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Abstract

Learning-based video compression has achieved substan-

tial progress during recent years. The most influential ap-

proaches adopt deep neural networks (DNNs) to remove

spatial and temporal redundancies by finding the appropri-

ate lower-dimensional representations of frames in the video.

We propose a novel DNN based framework that predicts and

compresses video sequences in the latent vector space. The

proposed method first learns the efficient lower-dimensional

latent space representation of each video frame and then

performs inter-frame prediction in that latent domain. The

proposed latent domain compression of individual frames is

obtained by a deep autoencoder trained with a generative ad-

versarial network (GAN). To exploit the temporal correlation

within the video frame sequence, we employ a convolutional

long short-term memory (ConvLSTM) network to predict the

latent vector representation of the future frame. We demon-

strate our method with two applications; video compression

and abnormal event detection that share the identical latent

frame prediction network. The proposed method exhibits

superior or competitive performance compared to the state-

of-the-art algorithms specifically designed for either video

compression or anomaly detection. 1

1. Introduction

Video data transmission occupies the majority of the inter-

net data traffic nowadays. With the trend of extensive mobile

devices usage worldwide, video data streaming is extensively

used for productivity tools and entertainment platforms that

assist people’s work and life in various aspects. On top of the

ubiquitous video engagement, superior video quality stan-

dards such as 4k UHD, and VR 360 became more widely

available, which makes high performance video compres-

sion even more critical. Traditional video coding standards

such as MPEG, AVC/H.264 [49], HEVC/H.265 [43], and

VP9 [38] have achieved impressive performance on video

compression tasks. However, as their primary applications

1Code available at: https://github.com/BowenL0218/Video-compression

Figure 1. Reconstructed frame with the conventional codecs (H.264,

H.265) and our approach. Information and details are well pre-

served in the frame generated from a purely prediction-based latent

representation (top right). Compared with H.264, our result yields

less block artifacts and preserves finer details. Our method achieves

a higher compression ratio than H.265 with similar quality.

are human perception driven, those hand-crafted codecs are

likely suboptimal for machine-related tasks such as deep

learning based video analytic.

During recent years, a growing trend of employing deep

neural networks (DNNs) for image compression tasks has

been witnessed. Prior works [46, 7, 36] have provided theo-

retical basis for application of deep autoencoders (AEs) on

image codecs that attempt to optimize the rate-distortion

trade-off, and they have showed the feasibility of latent

representation as a format of compressed signal. While

image compression reduces the redundancy only in spatial

domain, video compression exploits the temporal correla-

tion among consecutive frames as well. Using learned video

prediction to substitute traditional block-based motion pre-

diction/estimation methods has become a critical part of deep

learning based video compression. Related recent works [14,

25, 27] address the uncertainties of real-world videos with

stochastic video prediction networks using autoencoders

and/or generative adversarial network (GAN) structures in

recurrent settings. Learned video compression is a relatively

recent topic. Early works [11, 50] either directly interpo-

late the key-frames or emulate the functional units in hand-

crafted codecs with neural networks. Later proposed deep

neural video codecs [31, 28, 19, 15, 41, 3, 51, 17, 30, 21]

mainly target on learning data-driven algorithms that take

advantage of the end-to-end trainability of DNNs. Most

of them [28, 19, 15, 41, 3, 51, 17] adopt autoencoder style

structures that encode frame and residual representations in
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latent space.

In this paper, we present a novel end-to-end deep learn-

ing video codec that benefits from video prediction in latent

space. Our proposed method obtains the compressed frames

in latent space by searching for the optimal latent represen-

tations [26], and then it learns temporal correlation within

the latent space sequential data under a recurrent network

setting. As oppose to previous approaches, the training and

inference processes of our proposed prediction network are

entirely performed in the latent domain. Our video coding

method share the same predictor between the sender and

receiver, and only transmit (store) the quantized and entropy

coded prediction error (residual). The residual corrected

latent frames are fed back to the prediction network for pro-

gressive estimation on consecutive latent representations of

the data sequence.

Video compression evaluation results validate that this

technique achieves superior performance compared to the

state-of-the-art video codes. With the proposed prediction

method, we also demonstrate its application on abnormal

event detection, which is triggered when the prediction er-

ror exceeds a predefined threshold that represents a normal

event. Anomaly detection evaluation results confirm superi-

ority/competitiveness of the proposed method compared to

recent algorithms specifically designed for that task.

Our main contributions are summarized as follows:

• An end-to-end learned video compression codec based

on GAN-prior generative image compression: We pro-

pose a novel approach for time-series data compression by

adopting a GAN-based autoencoder architecture in company

with trainable quantization and entropy coding. Our codec

provides a wider range of rate-distortion trade-off than what

other recent (learning-based) codecs can offer.

• Learning based video prediction in latent domain: We

use an convolutional long short-term memory (ConvLSTM)

network to predict a compact latent representation of the next

frame substituting for motion compensation in conventional

codecs. This approach only stores the differences between

the predicted and actual representation in low dimensional

latent space, resulting in entropy reduction of the residuals.

