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Abstract

Point set is a flexible and lightweight representation

widely used for 3D deep learning. However, their discrete

nature prevents them from representing continuous and fine

geometry, posing a major issue for learning-based shape

generation. In this work, we turn the discrete point sets

into smooth surfaces by introducing the well-known implicit

moving least-squares (IMLS) surface formulation, which nat-

urally defines locally implicit functions on point sets. We

incorporate IMLS surface generation into deep neural net-

works for inheriting both the flexibility of point sets and

the high quality of implicit surfaces. Our IMLSNet pre-

dicts an octree structure as a scaffold for generating MLS

points where needed and characterizes shape geometry with

learned local priors. Furthermore, our implicit function eval-

uation is independent of the neural network once the MLS

points are predicted, thus enabling fast runtime evaluation.

Our experiments on 3D object reconstruction demonstrate

that IMLSNets outperform state-of-the-art learning-based

methods in terms of reconstruction quality and computa-

tional efficiency. Extensive ablation tests also validate our

network design and loss functions.

1. Introduction

Point set is probably the most widely used representation

for 3D deep learning. Compared with other 3D represen-

tations like polygonal meshes and volumetric grids, point

sets are naturally embedded as neurons in DNNs, easy to

acquire, have minimal extra structure to maintain, capture

complex geometry and topology dynamically, and induce

no wasted computation for free-space regions. Indeed, point

sets have been used in the deep learning-based 3D analysis

for diverse tasks [20,39,40]. However, when using point sets

for the generation of 3D data by deep learning, we have the

flexibility to model changing topology and complex surfaces

on one hand, but also suffer from the discrete and rough

geometry on the other hand.

Recent works have focused on generating shapes in the

forms of meshes and polygonal patches, but their shape

representation abilities are still restricted by their discrete

and non-smooth nature. The deep implicit function ap-

proaches [9, 32, 36], instead, define smooth functions on

entire 3D domains to guarantee result continuity, and have

shown to be promising for high-quality 3D reconstruction.

However, the implicit surface generation is inefficient, be-

cause for each point in the 3D domain the network has to be

evaluated individually before the surface can be extracted.

In this paper, we combine the advantages of both the implicit

function approaches and the point set methods, by extending

the point set representation to model implicit surfaces for

high-quality 3D generation, while preserving the inherent

flexibility and computational efficiency of explicit point sets.

For modeling smooth surfaces via point sets, we adopt

point set surfaces [2] and use moving least-squares (MLS)

interpolation of the points to define locally implicit functions

over a narrow band region of the point set. Specifically

for the implicit MLS formulation [27] used in this paper,

for any spatial point inside the narrow region, the implicit

MLS function maps it to a signed distance value to the zero

level set surface, defined by the weighted blending of signed

distances to oriented planes supported at the nearby points;

the zero level set surface can then be extracted as a smooth

and continuous surface for shape representation.

While MLS surfaces have been well studied in 3D re-

construction and rendering [10], to incorporate the repre-

sentation into a deep learning framework poses novel chal-

lenges and opportunities unseen in existing point-set-based

or implicit-representation-based methods. First, the points

define implicit MLS surfaces most effectively when they

are dense enough and distributed evenly over the shapes to

reconstruct. While most point generation approaches fix

the number of points and consume many resources for the

straightforward prediction of dense points that are hard to

generalize, we introduce an octree-based scaffolding for gen-

erating variable numbers of MLS points only where needed

according to the target shape (cf. Fig. 1), and further regular-

ize the point distribution via tailored loss functions. Second,
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Decode

Figure 1: Illustration of our deep implicit MLS surface gen-

eration method. Left: the network decoder produces a set

of oriented points scaffolded by an octree (2 points for each

non-empty leaf octant in this example), which defines an

implicit zero level set surface that is the target shape for

shape generation. Right: an example of the reconstructed

bunny shape from 3D points via an implicit MLS.

to measure the predicted implicit functions for both training

supervision and test evaluation, while existing implicit meth-

ods [9,32,36,38] have to use dense sampling over the whole

3D domain, the MLS surface is naturally localized inside the

narrow band region of generated points, which prompts us

to use more succinct sampling only at the octree nodes for

supervision and evaluation. Also, the evaluation is indepen-

dent of the network once all MLS points are embedded in

the 3D domain, thus avoiding the costly per-point network

evaluation that is typical of other implicit methods.

