s
c ·y), (2)

෠𝐹𝑐𝑞(𝑥, 𝑦) ෠𝑉𝑐𝑠෠𝐹𝑞(𝑥, 𝑦)

…

𝑉𝑏𝑠

Projection ෠𝐅𝑐𝑞(𝑥, 𝑦) ො𝐯𝑐𝑠
Projection෠𝐅𝑞(𝑥, 𝑦)ො𝐯𝑐𝑠 ෠𝐅𝑐𝑞

(𝑥, 𝑦)
෠𝐅𝑞

Figure 4. Semantic filtering with vector projection to suppress in-

terfering semantics within the image. (Best viewed in color)

where ws
c denotes the reconstruction weight vector, and

y ∈ R
B denotes the one-hot class label of a support im-

age. Obviously, minimizing Ldec is equivalent to maximize

the reconstruction weights related to the specific class (e.g.,
the c-th class), while minimizing those unrelated to it. This

defines a soft manner converting a group of features cor-

related to the semantics of the specific class (e.g., the c-th
class) to its corresponding basis vector in the class-level se-

mantic space.

On the other hand, the semantic span targets at further

enhancing orthogonality of basis vectors, which improve

the quality of novel class reconstruction. In details, sub-

vectors in {vs
c,b}{b=1...B}∪{vq

b}{b=1...B} belonging to dif-

ferent classes are expected to be orthogonal to each other

while those corresponding to the same base classes, e.g.,
vs
c,b and v

q
b , are expected to have a small vector angle.

These two objectives are simultaneously achieved by mini-

mizing the contrastive loss defined as

Lcon =
e1+

∑
b 6=b′ |cos<v

s
c,b,v

q

b′
>|

e|cos<vs
c,b

,v
q

b
>|

, (3)

where cos < · > denotes the Cosine distance metric of

two vectors. In summary, the final loss of the semantic re-

construction framework is defined as:

L = αLdec + βLseg + γLcon, (4)

where α, β and γ are weights of the loss functions. Note

that Lcon is calculated during the later stage of training

phase.

3.4. Semantic Filtering

When multiple objects from different classes exist in the

same query image, the reconstructed features of the query

image contains components of all these classes. To pick

out objects belonging to the target class and suppress in-

terfering semantics, i.e., divorcing the semantics related to

the background or objects from other classes, we propose

a semantic filtering module. Moreover, owing to that the

reconstructed vectors of different classes are non-collinear,

the semantic filtering module is implemented by projecting

query feature vectors to the reconstructed support vector,

as shown in Fig. 4. This is also based on the fact that the

reconstructed support vector has precise semantics because
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Figure 5. While the semantic vectors without semantic span tends

to be mixed up in the semantic space, those with semantic span

repel one another towards orthogonality. (Best viewed in color)

the corresponding features have been multiplied with the

ground-truth mask, as shown in Fig. 2.

On the support branch, we follow Eq. 1 to reconstruct

the support features using basis vectors and obtain the re-

constructed support vector v̂s
c . On the query branch, we re-

construct each feature vector Fq(x, y) on the feature maps

in the same way and obtain the reconstructed features F̂ q .

We then project F̂q to v̂s
c to calculate filtered features as

F̂q
c(x, y) =

F̂q(x, y) · v̂s
c

||v̂s
c ||

·
v̂s
c

||v̂s
c ||

, (5)

where (x, y) denotes the coordinates of pixels on the fea-

ture maps. The intuitive effects of the filter operation are

displayed in Fig. 4, which illustrates that the support branch

guides the query branch more effectively. The filtered query

features F̂q
c are further enhanced by a residual convolutional

module with iterative refinement optimization and fed to

Atrous Spatial Pyramid Pooling (ASPP) to predict the seg-

mentation mask, Fig. 2. For the residual convolutional mod-

ule, we replace the history mask in CANet [43] with the

squeezed F̂q
c .