The predictor is adversarially trained against a discriminator

which significantly enhances the quality of prediction to

bring down the entropy (i.e., density and magnitude of non-

zero elements) of residuals.

• Demonstration of a perceptual task in latent domain:

We investigate the feasibility and effectiveness of our video

prediction algorithm by performing perceptual tasks in la-

tent space. We showcase anomaly detection using the same

ConvLSTM predictor designed for video compression. With

unlabeled actions in the event detection dataset, our frame-

work performs unsupervised learning on the video content

and demonstrates reliable anomaly detection capability.

2. Related works

Learning-based image compression. There has been ex-

tensive study on applying DNNs to image compression tasks.

Most approaches typically seek compression gain from trans-

lating images to lower-dimensional representations through

either recurrent neural networks (RNNs) [45, 6, 23, 46] or

autoencoder style networks [7, 44, 8, 34, 36]. Recent ap-

proaches use GAN-based structures for image compression

[42, 4, 26] aiming to enhance subjective quality of image

reconstructions from deep encoder-decoder pairs and take

advantage of the qualification feedback provided by a dis-

criminator. These approaches often target on optimizing

distortion indicators such as mean squared error (MSE),

PSNR, and MS-SSIM between the raw and reconstructed

image, or the hybrid objective function including the percep-

tual loss. Our work adopts a GAN based structure to search

for the optimal latent vectors that minimize distortion via

back-propagation through a pre-trained generator (decoder).

Learning-based video compression. Video coding benefits

from exploiting the temporal correlation between subsequent

frames. Similar to the conventional codecs, learned video

compression leverages the temporal correlation through inter-

frame prediction. Chen et al. [11] first predict a frame then

encode the residual (error between the prediction and actual)

with a CNN. This approach shares great similarities with

the block-based codecs. Arguably, however, DNNs are less

efficient to learn from small image blocks. To overcome that

issue, Wu et al. [50] propose a codec that captures temporal

redundancy through hierarchical interpolation between key

frames. The method uses a non-DNN based optical flow to

generate motion information, and it is not jointly optimized

with the rest of the model. Lu et al. [31] construct a DNN-

based video compression pipeline close to the conventional

codecs and optimize compression rate in conjunction with

distortion. Lombardo et al. [28] present a learning-based

video codec that performs end-to-end optimization on rate-

distortion trade-off, quanitzation, and entropy coding. The

framework is built with sequential variational autoencoder

(VAE) where the encoded global state based prediction is

used to tackle the temporal redundancy. Similarly, Rippel et

al. [41] propose to represent all prior memory as a generic

and learnable state that will continuously be updated during

its propagation. The flow-residual information between two

consecutive frames is generated from the state representa-

tion. Habibian et al. [19] use a 3D spatiotemporal autoen-

coder network that temporally decorrelates the latent vectors.

Based on the encoder-decoder pair proposed in [7] for image

compression, Djelouah et al. [15] encode displacement and

blending coefficients into latent space representations. To ad-

dress the failure cases typically observed in the flow-residual

paradigm, Agustsson et al. [3] propose a scale-space flow

that trilinearly warps the frame stack constructed by the pre-

vious frame as well as its variations obtained by applying
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Figure 2. The operational flow of our proposed codec. Each frame of the video sequence is first individually compressed to a latent

representation by the method in [26]. The predicted next-frame latent (output of the prediction network) is conditioned on the former

reconstructed latent representations. The data we store and transmit is the quantized and entropy coded residual qt. The transmitter and

the receiver share the same prediction network, which produces identical reconstructed latents z̃t on both sides. z̃t is fed to the prediction

network to estimate future frames, and to the generator to decode the video frame x̃t. To preserve the quality of the reconstructed data

sequences, we monitor the distortion between the original and reconstructed frames on the transmitter side, and directly send the encoded

original key-frame to the receiver only if the distortion is above a certain threshold.

different level of Gaussian blurring. Following the hierarchi-

cal prediction approach, Yang et al. [51] design a framework

that encodes video frames with different quality levels, and

refines the coarsely predicted frames by leveraging the tem-

poral correlation contained in the high quality frames. In our

work, unlike the prior works mentioned above, the spatial

redundancy is primarily exploited by finding the optimal low

dimensional latent vectors to represent each video frame.

Then we perform temporal predictions on successive frames

in latent space. The residuals between the directly com-

pressed frames (i.e., latent vectors) and the predicted ones

are quantized, entropy coded, and transmitted to the receiver.

Video prediction and motion compensation. The study

on deep neural video prediction has led to a number of de-

sign choices. Early works usually devote to predicting small

frame patches. To reduce the blurry reconstruction effect,

Mathieu et al. [33] train a multi-scale network in an adver-

sarial setting. Whereas Finn et al. [16] present a LSTM

based network to learn the motion dynamics and to construct

motion information with the content mask to form a pre-

dicted frame. Other approaches such as [5, 14, 25] propose

variational methods to address the embedded stochasticity

in real-world videos. Motion compensated prediction is an

essential sub-task of video compression. Chen et al. [11]

present a DNN based implementation that resembles block

motion estimation in traditional codecs while others [31, 19]

incorporate an optical flow encoder network into the com-

pression system. Unlike prior approaches, our framework

employs ConvLSTM based frame prediction in latent space

for motion compensation. With a well-learned prediction

network, we demonstrate that very sparse residuals can be

obtained in latent space to produce extremely compressed

video sequences.