We use extensive ablation tests to validate the design

choices made. We also demonstrate that our deep implicit

MLS surface approach outperforms both the point set gen-

eration methods and other global or local implicit function

methods, through the 3D object reconstruction task.

2. Related Work

Deep representations for 3D generation Point set is a

popular representation utilized by many works [1,42,54,56].

However, as the number of points is usually specified, its

power for representing detailed geometry is restrained and

needs further point upsampling [57, 58] to improve the point

density and shape quality.

Dense voxels [5, 13, 53] represent shape occupancy well,

but its high memory cost precludes its usage for representing

3D contents with high-resolution. Sparse voxels including

octrees [12, 21, 41, 45, 49] overcome these issues with great

efficiency in both memory and computational aspects.

Mesh representations [24, 48] and patch-based represen-

tations [14, 17, 51, 52, 55] are convenient 3D representations

for improving shape quality. However, their abilities are con-

strained by either the predefined mesh topology and resolu-

tion, or the disconnectivity of multiple patches. Intermediate

3D representations like coarse voxels [16] or shape skele-

ton [44] are possible ways to further enhance their quality.

Primitive-based representations use a set of simple ge-

ometric objects like planes [30] and cuboids [43, 47, 59]

to approximate 3D shapes. Structure-based representa-

tions [29, 33] explicitly encode semantic part structures as

cuboids and reconstruct parts within each cuboid using voxel

representations. Although they are suitable to characterize

shape structures, their approximation quality is also limited

due to the simplicity of primitives.

Recently implicit surface-based deep learning approaches

[3,9,32,36] offer a smooth and continuous 3D representation

and enable functional evaluation in a continuous space. For a

given point, the network predicts its occupancy or the signed

distance from it to the surface. These techniques are further

improved recently by incorporating local features to model

more detailed shape geometry [7, 11, 23, 38].

Our approach belongs to the deep implicit category by

modeling smooth and continuous implicit MLS surfaces,

while also enjoying the flexibility and efficiency of explicit

point set generation; it is a hybrid 3D deep learning repre-

sentation that combines advantages from both point sets and

implicit functions.

Surface reconstruction from point clouds Surface recon-

struction techniques have been studied for several decades

(cf. the comprehensive survey [4]). Among them, a set of

methods impose global or local smoothness priors for recon-

structing high-quality results from point clouds, including

multi-level partition of unity (MPU) [34], Poisson reconstruc-

tion [25, 26], radial basis functions (RBF) [6], and moving

least-squares surfaces (MLS) [2, 19, 28] which are widely

used for point set surface modeling and rendering [37]. Due

to the fast and local evaluation property of MLS, we choose

MLS surfaces as our deep 3D representation. MLS sur-

faces can be classified into two types [10]: projection MLS

surfaces and implicit MLS surfaces (IMLS). The former is

defined by a set of stationary points via iterative projection,

while the latter defines an implicit function directly. We use

IMLS for incorporating signed distance supervision easily

and enabling fast function evaluation.

3. Method

We first review the implicit MLS surface (IMLS) defi-

nition and present our deep IMLS design in Sections 3.1

and 3.2, then we detail the network design and loss functions

in Sections 3.3 and 3.4.

3.1. IMLS surface

The implicit MLS surface [27] is defined as follows. De-

note P = {pi ∈ R
3}Ni=1 as a set of 3D points and each point

is equipped with unit normal vector ni ∈ R
3 and control

radius ri ∈ R
+. For convenience, we call these points as

MLS points.

