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Figure 1. Diversified image editing results under free-form input configurations. There is a face or a natural image with arbitrary hole

regions. Without any user inputs shown in (a), our DeFLOCNet automatically fills hole regions shown in (b), which is the same as the

image inpainting scenario. Given additional low-level controls (e.g., coarse sketch lines in (c), both lines and colors in (e)), our DeFLOCNet

injects these controls directly into structure generation blocks for both user-intended and visually pleasant content creations in (d) and (f).

Abstract

User-intended visual content fills the hole regions of an

input image in the image editing scenario. The coarse low-

level inputs, which typically consist of sparse sketch lines

and color dots, convey user intentions for content creation

(i.e., free-form editing). While existing methods combine an

input image and these low-level controls for CNN inputs,

the corresponding feature representations are not sufficient

to convey user intentions, leading to unfaithfully generated

content. In this paper, we propose DeFLOCNet which re-

lies on a deep encoder-decoder CNN to retain the guid-

ance of these controls in the deep feature representations.

In each skip-connection layer, we design a structure gener-

ation block. Instead of attaching low-level controls to an in-

put image, we inject these controls directly into each struc-

ture generation block for sketch line refinement and color

propagation in the CNN feature space. We then concatenate

the modulated features with the original decoder features

for structure generation. Meanwhile, DeFLOCNet involves

*Y. Song is the corresponding author. The results and code are available

at https://github.com/KumapowerLIU/DeFLOCNet.

another decoder branch for texture generation and detail

enhancement. Both structures and textures are rendered in

the decoder, leading to user-intended editing results. Exper-

iments on benchmarks demonstrate that DeFLOCNet effec-

tively transforms different user intentions to create visually

pleasing content.

1. Introduction

The investigation on image editing is growing as it re-

duces significant manual efforts during image content gen-

eration. Benefiting from the realistic image representations

brought by convolutional neural networks (CNNs), image

editing is able to create meaningful while visually pleas-

ant content. As shown in Fig. 1, users can draw arbitrary

holes in a natural image as inputs to indicate the regions to

be edited. If there are no further inputs given as shown in

(a), image editing degenerates to image inpainting, where

CNNs automatically fill hole regions by producing coher-

ent image content as shown in (b). If there are additional

inputs from users (e.g., lines in (c) and both lines and colors

in (e)), CNNs will create meaningful content accordingly

10765

https://github.com/KumapowerLIU/DeFLOCNet


while maintaining visual pleasantness. Deep image editing

provides flexibility for users to generate diversified content,

which can be widely applied in the areas of data enhance-

ment, occlusion removal, and privacy protections.

The flexibility of user controls and the quality of user-

intended content generation are challenging to achieve si-

multaneously in practice. The main difficulty resides on

how to transform flexible controls into user-intended con-

tent. Existing attempts utilize high-level inputs (e.g., se-

mantic parsing map [8], attributes [22], latent code [1], lan-

guage [2], and visual context [21]) for semantic content

generation, but flexibility hinges on the predefined seman-

tics.

On the other hand, utilizing coarse low-level controls

(i.e., sketch lines and colors) makes the editing more inter-

active and flexible. And in this paper, we mainly focus on

incorporating such user inputs for image editing, in which

we observe two main challenges: (1) Most prior investiga-

tions [34, 10, 23] simply combine an input image and low-

level controls together in the image level for CNN inputs.

The guidance from these low-level inputs gradually dimin-

ishes in the CNN feature space, weakening their influence

on generating user-intended contents. Fig. 6 (c)-(f) show

such examples where facial components are not effectively

produced, (2) Since users only provide sparse color strokes

to control the generated colors, the model needs to prop-

agate these spatially sparse signals to the desired regions

guided by sketches (i.e., colors should fill in the regions in-

dicated by the sketches and not be wrongly rendered across

sketch lines) as illustrated in Figs. 5 and 7.