3.5. Interpretable Analysis

ASR can be analyzed from the perspectives of vector

orthogonality and sparse reconstruction. Without loss of

generality, we take the two-dimensional space as an exam-

ple. Denote v1,v2 ∈ R
2 two unit basis vectors (‖v1‖ =

1, ‖v2‖ = 1), which span the space. Denote θ as the

angle between v1 and v2, and cos θ = v1v2. Accord-

ing to the properties of linear algebra [16], any vectors,

e.g.,u1,u2 ∈ R
2, in the spanned space can be linearly re-

constructed as

{

u1 = C1(w11v1 + w12v2), ∀u1 ∈ R
2

u2 = C2(w21v1 + w22v2), ∀u2 ∈ R
2 (6)

where w11, w12, w21, w22 ∈ [0, 1] are reconstruction

weights which feed the linear constraints: w11 +w12 = 1.0
and w21+w22 = 1.0. C1 and C2 are scaling constants. The

0

0.1

0.2

0.3

0.4

0.5

0.6
bus car chair cow

W
ei

g
h

ts

Base classes

Novel classes

Figure 6. Sparse reconstruction weights of novel classes using the

base classes. (Best viewed in color)

cosine similarity between u1 and u2 is computed as

cos < u1,u2 >=
u1u2

|u1| |u2|

= (w11v1 + w12v2)(w21v1 + w22v2)

= w11w21 + (w11w22 + w21w12)v1v2 + w12w22

= w11w21 + (1− w11)(1− w21)

+ [w11(1− w21) + w21(1− w11)]cos θ

= 1 + (w11 + w21 − 2w11w21)(cos θ − 1),

(7)

where (w11 + w21 − 2w11w21) ∈ [0, 1] and (cos θ − 1) ∈
[−1, 0].

Orthogonality. To reduce semantic aliasing of any two

novel classes, the angle between their semantic vectors,

u1 and u2, should be large, known as to reduce cos <
u1,u2 >. According to the last line of Eq. 7, to obtain a

small cos < u1,u2 >, the term cos θ should approach to

0, which means that the angle between the basis vectors v1

and v2 is large, which implies the orthogonality of basis

vectors. The proposed ASR approach satisfies the orthogo-

nality by introducing the semantic span module. As shown

in Fig.5, the statistical visualization results over base classes

validate the orthogonality.

Sparse Reconstruction. Refer to the last line of Eq. 7,

the another manner to reduce the cos < u1,u2 > is en-

larging the term (w11 +w21 − 2w11w21). According to the

function characteristics, (w11+w21−2w11w21) reaches its

maximum when |w11-w21| approaches to 1.0, which con-

tains underlying conditions that |w11-w12| and |w21-w22|
approach to 1.0 due to the linear constraints. This illus-

trates that to further aggregate the capability of anti-aliasing

and guarantee the discrimination of novel classes, the re-

construction weights for novel classes should be differential

and sparse. ASR satisfies these requirements due to the po-

tential class-level semantic similarity according to the sta-

tistical results shown in Fig. 6. Meanwhile, nonzero weights

over multiple basis classes other than the dominate one en-

able ASR to distinguish novel classes from base classes.
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Backbone Method
1-shot 5-shot

Pascal-50 Pascal-51 Pascal-52 Pascal-53 Mean Pascal-50 Pascal-51 Pascal-52 Pascal-53 Mean