For each MLS point pi, a signed distance function from

x ∈ R
3 to its tangent plane is defined as 〈x− pi,ni〉, where
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〈·, ·〉 is the inner product. By weighted averaging of all point-

wise signed distance functions, we have an implicit function

F (x) whose zero level set defines the implicit surface S:

F (x) :=

∑

pi∈P
θ(‖x− pi‖, ri) · 〈x− pi,ni〉
∑

pi∈P
θ(‖x− pi‖, ri)

. (1)

Here we set the weight function as θ(d, r) = exp(−d2/r2).
Kolluri proved that under a uniform sampling condition, the

IMLS surface S is a geometrically and topologically correct

approximation of the original surface where P are sampled

from, and the IMLS function F is a tight approximation of

the signed distance function of the original surface [27].

As the weight function decays when x is away from pi,

the evaluation of F (x) can be accelerated by considering

nearby MLS points only. Eq. (1) can be revised as:

F (x) :=

∑

pi∈Ω(x) θ(‖x− pi‖, ri) · 〈x− pi,ni〉
∑

pi∈Ω(x) θ(‖x− pi‖, ri)
, (2)

where Ω(x) denotes the set of MLS points that are inside the

ball centered at x with radius rb. rb can be set by the user as

the truncating point distance values.

Due to the above formulation, the zero function values

F (x) exist in a narrow band region of the IMLS points.

Extracting S explicitly as a triangle mesh can be done effi-

ciently via Marching cubes [31], by restricting the functional

evaluation on the regular grids inside the bounded region.

3.2. Deep IMLS surface

Sparse and unoriented point clouds probably with noise

and missing regions are typical inputs for 3D reconstruction

in practice, but they cannot be handled well by traditional

3D reconstruction methods like Poisson reconstruction. To

deal with this kind of imperfect data, we aim to design an

auto-encoding neural network to generate IMLS surfaces.

A naı̈ve way of defining the network output is to set a

fixed-number of IMLS point tuples: {pi,ni, ri}Ni=1, similar

to existing point set generation approaches [42]. However,

it will constrain the representation capability of IMLS and

cannot learn local geometry priors well from the data. We

introduce an intermediate network output – octree-based

scaffold, to help generate MLS points as needed. The octree-

based scaffold is a d-depth octree O which roughly approx-

imates the 3D surface in multi-resolutions. For each finest

non-empty octant ok, i.e. , the smallest non-empty voxel in

the octree, we associate a small set of MLS points whose

locations are near to the octant center ck. To be specific, the

MLS points associated with ok are defined as

pk,l := ck + tk,l, l = 1, . . . , s, (3)

where tk,l ∈ R
3 is the offset vector from pk,l to ck, s is a

predefined point number. As the structure of the octree-based

scaffold depends on the target surface, the total number of

MLS points and their positions are determined adaptively.

With the setup above, a suitable network for IMLS gener-

ation should output: (1) an octree-based scaffold O; (2) the

MLS point offsets, MLS point normals and control radii for

each finest non-empty octant ok, denoted by tk,l,nk,l and

rk,l, respectively.

Here we note that the octree created from the input noisy

and sparse point cloud cannot be used as the scaffold, as it

could be incomplete and inaccurate, and different from that

of the target shape.

Scaffold prediction We use the octree-based convolutional

neural network (O-CNN) autoencoder [49,51] to generate the

scaffold. Its encoder takes a din-depth octree as input which

is constructed from the input point cloud, and performs the

CNN computation within the octree only. Its decoder starts

with 4× 4× 4 cells and predicts whether each cell is empty

or not, and subdivides it into eight octants if the cell is not

empty. This process is performed on each non-empty octant

recursively until the maximum output octree depth dout is

reached.