To resolve these issues, we propose DeFLOCNet (i.e.,

Deep image editing via Flexible LO-level Control) to retain

the guidance of low-level controls for reinforcing user in-

tentions. Fig. 2 summarizes DeFLOCNet, which is built

on a deep encoder-decoder for structure and texture gener-

ations on the hole regions. At the core of our contribution

is a novel structure generation block (Fig. 3 and Sec. 3.1),

which is plugged into each skip connection in the network.

Low-level controls are directly injected into these blocks for

sketch line generation and color propagation in the feature

space. The structure features from these blocks are con-

catenated to the original decoder features accordingly for

user-intended structure generation in the hole regions.

Moreover, we introduce another decoder for texture gen-

eration (Sec. 3.2). Each layer of the texture generation de-

coder is concatenated to the original decoder for texture en-

hancement. Thus, both structure and texture are effectively

produced in the CNN feature space. They supplement orig-

inal decoder features to bring coarse-to-fine user-intended

guidance in the CNN feature space and output visually

pleasing editing results. Experiments on the benchmark

datasets demonstrate the effectiveness of our DeFLOCNet

compared to state-of-the-art approaches.

2. Related Work

Deep Generative Models. The advancements in deep gen-

erative models [25, 27, 30] are inspired by generative ad-

versarial learning [5, 26]. Instead of image generation from

random noise, conditioned image generation from inputs

activates a series of image translation work. In [9], a gen-

eral framework is proposed to translate semantic labels to

natural images. This framework is further improved by us-

ing a coarse-to-fine generator and a multi-scale discrimina-

tor [29]. Besides holistic image generation, subregion im-

age generation (i.e., image inpainting) receives heavy inves-

tigations [33, 16, 18, 28]. In contrast to existing image-to-

image generation frameworks, our free-form image editing

is more flexible to transfer user intentions (i.e., monotonous

sketch lines and color dots) into natural image content.

Image Editing. GANs have a lasting influence on image

editing development. In [22], Invertible Conditional GANs

are proposed to control high-level attributes of generated

faces. Then, more effective editing is proposed in [24] by

approximating a disentangled latent space. Semantic pars-

ing maps are utilized in [8, 6, 3] as the intermediate repre-

sentation for guided image editing, while natural language

navigates editing in [2, 19]. Methods based on semantic

guidance typically require an explicit correspondence be-

tween editing content and semantic guidance. As the se-

mantic guidance is usually fixed with limited options, the

editing is thus not flexible (e.g., color and sketch controls).

To improve the input flexibility, SC-FEGAN [10] proposes

to directly combine sketch lines and colors as inputs and

send them together with an input image to CNN. Gated con-

volution is proposed in [34] for flexibility improvement. As

these methods attach user controls directly to input images

for CNN input, the influence of user controls diminishes

gradually. As a result, limited editing scenarios are sup-

ported by these methods (e.g., facial component editing).

Different from existing approaches, we inject low-level con-

trols in the skip connection layers of an encoder-decoder

with our structure generation block to gradually reinforce

user intentions in a coarse-to-fine manner.

3. DeFLOCNet

Fig. 2 shows an overview of our DeFLOCNet built on

top of an encoder-decoder CNN model. The input to the

encoder is an image with arbitrary hole regions. Low-level

controls, represented by sketch lines and color dots, are sent

to the structure generation blocks (SGB) set on the skip-

connection layers (Sec. 3.1). Meanwhile, we propose an-

other decoder named texture generation branch (TGB) (Sec.

3.2). The features from SGB and TGB are fused with the

original decoder features hierarchically for output image

generation.
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Figure 2. An overview of DeFLOCNet. We set each structure generation block within each skip connection layer. The block size corre-

sponds to the level of skip connection layers. Low-level (i.e., free-form) controls are injected into these blocks to modulate encoder features

from coarse to fine. The modulated features represent user intentions and supplement decoder features together with texture generation

features for output image generation.