VGG16

OSLSM [29] 33.60 55.30 40.90 33.50 40.80 35.90 58.10 42.70 39.10 43.95

co-FCN [26] 36.70 50.60 44.90 32.40 41.10 - - - - -

SG-One [47] 40.20 58.40 48.40 38.40 46.30 41.90 58.60 48.60 39.40 47.10

PANet [34] 42.30 58.00 51.10 41.20 48.10 51.80 64.60 59.80 46.05 55.70

FWB [25] 47.04 59.64 52.61 48.27 51.90 50.87 62.86 56.48 50.09 55.08

PFENet [31] 56.90 68.20 54.40 52.40 58.00 59.00 69.10 54.80 52.90 59.00

RPMMs [37] 47.14 65.82 50.57 48.54 53.02 50.00 66.46 51.94 47.64 54.01

SST [49] 50.90 63.00 53.60 49.60 54.30 52.50 64.80 59.50 51.30 57.00

ASR (ours) 49.19 65.41 52.58 51.32 54.63 52.52 66.51 54.98 53.85 56.97

ASR* (ours) 50.21 66.35 54.26 51.81 55.66 53.68 68.49 55.03 54.78 57.99

Resnet50

CANet [43] 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10

PGNet [42] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50

CRNet [22] - - - - 55.70 - - - - 58.80

PPNet [24] 48.58 60.58 55.71 46.47 52.84 58.85 68.28 66.77 57.98 62.97

SimPropNet [9] 54.86 67.33 54.52 52.02 57.19 57.20 68.50 58.40 56.05 60.04

DAN [33] - - - - 57.10 - - - - 59.50

PFENet [31] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90

RPMMs [37] 55.15 66.91 52.61 50.68 56.34 56.28 67.34 54.52 51.00 57.30

ASR (ours) 53.81 69.56 51.63 52.76 56.94 56.17 70.56 53.89 53.38 58.50

ASR* (ours) 55.23 70.36 53.38 53.66 58.16 59.38 71.85 56.87 55.72 60.96

Table 1. Mean-IoU performance of 1-way 1-shot and 5-shot segmentation on Pascal-5i. ASR* denotes ASR with multi-scale evaluation.

Method
1-shot 5-shot

COCO-200 COCO-201 COCO-202 COCO-203 Mean COCO-200 COCO-201 COCO-202 COCO-203 Mean

FWB [25] 16.98 17.98 20.96 28.85 21.19 19.13 21.46 23.93 30.08 23.65

PFENet [31] 34.30 33.00 32.30 30.10 32.40 38.50 38.60 38.20 34.30 37.40

SST [49] - - - - 22.20 - - - - 31.30

DAN [33] - - - - 24.40 - - - - 29.60

RPMMs [37] 29.53 36.82 28.94 27.02 30.58 33.82 41.96 32.99 33.33 35.52

ASR (ours) 29.89 34.98 31.86 33.51 32.56 31.26 37.86 33.47 35.21 34.35

ASR* (ours) 30.62 36.73 32.68 35.35 33.85 33.12 39.51 34.16 36.21 35.75

Table 2. Mean-IoU performance of 1-shot and 5-shot semantic segmentation on COCO-20i. FWB and PFENet use the ResNet101 backbone

while other approaches use the ResNet50 backbone. ASR* denotes ASR with multi-scale evaluation.

4. Experiments

In this section, we first describe the experimental set-

tings. We then report the performance of ASR and compare

it with state-of-the-art methods. We finally present ablation

studies with experimental analysis and test the effectiveness

of ASR on other few-shot learning tasks.

4.1. Experimental Settings

Datasets. The experiments are conducted on PASCAL

VOC 2012 [7] and MS COCO [19] datasets. We com-

bine the PASCAL VOC 2012 with SBD [12] and separate

the combined dataset into four splits. The cross-validation

method is used to evaluate the proposed approach by sam-

pling one split as test categories Ctest = 4i+ 1, . . . , 4i+ 5,

where i is the index of a split. The remaining three splits

are set as base classes for training. The reorganized dataset

is termed as Pascal-5i [33, 37]. Following the settings

in [25, 33, 37] we construct the COCO-20i dataset. MS

COCO is divided into four splits, each of which contains

20 categories. We follow the same scheme for training and

evaluation as on the Pascal-5i. The category labels for the

Method 1-shot 5-shot

SG-One [47] 63.9 65.9

PANet [34] 66.5 70.7

CANet [43] 66.2 69.6

PGNet [42] 69.9 70.5

CRNet [22] 66.8 71.5

PFENet [31] 73.30 73.90

DAN [33] 71.90 72.30

PPNet [24] 69.19 75.76

ASR (ours) 71.33 72.51

ASR* (ours) 72.86 74.12

Table 3. Comparison of FB-IoU performance on Pascal-5i. ASR*

denotes ASR with multi-scale evaluation.

four splits are included in the supplementary material. For

each split, 1000 pairs of support and query images are ran-

domly selected for performance evaluation.