MLS point prediction Unlike previous works [50, 51]

where the decoders regress an oriented point or a planar

patch at each finest non-empty octant for achieving sub-

voxel precision, we predict s MLS point tuples based on the

feature vector at the octant, denoted by f(ok), via a multi-

layer perceptron (MLP) with one hidden-layer as follows:

MLP ◦ f(ok) = (tk,1,nk,1, rk,1, · · · , tk,s,nk,s, rk,s). (4)

Note that the MLP predicts the local coordinates of pk,l, i.e. ,

tk,l, thus it can learn the local prior from the data. To ensure

pk,l is close to ck, the value range of each coordinate compo-

nent of tk,l is restricted within [−βh, βh], here h is the size

of the finest octant and β is set to 1.5 by default. We also

constrain rk,s within [lr/2, 2lr], where lr = h/
√
s. These

constraints are implemented by using the tanh activation for

the network output and scaling the value by its range scale.

3.3. Network structure

We use a U-Net-like O-CNN autoencoder [50] that

contains O-CNN ResNet blocks and output-guided skip-

connections for better preserving the input geometry and pre-

dicting missing regions. The output-guided skip-connection

is the skip connection added between each non-empty octant

of the output octree and its corresponding octant of the input

octree at the same octree level, if the latter octant exists.

For a given unoriented point cloud, we construct a din-

depth octree for it. At each finest octant, we set the input

4-dimensional signal by concatenating the offset from the

average position of input points inside the octant to the octant
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center with a binary scalar indicating whether the octant is

empty.

The network structure is illustrated in Fig. 2.

Resblock(n, c) denotes an n-layer O-CNN-based resid-

ual block with channel number c. Downsample(c) and

Upsample(c) are octree-based convolution and deconvo-

lution operators [49] followed by batch normalization and

ReLU. c is set to 64 for the first Resblock, and increases by a

factor of 2 after each Downsample operator, and divided by

2 after each Upsample operator. In our experiments, we set

n = 3. A hidden-layer MLP is used for predicting whether

the octant is empty or not.

3.4. Loss function design

Our network is trained in a supervised manner. For each

shape in the training dataset, we precompute its ground-

truth dout octree Oo and use it for supervising the scaffold

prediction. The octants at the first and second levels of Oo

are set to be non-empty. A succinct set Q of sample points

which bound the ground truth surface tightly will be used

for probing the implicit function accurately. For generating

these points, please refer to Section 4. We then compute the

ground-truth signed distance function (SDF) values Fo(q)
and the SDF gradient ∇Fo(q), for each q ∈ Q. Our main

training objective is to fit the signed distance field sampled

on Q.

The loss function consists of the following terms.

Octree structure loss The determination of octant status

is a binary classification problem: 0 for empty and 1 for

non-empty. We use the weighted summation of the sigmoid

cross-entropy loss at every octant of O to define the octree

structure loss.

Loct := λo

dout
∑

j=3

1

|Oj |
∑

o∈Oj

cross entropy(o), (5)

here Oj is the octant set at level j, and |Oj | denotes its size.

SDF loss The difference between the predicted IMLS sur-

face and the ground-truth SDF field is defined by the SDF

loss Lsdf.

Lsdf :=
∑

q∈Q

λs‖F (q)−Fo(q)‖2+λg|1−∇F (q)·∇Fo(q)|.

(6)

Here the gradient of F can be approximated by:

∇F (x) ≈
∑

pi∈Ω(x,P) θ(‖pi − x‖, ri) · ni
∑

pi∈Ω(x,P) θ(‖pi − x‖, ri)
. (7)

To speed up the computation, we restrict the region of

Ω(x,P) by the octants whose distances from their centers

to x are less than 4h.

MLS point repulsion loss Inspired by the repulsion term

used by [22] for distributing consolidated points regularly,

we introduce the point repulsion loss to improve the local

regularity of our generated MLS points.