Motivation. A vanilla encoder-decoder CNN may be

prevalent for image generation while it is insufficient to

recover missing content in the hole regions which are al-

most empty with sparse low-level controls. This is due to

the limited ability of the encoder features to represent both

natural image contents and free-form controls. To improve

feature representations, we only send images to the encoder

while injecting controls multiple times into all the skip con-

nection layers via SGB. Consequently, user intentions are

reinforced continuously via feature modulations. The re-

inforced features, together with the texture generation fea-

tures, supplement the original decoder features in a coarse-

to-fine fashion to generate both user-intended and visually

pleasant visual content.

3.1. Structure Generation

We inject low-level controls into SGBs to modulate fea-

tures of user intention reinforcement. Fig. 3 shows the ar-

chitecture of one SGB, which consists of three branches

for progressive sketch line generation, color propagation,

and feature fusion, respectively. The size of one SGB in-

creases when it is integrated into a shallower encoder layer,

since the shallower is close to the image level and we need

stronger low level to guide the feature generation. The

sketch line generation branch repeatedly injects and refines

the sketch generation, avoiding the user control diminishing

phenomenon. Then, the features of sketch are utilized in the

color propagation branch to regularize the color to fill in the

desired regions. Finally, the fusion branch injects the sketch

and color features into the original feature to produce output

editing results.

Control injection. We first introduce a control injection

operation, which is a basic building block in our SGB.

The control operation follows [20]. Specifically, we denote

F in ∈ R
H×W×C as the input feature map and L as the in-

formation we want to inject into F in. Suppose the injection

operation is I(·), and the element in the injected feature

F out
x,y,c = I(F in

x,y,c, L) can be obtained by:

I(F in
x,y,c, L) = γx,y,c(L) ·

F in
x,y,c − µc
√

σ2
c + ǫ

+ βx,y,c(L), (1)

where γx,y,c(L) and βx,y,c(L) are two variables con-

trolling the influence from L in element-wise preci-

sion, µc = 1
H×W

∑H

x=1

∑W

y=1 F
in
x,y,c, and σc =

√

1
H×W

∑H

x=1

∑W

y=1

(

F in
x,y,c − µc

)2
. In this paper, we

use two convolutional layers to generate γx,y,c(L) and

βx,y,c(L) at each element location. As a result, low-level

controls are mapped into the feature space to correlate to

the input feature maps.

Sketch line generation. Given an input feature F in, the

sketch line generation branch first performs an element-

wise average along the channel dimension to produce a

single-channel feature map F in
avg . We denote the sketch im-

age as S, a random noise image as N , and a mask image

containing a hole region as M . The output feature after

control injection can be written as:

Fs = I(F in
avg, S ⊕ (N ⊙M)), (2)

where Fs is the injected feature, ⊕ is the concatenation op-

erator, and ⊙ is the element-wise multiplication operator.

In practice, a single injection does not generate recovered

sketch lines completely. We use several injections in the

sketch line generation branch to progressively refine sketch

lines. The injection in the i-th skip connection is:

F i
s = I(Conv(F i−1

s ), S ⊕ (N ⊙M)), (3)
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Figure 3. The architecture of a structure generation block where i ∈ [1, 2, ..., 6] denotes its size. The size of an SGB increases (i.e., i

increases) when it is integrated into a shallower encoder layer. An SGB consists of one sketch line generation branch, one color propagation

branch, and a fusion branch. The sketch lines are gradually refined to guide the color propagation. These features are fused with the input

image features for content generation in the hole region.

Figure 4. Sketch line refinement guides color propagation. The

green window indicates the regular convolution operation, which

is denoted by Conv in Eq. 4. The blue color diffuses along all

directions in (a)-(b) when sketch lines (gray lines) are initially re-

fined. Color propagation is weakened via 1−σ around the contour

lines that are gradually completed as shown in (c)-(e). The blue

dots indicate the weakened elements along the lines. The propa-

gation result is shown in (f) where blue color propagation follows

contour lines.

where the output features from the previous injection F i−1
s

are passed through a convolutional layer for the current in-

jection input. During training, we use the ground truth

sketch lines extracted from the original images. When edit-

ing images, we adopt user inputs for sketch line refinement.