Training and Evaluation. We use CANet [43] with-

out attention modules as the baseline. In training, we set

the learning rate as 0.00045. The segmentation model

(network) is trained for 200000 steps with the poly de-
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Figure 7. Confusion matrices of baseline method and the proposed

ASR approach. (Best viewed in color)

scent training strategy and the stochastic gradient descent

(SGD) optimizer. Several data augmentation strategies in-

cluding normalization, horizontal flipping, gaussian filter-

ing, random cropping, random rotation and random resiz-

ing are used. We adopt both the single-scale and multi-

scale [43, 42, 22] evaluation strategies during testing. Our

approach is implemented upon the PyTorch 1.3 and run on

Nvidia Tesla V100 GPUs.

Evaluation Metric. Following [34, 25, 43], we use

the mean Intersection over Union (mIoU) and binary In-

tersection over Union (FB-IoU) as the performance evalua-

tion metrics. The mIoU calculates the per-class foreground

IoU and averages the IoU for all classes to obtain the fi-

nal evaluation metric. The FB-IoU calculates the mean of

foreground IoU and background IoU over all images re-

gardless of category. For category k, IoU is defined as

IoUk = TPk/(TPk + FPk + FNk), where the TPk, FPk

and FNk are the number of true positives, false positives

and false negatives in segmentation masks. mIoU is the

average of IoUs for all the test categories and FB-IoU is

the average of IoUs for all the test categories and the back-

ground. We report the segmentation performance by aver-

aging the mIoUs on the four cross-validation splits.

4.2. Segmentation Performance

PASCAL VOC. In Table 1, we report the performance

on Pascal VOC. ASR outperforms the prior methods with

significant margins. Under 1-shot settings, with a VGG16

backbone, it respectively outperforms RPMMs [37] and

SST [49] by 2.64% and 1.36%. Under the 1-shot settings,

with a ResNet50 backbone, ASR outperforms CANet [43]

and RPMMs [37] method by 2.76% and 1.82%. Under the

5-shot settings, ASR is comparable to the state-of-the-art

method. It is worth mentioning that the SST and PPNet

used additional k-shot fusion strategies while ASR uses a

simple averaging strategy to get five-shot results. In Table 3,

ASR is compared with state-of-the-art approaches with re-

spect to FB-IoU. FB-IoU calculates the mean of foreground

IoU and background IoU over images regardless of the cat-

egories, which reflects how well the full object extent is ac-

tivated. ASR is on par with the compared methods, if not

Semantic Reconst. Semantic Span Semantic Filter. mIoU

54.95

X 53.26

X 53.12

X X 55.98

X X X 58.64

Table 4. Ablation of ASR modules. The baseline is CANet.

Concat. Cosine Conv. Projection mIoU

X 58.21

X 57.78

X 58.32

X 58.64

Table 5. Comparison of semantic filtering strategies. Concat., Co-

sine, Conv., Projection denote vector concatenation, cosine simi-

larity, convolutional operation, and vector projection, respectively.

outperforms.

MS COCO. In Table 2, we report the segmentation per-

formance on MS COCO. ASR outperforms the prior meth-

ods in most settings. Particularly under the 1-shot setting,

it improves RPMMs [37] by 3.27%. Under 5-shot setting,

it improves DAN [33] by 6.15%, which are significant mar-

gins. For the MS COCO dataset with larger semantic alias-

ing for the more object categories, semantic reconstruction

demonstrated larger advantages. For the larger object cat-

egory number, we construct a space using more orthogo-

nal basis vectors, which have stronger ability of representa-

tion and discrimination. According to Section 3.5, semantic

aliasing among novel classes is suppressed effectively. That

is why ASR achieves larger performance gains on the MS

COCO dataset.