Lrep := λrep

∑

pi

∑

pj∈Ω(pi)

−wij‖pi − pj‖proj, (8)

where ‖pi−pj‖proj = ‖(I−nin
T
i )(pi−pj)‖ is the length

of the projection of pi−pj onto the tangent plane at pi, and

wij is a bilateral weight with respect to both the MLS point

difference and normal difference, defined as follows.

wij = exp
(

−‖pi − pj‖2/r2j − (1− 〈ni,nj〉)
)

. (9)

The above design pushes pj away from pi, especially when

their normals and their positions are similar.

Projection smoothness loss For achieving local surface

smoothness, we encourage MLS points to be close to the

tangent planes of their neighboring MLS points.

Lproj = λp

∑

pi

∑

pj∈Ω(pi)

wij 〈ni,pi − pj〉2 . (10)

Radius smoothness loss Similarly, for improving surface

smoothness, the radius change of neighboring MLS points

is penalized via weighted-Laplacian smoothing on radii.

Lrad = λr

∑

pi

∥

∥ri −
∑

pj∈Ω(pi)
wij · rj

∑

pj∈Ω(pi)
wij

∥

∥

2
. (11)

Weight decay A small weight decay with a coefficient λw

is added to the loss function.

The above terms are added up together to form the total

loss function. The coefficients of loss terms are specified in

Section 4.

4. Experiments

We evaluate the efficacy of IMLSNets for 3D object re-

construction and compare it against the state-of-the-art 3D

reconstruction methods. Extensive ablation tests are reported

in Section 4.2.

Dataset We use 3D models from 13 shape classes of

ShapeNet [8] as our training and test datasets. The dataset

split strategy and the input point cloud preparation follow the

setup of [32,38]: each input point cloud contains 3000 points,

randomly sampled from the ground-truth shape and Gaussian

noise with standard deviation set to 0.005 of the maximum

bounding box side length of the shape. For each 3D model,
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Input

Resblock(n, c)
Downsample(c)
Upsample(c)

MLP for IMLS prediction

IMLS parameters

Octree structure loss

IMLS loss

Figure 2: Deep IMLS Network structure for 3D reconstruction from point clouds. Each block after the input represents the

CNN computation at the octants in one level of the octree, from fine to coarse on the encoder, and vice versa on the decoder.

we prepare its ground-truth octree for training. The ground-

truth octree is built, by recursively subdividing the nonempty

octants from the root node to the maximum depth dout [49].

The set Q of grid points slightly larger than the nonempty

leaf nodes of the octree is built to probe the SDF values

for implicit function supervision. The exact training data

preparation is provided in the supplemental material.

Parameters The octree depth for storing the ground-truth

signed distance field is 7. The coefficients of loss terms

are set as follows: λo = 0.1, λg = 0.05, λp = λr = 10,

λrep = 0.05, λw = 5 × 10−5. The coefficient of the SDF

loss term depends on the octree level of SDF sample points:

λs = 200 if the level is 6, λs = 800 if the level is 7. The

selection of neighboring MLS points Ω(x) is speedup via

space partitions: 10 nearest MLS points are selected in our

experiments.

Network configuration We use the octree-based encoder

and decoder with output-guided skip connections [50]. The

network is denoted as IMLSNet(din,dout,s), where din and

dout are the input and output octree depths, and s is the

number of MLS points associated with each non-empty finest

octants. IMLSNet(7,7,1) is set by default.

Network training Our networks were trained using Adam

optimizer (lr=0.001), with batch size 32. We decay the learn-

ing rate by 20% after every 10 epochs if it is greater than

0.0001. The gradient update of wij is disabled in our training

as we found that back-propagating through wij to position

and normal variables causes training instability, especially

during the early stages when network predictions are very

inaccurate. We follow the curriculum SDF training strat-

egy [15] to improve the training quality: the SDF sample

points at the coarse octree level (depth=6) are first used,

and after 30 epochs, we use sample points at a deeper level

(depth=7). All the experiments were run on a Linux server

with an Intel Core I7-6850K CPU (3.6GHz) and a GeForce

GTX 1080 Ti GPU (11 GB memory). The network parame-

ter size of IMLSNet(7,7,1) is about 4.3 M. More details are

reported in the supplemental material, and our code is avail-

able at https://github.com/Andy97/DeepMLS/.