Color propagation. We propose a color propagation

branch in parallel to the sketch generation branch. In or-

der to guide the color propagation via sketch lines, we use

injected features F i
s from the sketch line generation branch.

The guiding process can be written as:

F i
c = (1− σ(F i−1

s ))⊗ Conv(F i−1
c ), (4)

where F i
c is the color features guided by F

(i−1)
s and σ is the

sigmoid activation function.

Fig. 4 illustrates how color propagates under sketch guid-

ance. In (a) and (b), the sketch lines in gray are not recov-

ered well and the blue color tends to diffuse in all directions.

As the sketch lines are gradually refined to complete con-

tours as shown in (c)-(e), the blue color does not penetrate

the contour lines via the consecutive σ and 1 − σ opera-

tions. Finally, blue color propagates along the contour lines

without penetration as shown in (f).

Fusion. The features from the sketch and color branches

are fused together via the injection operation as follows:

F i = I(F i−1 ⊗ (σ(F i−1
s ) + 1), F i−1

c ), (5)

where F i is the fused feature. We set different numbers of

injection operations in the fusion branch for each scale, re-

spectively. For the skip-connection from the initial encoder

layer where features are in large resolution, we employ 6

injection operations in the fusion branch. We gradually de-

crease this number to 1 on the skip connection layers from

the last encoder layer.
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3.2. Texture Generation

We use SGB to reinforce user intentions during hole fill-

ing in the CNN feature space. The modulated features rep-

resent structure content while texture representation is lim-

ited. This is partially because low-level controls injected

into the skip-connection layers do not contain sufficient tex-

ture guidance. Meanwhile, the sketch lines attend the en-

coder features to structure content rather than textures.

As encoder features do not relate to low-level controls,

we propose a texture generation branch that takes the fea-

tures from the last encoder layer as input. Fig. 2 shows how

TGB is integrated into the current pipeline. The architec-

ture of TGB is the same as that of the original decoder. We

add the feature maps from each layer of TGB to the cor-

responding decoder features for texture generation. TGB

supplements decoder features via residual aggregations. As

structure features are learned via SGB, TGB will focus on

the features representing region details. The enriched de-

coder features are then concatenated with the features from

SGBs for output generation where there are both structures

and textures in the hole regions.

3.3. Objective Function

We utilize several objective loss functions to train De-

FLOCNet in an end-to-end fashion. These functions in-

clude pixel reconstruction loss, perceptual loss [11], style

loss [4], relativistic average LS adversarial loss [12], and

total variation loss [16]. During training, we extract the

sketch lines and color in the hole regions. We denote Iout
as the output result and Igt as the ground truth (Iout and

Igt ∈ R
H×W×3). The loss terms can be written as follows:

Pixel reconstruction loss. We measure the pixel-wise dif-

ference between Igt and Igt as:

Lre = ‖Iout − Igt‖1, (6)

Perceptual loss. We consider high-level feature represen-

tation and human perception to utilize the perceptual loss,

which is based on the ImageNet-pretrained VGG-16 back-

bone. The perceptual loss can be written as:

Lprec =
∑

i

1

Ni

‖Fi(Iout)− Fi(Igt)‖1, (7)

where Fi is the feature map of the i-th layer of the VGG-

16 backbone and, Ni is the number of elements in Fi. In

our work, Fi corresponds to the activation maps from layers

ReLu1 1, ReLu2 1, ReLu3 1, ReLu4 1, and ReLu5 1.