4.3. Visualization Analysis

We sampled 4000 images from 20 classes in PASCAL

VOC, and drew the confusion matrix according to the seg-

mentation results, Fig. 7. ASR effectively reduce semantic

aliasing among classes. We further visualize segmentation

results and compare them with baseline, Fig. 8. Based on

the anti-aliasing representation of novel classes and seman-

tic filtering, ASR reduces the false positive segmentation

caused by interfering semantics within the query images.

4.4. Ablation Studies

Semantic Span. In Table 4, when simply introducing

semantic reconstruction to the baseline method, the perfor-

mance slightly drops. By using the semantic span mod-

ule, we improved the performance from 53.26% to 55.98%,

demonstrating the necessity of establishing orthogonal ba-

sis vectors during semantic reconstruction.

Semantic Filtering. As shown in Table 4, directly ap-

plying semantic filtering on the baseline method harms the

performance because the support features contain aliasing
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Figure 8. Semantic segmentation results. Compared with the baseline method [43], ASR (ours) reduces false positive pixels as well as
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Figure 9. Performance over channel number (D) of basis vectors.

semantics. By combining all the modules, ASR improves

the mIoU by 2.66% (58.64% vs. 55.98%). In Table 5,

four filtering strategies are compared. The vector projection

strategy defined in Section 3.4 achieves the best result. Vec-

tor projection utilizes the characteristic of vector operations

to retain semantics related to the target class and suppress

unrelated semantics at utmost.

Channel Number (D). The channel number (D) of fea-

tures to construct basis vectors is an important parameter

which affects the orthogonality of basis vectors. From Fig. 9

we can see that the performance improves with the increase

of D and starts to plateau when D = 8, where the orthog-

onality of different basis vectors is sufficient for novel class

reconstruction. For the MS COCO dataset D is set to 30.

Model Size and Efficiency. The model size of ASR is

36.7M, which is slightly larger than that of the baseline

method [43] (36.3M) but much smaller than other meth-

ods, such as OSLSM [29] (272.6M) and FWB [25] (43.0M).

With a Nvidia Tesla V100 GPU, the inference speed is 30

FPS, which is comparable with that of CANet (29 FPS).

4.5. Two­way Few­shot Segmentation

Following the settings in [24], we conduct two-way one-

shot segmentation experiments on PASCAL VOC. From

Tab. 6 one can see that ASR outperforms PPNet [24] with a

Method Pascal-50 Pascal-51 Pascal-52 Pascal-53 Mean

PPNet [24] 47.36 58.34 52.71 48.18 51.65

ASR (ours) 49.35 60.68 52.12 50.38 53.13

Table 6. Mean-IoU performance of 2-way 1-shot segmentation on

PASCAL VOC.

significant margin (53.13% vs. 51.65%). Because two-way

segmentation requires not only to segment targets objects

but also to distinguish different classes, the model is more

sensitive to semantic aliasing. Our ASR approach effec-

tively reduces the semantic aliasing between novel classes

and thereby achieves superiors segmentation performance.

5. Conclusion

We proposed Anti-aliasing Semantic Reconstruction

(ASR), by converting base class features to a series of ba-

sis vectors, which span a semantic space. During training,

ASR maximized the orthogonality while minimize the se-

mantic aliasing of base classes, which facilities novel class

reconstruction. During inference, ASR further suppresses

interfering semantics for precise activation of target object

areas. On the large-scale MS COCO dataset, ASR improved

the performance of few-shot segmentation, in striking con-

trast with the prior approaches. As a systematic yet inter-

pretable method for semantic representation and semantic

anti-aliasing, ASR provides a fresh insight for the few-shot

learning problem.
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