Network efficiency Averagely, our network forwarding

time takes 30 milliseconds per point cloud input. The gener-

ated MLS points present a good preview of the final surface.

Our naı̈ve CPU-based marching-cube implementation takes

1 second averagely for a single shape, including file IO time.

Evaluation metrics We evaluate the reconstruction qual-

ity of our results by a set of common metrics: L1-Chamfer

distance (CD1) and normal difference (ND) measure bi-

directional point-wise and normal error from ground truth;

F-score(τ ) [46] is the harmonic mean of recall and precision

under the tolerance τ ; Occupancy IOU (IOU) computes the

volumetric IOU. Our surface results are triangle meshes ex-

tracted via Marching cubes on a 1283 grid. The CD metric

is scaled by 10, τ is set to 0.1 by default. Similar metrics

on the MLS point sets are also measured to reflect the re-

construction capability of MLS point sets. The detailed

metric formulae and other measurements are provided in the

supplemental material.

4.1. 3D object reconstruction from point clouds

As IMLSNets learn local priors, the learned features

do not rely on specific shape classes. We trained IML-

SNet(7,7,1) on the ShapeNet dataset (13 classes) in a class-

agnostic way and tested our network on their test data of

13 classes, and 5 unseen shape classes (bathtub, bag, bed,

bottle, pillow). We also compared our method with two

classical reconstruction methods: robust implicit moving

least squares (RIMLS) [35] and Screened Poisson recon-

struction (SPR); and three learning-based methods: occu-

pancy network (OccNet) [32], convolutional occupancy net-

work(ConvOccNet) [38] and O-CNN based completion net-

work (O-CNN-C) [50]. OccNet and ConvOccNet are state-

of-the-art deep implicit function-based methods and the work

of [38] shows that ConvOccNet performs better than both

OccNet and DeepSDF [36]. O-CNN-C generates a set of ori-

ented points on the predicted octree. For RIMLS, Screened

Poisson, and O-CNN-C, we provide the ground-truth point
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Noisy input RIMLS SPR ConvOccNet O-CNN-C IMLSNet-point IMLSNet Ground-truth

Figure 3: Visual results of 3D object reconstruction from point clouds by different methods. For point outputs of O-CNN-C

and IMLSNet-point, we render points as oriented disks. Some artifacts in the results are labeled by black boxes.

normals as the input. We use the pretrained O-CNN-C whose

depth of the output octree is 6.

Table 1 shows that our network achieves the best perfor-

mances among all the compared methods. From the visual

comparison (Fig. 3), we can observe that all the learning-

based methods handle noisy and incomplete point inputs

much better than classical non-learning reconstruction meth-

ods. Our IMLSNet results contain more details and capture

small parts better, while other deep implicit-function meth-

ods tend to miss these details (see the examples in the 6th,

8th and 10th rows). This advantage of IMLSNet over Con-

vOccNet which uses fixed grids and implicit functions is

due to the proper combination of adaptive and sparse grids

(octree), point set, and implicit representations that together

allow for more adaptive modeling of detailed geometry. In

Table 2, the perception quality comparison measured by
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Network CD1 ↓ NC ↑ IoU ↑ F-Score ↑
O-CNN-C 0.067(0.067) 0.932(0.945) n/a 0.800(0.802)

IMLSNet pts. 0.035(0.037) 0.941(0.954) n/a 0.985(0.983)

OccNet 0.087 0.891 0.761 0.785

ConvOccNet 0.044(0.053) 0.938(0.948) 0.884(0.902) 0.942(0.916)

IMLSNet 0.031(0.034) 0.944(0.956) 0.914(0.939) 0.983(0.981)

Table 1: Quantitative evaluation of different networks on the

test data of 13 shape classes and the full data of 5 unseen

shape classes. Numbers in parentheses are for the unseen

classes and numbers in bold are the best. The evaluation on

each shape class and the training configuration of compared

networks are reported in the supplemental material.