Style loss. The transposed convolutional layers of the de-

coder will bring checkerboard effect [16], which can be mit-

igated by the style loss. Suppose the size of feature map Fi

is Ci ×Hi ×Wi. We write the style loss as:

Lstyle =
∑

i

1

Mi

‖GF
i (Iout)−GF

i (Igt)‖1, (8)

where GF
i is a Ci × Ci Gram matrix computed based on

the feature maps, and Mi is the number of elements in GF
i .

These feature maps are the same as those used in the per-

ceptual loss as illustrated above.

Relativistic average LS adversarial loss. We utilize global

and local discriminators for perception enhancement. The

relativistic average LS adversarial loss is adopted for our

discriminators, which can be written as:

Ladv = −Exr
[log(1−Dra(xr, xf ))]−

Exf
[log(Dra(xf , xr))],

(9)

where Dra(xr, xf ) = sigmoid(C(xr) − Exf
[C(xf )]) and

C(·) indicates the local or global discriminator, and real and

fake data pairs (xr, xf ) are sampled from Igt and Iout.

Total variation loss. This loss is set to add the smoothness

penalty on the generated regions, which is defined as:

Ltv =
∑

(i,j)∈R,(i,j+1)∈R

‖Ii,j+1
out − I

i,j
out‖1

N
+

∑

(i,j)∈R,(i+1,j)∈R

‖Ii+1,j
out − I

i,j
out‖1

N
,

(10)

where N is the number of elements in Iout, and R denotes

the hole regions.

Total losses. The whole objective function of DeFLOCNet

can be written as:

LTotal =λ1 · Lre + λ2 · Lprec + λ3 · Lstyle+

λ4 · Ltv + λ5 · Ladv,
(11)

where λ1, λ2, λ3, λ4 and λ5 are the scalars controlling the

influence of each loss term. We empirically set λ1 = 1,

λ2 = 0.05, λ3 = 250, λ4 = 0.1 and λ5 = 0.1.

3.4. Visualizations

The feature representations of input sketch lines are

gradually enriched to become those of contours in one SGB.

The enriched lines guide the color propagation process for

edge-preserving feature modulation. To validate this effect,

we visualize the feature maps from the fusion branch of one

SGB set in the coarse level. Following the visualization

techniques in [17], we visualize the 6 injection operations

in the fusion branch. Specifically, we use a 1 × 1 convolu-

tional layer to map each CNN feature F i (i ∈ [1, 2, ..., 6])
to one color image, and another 1 × 1 convolutional layer
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(a) Input (b) F 1 (c) F 2 (d) F 3 (e) F 4 (f) F 5 (g) F 6 (h) Output

Figure 5. Feature map visualizations. We map F i to color images via a 1 × 1 convolutional layer and show F i

s accordingly at the top left

corner. The color propagates according to the sketch line refinement, which validates the illustration in Fig. 4.

to map each CNN feature F i
s to one grayscale image. The

weights of the mapping convolutions are learned. The con-

tent shown in the images indicates the corresponding feature

representations in SGB.

Fig. 5 shows the visualization results. The input image is

shown in (a) where the low-level controls are sent to SGBs.

The visualization of F i is shown in (b)-(g) where the fea-

tures F i
s from the sketch generation branch are shown at

the top left corner, respectively. We observe that during

initial sketch line generation shown in (b)-(c), color prop-

agates in all directions. When sketch lines are gradually

completed as shown in (d)-(g), color propagates along these

lines to formulate a clear boundary. These feature maps

F i are then concatenated to the original decoder for image

structure generation shown in (h). The visualization of color

propagation is similar to that in Fig. 4, where the 1− σ op-

eration is effective to prevent the color diffusions.

4. Experiments

We evaluate on a natural image dataset Places2 [35] and

a face image dataset CelebA-HQ [14]. During training,

we follow PConv [16] and HED [31] to create hole re-

gions and input sketch lines, respectively. The color inputs

for face images are from GFC [15] and for natural images

are from RTV [32]. During training, we choose arbitrary

hole regions and low-level controls. Adam optimizer [13]

is adopted with a learning rate of 2 × 10−4. The training

epoches for CelebA-HQ and Place2 datasets are 120 and

40, respectively. The resolution of synthesized images is

256×256. All the experiments are conducted on one Nvidia

2080 Ti GPU. The various edges of training images ensure

our method to handle diverse and deformed strokes.