Network plane car chair rifle table

ConvOccNet 1540.47 731.84 908.04 1433.82 660.10

IMLSNet 1326.22 649.69 710.38 1211.96 608.87

Table 2: LFD metric evaluation (lower values are better).

The comparison between IMLSNet(7,7,1) and ConvOccNet

shows that the visual quality of IMLSNet is better.

Light Field Descriptor (LFD) [9] on five categories further

confirms the superiority of our approach.

Our MLS point sets (IMLSNet points) are also good

discrete approximations and perform better than O-CNN-

C whose results contain small missing regions and floating

points (see the examples in the first and last rows). The small

missing region in IMLSNet points can be recovered by the

final IMLS surface. More visual comparisons can be found

in the supplemental material.

The statistics and illustrations on the unseen shape classes

(Fig. 4) also confirm the generalization ability of all the

approaches that use local features. Among them, our method

achieves the best result.

4.2. Ablation study

A series of experiments on 3D object reconstruction from

point clouds were conducted to evaluate each component

and parameter choice of our network. The quantitative com-

parison on the test dataset is reported in Table 3.

Input and output depth By changing the depth num-

ber of the input and output octrees, our experiments re-

veal that: (1) the network with the deeper input octree

like IMLSNet(7,6,1) yields more accurate results than IML-

SNet(6,6,1) as more input point information are fed to the

network; (2) the network with the deeper output octree

like IMLSNet(7,7,1), also yields better-detailed geometry

than the networks with shallow output octrees, like IML-

SNet(7,6,1) and IMLSNet(7,5,1). These experiments show

that the octree input and the octree-based scaffold are helpful

to gather more point information and predict shape geometry.

Noisy input ConvOccNet IMLSNet Ground-truth

Figure 4: Visual results of 3D object reconstruction on five

unseen shape classes. From left to right: the input point,

ConvOccNet, our IMLSNet, and the ground-truth model.

IMLSNet(7,5,1) IMLSNet(7,6,1) IMLSNet(7,7,1)

IMLSNet(6,6,1) IMLSNet(7,5,4) IMLSNet(7,6,2)

Figure 5: Ablation study of IMLSNets under different octree

depths and different MLS point numbers in an octant.

Fig. 5 illustrates their visual differences on the reconstruction

results of a noisy truck model.

Number of MLS points We also found that using shallow

output octree with a larger p, like IMLSNet(7,6,2) and IML-

SNet(7,5,4), can achieve similar results by a deeper output

octree with a smaller p, like IMLSNet(7,7,1), as the total

number of MLS points of these networks are comparable.

However, we observe IMLSNet(7,7,1) is better at capturing

small and thin details (see Fig. 5).

Ablation study of loss terms By dropping the surface

gradient term, the repulsion term, the projection smooth-

ness term, and the radius smoothness term independently

from IMLSNet(6,6,1), our experiments show that the sur-

face quality degrades accordingly (see Table 3 and Fig. 6).

The tested networks are denoted by w/o grad.(6,6,1), w/o
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Network CD1 ↓ NC ↑ IoU ↑ F-Score ↑
IMLSNet(7,5,1) 0.038 0.928 0.888 0.962

IMLSNet(7,6,1) 0.031 0.943 0.913 0.981

IMLSNet(6,6,1) 0.033 0.941 0.904 0.977

IMLSNet(7,7,1) 0.031 0.944 0.913 0.983

IMLSNet(7,5,4) 0.032 0.936 0.905 0.977

IMLSNet(7,6,2) 0.030 0.944 0.915 0.983

w/o grad.(6,6,1) 0.034 0.938 0.897 0.974

w/o rep.(6,6,1) 0.034 0.939 0.899 0.976

w/o ps.(6,6,1) 0.034 0.939 0.900 0.974

w/o rs.(6,6,1) 0.033 0.940 0.902 0.977

cr.(7,7,1) 0.031 0.944 0.913 0.984

cr.(6,6,1) 0.036 0.933 0.880 0.966

Table 3: Quantitative evaluation of IMLSNets under different

configurations.

cr.(6,6,1) cr.(7,7,1) w/o ps.(6,6,1)

w/o rep.(6,6,1) w/o rs.(6,6,1) w/o grad.(6,6,1)

Figure 6: Visual results of IMLSNets under different config-

urations for a truck model.

rep.(6,6,1), w/o ps.(6,6,1), w/o rs.(6,6,1). The gradient term

plays a more important role than other terms, as the network

trained without this term has the lower IoU and NC, also

loses some surface details. The radii smoothness term is less

important and the performance of the corresponding network

slightly drops compared to IMLSNet(6,6,1). More visual

comparisons are provided in the supplemental material.

Constant MLS radius We fixed the MLS point radius

to lr and trained two networks: IMLSNet(6,6,1) and IML-

SNet(7,7,1), denoted by cr.(6,6,1) and cr.(7,7,1). The results

(see Table 3 and Fig. 5) show that the former network yields

worse results than the default IMLSNet(6,6,1), but the latter

network performs well. This phenomenon indicates that

using the adaptive MLS radii would be more effective for

IMLSNets with coarser scaffolds.

Octree-aided deep local implicit function Instead of pre-

dicting MLS points at each non-empty octant, one can fol-

low [38] to predict the local implicit function value from the

interpolated feature vector in the octant via MLP directly. We

call this approach Octree-aided deep local implicit function.

We implemented this approach and compared it with our

IMLSNet. Our experiments (using depth-6 octrees) show

that this approach can recover most surface regions with

Figure 7: The results of octree-aided deep local implicit

function (middle) and our IMLS surface results (right) from

the same noisy inputs (left).

good quality, but the results may contain some holes as

there is no guarantee that the zero-iso surface always passes

through the finest non-empty octant region, while our IML-

SNet can do not have this flaw due to the explicit point

generation and IMLS surface formulation. Fig. 7 illustrates

this phenomenon on a plane model and a lamp model. More

illustrations and discussions are presented in the supplemen-

tal material.

5. Conclusion and future work

We present a deep implicit moving least-squares surface

technique for 3D reconstruction, which enjoys the flexibility

of point sets and the approximation power of implicit surface

representations. Its efficacy and generalization ability are

well demonstrated through extensive tests.

Beyond planes A straightforward extension for enhanc-

ing reconstruction quality is to use higher-order IMLS like

APSS [18, 19] which replace planes with spheres, and other

variants of MLS surfaces.

Differentiable rendering As the band regions of MLS

surfaces can be determined by MLS points, rendering MLS

surfaces by sphere marching algorithms can be performed

more efficiently than other non-point-based implicit repre-

sentations. Combining IMLS-Net and implicit surface ray-

tracing will enable differentiable MLS prediction with 2D

image supervision only.

MLS point generation As less MLS points can well ap-

proximate relatively planar and simple surface regions, de-

vising an adaptive and non-uniform MLS point generation

scheme would help reduce unnecessary MLS points and

increase IMLS reconstruction quality further. Using and

predicting the adaptive octrees [51] as the scaffold could be

a promising solution.
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[19] Gaël Guennebaud and Markus Gross. Algebraic point set

surfaces. ACM Trans. Graph., 26(3):23:1–23:9, 2007. 2, 8

[20] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3D point

clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell.,

2020. 1
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