4.1. State­of­the­art Comparisons

We evaluate existing editing methods including SC-

FEGAN [10], Partial Conv [16], Deepfill2 [34] and Pix2Pix

[9]. All these methods are retrained using the official imple-

mentations on the same datasets with the same input config-

urations for fair comparisons. The only difference between

DeFLOCNet and other methods is that we send low-level

controls into skip-connection layers rather than the encoder.

Visual Evaluations. Fig. 6 shows the visual comparison

results. The original clean images are shown in (a). The

input of existing methods is shown in (b). For a straight-

forward display, we combine input images with masks and

low-level controls together. The results produced by Partial

Conv and Deepfill2 are shown in (c) and (d) where struc-

ture distortions and blurry textures exist. This is because

these two methods tend to incorporate neighboring content

when filling the hole regions. They are not effective to gen-

erate meaningful content given by the users. In compari-

son, the results generated by Pix2Pix and SC-FEGAN are

improved as shown in (e) and (f). These two methods fo-

cus more on the user controls and utilize adversarial learn-

ing to generate perceptual realistic contents. However, as

these methods attach user controls to color images for the

network input, structure generation is thus limited. The fea-

ture representations are not sufficient to convey both color

images and low-level controls since their data distributions

are extremely unbalanced. The structures of the eye regions

shown in the last three rows are not effectively generated in

(e) and (f).

Unlike existing methods that combine all the inputs to-

gether, DeFLOCNet sends the color image into the en-

coder and low-level controls into skip-connection layers via

SGBs. These controls gradually enrich encoder features in

each skip-connection layer, and refine these features from

coarse to fine across multiple skip-connection layers. The

results of our method are shown in (g) where image content

is effectively generated with detailed textures.

Numerical Evaluations. We evaluate existing methods

on the two benchmark datasets numerically from two as-

pects. First, we use standard metrics including PSNR,

SSIM, and FID [7] to measure the pixel-level, structure-

level, and holistic-level similarities between the output re-

sults and original images. When producing these results,

we use the sketch lines and color dots from the hole regions

without modifications. Table 1 shows the evaluation results

where our method performs favorably against the existing

methods. This indicates that our method is more effective

to generate user-intended contents while maintaining visual

pleasantness.

Besides standard metrics, we perform a human subject

evaluation. There are over 20 volunteers to evaluate the re-
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(a) Original (b) Input (c) PConv [16] (d) DF2 [34] (e) P2P [9] (f) FEGAN [10] (g) Ours

Figure 6. Visual comparisons with state-of-the-art methods. Original images are in (a). Input images are in (b) with low-level controls in

the hole regions. Our method is effective to generate user-intended and visually pleasant contents in (g).

Table 1. Numerical evaluations on CelebA-HQ and Places2 datasets. ↓ indicates lower is better while ↑ indicates higher is better.

CelebA-HQ Places2

Model
PConv

[16]

DF2

[34]

SC-

FEGAN [10]

P2P

[9]
Ours

PConv

[16]

DF2

[34]

SC-

FEGAN [10]

P2P

[9]
Ours

PSNR↑ 22.12 24.48 24.56 25.17 25.42 20.14 22.0 23.57 21.90 24.30

SSIM↑ 0.84 0.89 0.88 0.89 0.90 0.62 0.67 0.75 0.68 0.77

FID↓ 24.34 23.88 14.63 12.45 9.92 201.09 113.54 77.82 93.46 63.56

Human↑ 0.2% 0.8% 21.3% 15.1% 54.2% 0.0% 3.7% 18.2% 4.5% 73.6%

sults on both CelebA-HQ and Places2 datasets. The volun-

teers all have image processing background. There are 15

rounds for each subject. In each round, the subject needs

to select the most visually pleasant result from the 5 results

generated by existing methods without knowing the hole re-

gion in advance. We tally the votes and show the statistics

in the last row in Table 1. The comparison results with re-

spect to existing methods indicate that our method is more

effective to generate visually high-quality image content.
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Table 2. Ablation studies on CelebA-HQ and Places2. We show the numerical results produced by reducing injection times, reducing SGB

amounts, removing sketch line guidance, removing texture generation branch, and our complete framework.

CelebA-HQ Places2

Model 1 Inject 1 block w/o 1-σ w/o texture Ours 1 Inject 1 block w/o 1-σ w/o texture Ours

PSNR↑ 23.56 24.49 24.39 25.26 25.42 20.81 23.55 23.16 23.91 24.30

SSIM↑ 0.86 0.87 0.88 0.89 0.90 0.67 0.74 0.72 0.70 0.77

FID↓ 17.63 17.56 14.94 10.94 9.92 105.79 83.52 77.80 69.66 63.56

(a) Input (b) 1 inject (c) 1 SGB (d) w/o 1-σ (e) Ours

Figure 7. Ablation analysis on SGB. Input images are in (a). The

result produced by using only 1 injection in each SGB is in (b), by

using only one SGB is in (c), and by not using sketch line guidance

(i.e., 1 − σ in Eq. 4) is in (d). User intentions are not effectively

reflected in these results in comparsion to ours in (e).

4.2. Ablation Study

Our DeFLOCNet improves baseline results via SGBs

and TGB. We analyze the effects of SGB and TGB on the

output results.

Structure generation block. We set SGBs across multi-

ple skip connection layers to reinforce user intentions from

coarse to fine. Meanwhile, within each skip connection

layers we gradually enrich encoder feature representations.

Fig. 7 shows two visual examples. Input images are in (a),

and we only use 1 injection within each SGB to produce the

results in (b). On the other side, we only use one SGB set

on the middle-level skip connection layer, and generate the

results in (c). The results in (b) and (c) indicate that using

limited injections or SGBs are not effective during structure

generation. In constrast to these two configurations, we do

not use sketch line constraint and produce the results in (d).

They show that color propagates in arbitrary directions for

unintended structure generation. By using more injections

and propagation guidance, we are able to produce visually

pleasant structures in (e). Table 2 numerically shows that

multiple injections and propagation constraints improve the

structure quality of the generated content.

Texture generation branch. We analyze the effect of TGB

by comparing the results produced with TGB and without

TGB. Fig. 8 shows two examples. Input images with user

controls in (a). Without TGB, texture details are blurry in

some regions in (b) (e.g., the forelock hair and mountain

(a) Input (b) w/o TGB (c) w/ TGB

Figure 8. Ablation analysis on TGB. Inputs are in (a). The results

of our method without using TGB are shown in (b). The results

produced by using TGB are shown in (c) where there are more

textures and details.

boundaries). The utilization of TGB synthesizes texture de-

tails based on the input image and thus reduces the blurry

artifacts in (c). The numerical evaluation in Table 2 also

indicates that TGB improves the generated content.

5. Concluding Remarks

We propose structure generation blocks set on skip con-

nection layers to receive low-level controls, while only

color images are sent to the encoder. The encoder fea-

tures, representing only color images, are modulated via

these blocks gradually to reinforce user intentions within

each skip connection layer. Furthermore, the modulated en-

coder features with structure ingredients supplement the de-

coder features together with the generated texture features

across multiple skip connection layers. Therefore, both

structures and textures are generated from coarse to fine

in the CNN feature space, bringing both user-intended and

visually pleasing image content. The Experiments on the

benchmark datasets indicate the effectiveness of our meth-

ods both numerically and visually compared to the state-of-

the-art approaches.
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