Anomaly in the scene detection. Anomaly detection can

be treated as an application of video prediction. A network

structure in [13] includes cascaded convolutional LSTM

networks in the autoencoder to learn the spatio–temporal

features of the video frames. Liu et. al [27] are the first to

introduce a video prediction framework adversarially trained

under a temporal constraint for anomaly detection. Park

et. al [39] propose to further enhance the performance by

adopting a memory module to record representative normal

patterns. Different from these works, our approach targets

on predicting the next-frame in latent domain. In this work

we demonstrate that the video representation learnt from

latent space temporal redundancy can be adopted to perform

reliable abnormal event detection.

3. Method specification

3.1. Video compression framework

Figure 2 depicts the proposed video compression frame-

work. We first encode each frame to an optimal latent repre-

sentation using the technique in [26]. This image compres-

sion technique searches for an optimal latent representation

through the frame-by-frame back-propagation using a pre-

trained generator network. We trained the generator (which

serves as the decoder in the proposed video coding frame-
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work) such that it can reconstruct a close-to-original frame

from a latent representation. Once the optimal latent repre-

sentation is produced for each frame, our end-to-end video

compression framework learns temporal correlation among

the latent space representations of consecutive video frames.

To achieve this goal, we predict the next-frame’s latent repre-

sentation based on the sequence of latents of previous frames

using a ConvLSTM. The prediction network takes the opti-

mal latent vectors of each frame as the input and it is trained

to predict the latent vector for the next frame as close as pos-

sible to the actual one. The element-wise difference between

the predicted and actual latent is stored as the residual. Given

a successfully trained latent space predictor, the residual is

sparse with low entropy. Hence we attain the inter-frame

compression gain from prediction on top of the intra-frame

compression of compact latent representations.

To further reduce the video code size, we encode the

residual with quantization and entropy coding. A desired

compression rate is controlled by the size of latent dimension

in the image compression stage as well as the number of

quantization levels used in residual encoding. The quantized

and entropy-coded residuals are sent from the transmitter to

the receiver as the compressed representation of the video.

The reconstructed latent is obtained by adding the com-

pressed residual to the predicted latent. The transmitter and

the receiver share the same prediction network, which pro-

duces the identical reconstructed latent for the next frame

using the previously reconstructed latent frames. At the be-

ginning stage of our proposed video compression flow, the

predictor on both sides is initialized with the latent vectors

of several initial frames (zopt,1:k, with k = 6 in our exper-

iment) that are generated without prediction. This ensures

the prediction for successive latents on both sides starts with

the same recurrent state. Using the same generator (decoder)

adopted in the image compression stage, the reconstructed

latent (z̃t) is translated to the spatial domain video frame, xt.

We formulate the image compression problem as a joint

model of a raw image x and its discrete latent representation

z with θ representing model parameters:

pθ(x, z) = pθ(z) · pθ(x|z) (1)

In the above formula, pθ(x|z) is the prior model and pθ(z) is

the likelihood. Under the scheme of video compression, the

proposed ConvLSTM prediction network exploits temporal

correlation, resulting in a likelihood model given the former

latent representations in the sequence. Therefore, the prior

model and the likelihood expression can be redefined as

pθ(x1:T , z1:T ) =

T
∏

t=1

pθ(zt|z<t) · pθ(xt|zt) (2)

where t is the time index for a frame. In the following

sections, we separately address the main functional units of

the proposed framework.

Figure 3. The latent space video prediction network estimates the

next-frame latent with the understanding of latent space temporal

correlation. A discriminator conditioned on the preceding frames

provides feedback to the predictor so that it learns the mapping from

the latent domain to the image space as well as the correlation of the

previous and current frames. Given the sequence xt−k, ..., xt−1,

the actual xt and predicted x̃t are labeled as real and fake samples

for the discriminator. As such, the predictor adversarially learns

the temporal correlation.

3.2. Video prediction

The adopted image compression method [26] provides

an optimal lower-dimensional representation zopt in latent

space for each image by minimizing a distortion function.

As such, the image compression model learns a lossy trans-

formation from spatial domain to latent space. Temporal

correlation between subsequent frames in latent domain is

exploited with an ConvLSTM based predictive model. An

accurate inter-frame prediction model is a critical compo-

nent in time-series data compression to capture the temporal

correlation in the frame sequence and thereby to achieve

small cross-entropy between the original and compressed

data. A well-trained predictor learns the capability to pre-

dict the normal inter-frame content of the video such as the

movement of an object and the translation of the camera.

This characteristic of the predictor allows abnormal event

detection as a byproduct of video compression as discussed

in Section 4.5.

Similar to existing video codecs, our approach only en-

codes and transmits the residual between the predicted latent

vector and the optimal latent zopt obtained from the image

compression process. Next frame prediction is hinging on

the conditional prior model learned by the prediction net-

work, whose cells implement the memory of previous data

distribution. The generic prior model is defined as

pθ(zT |z<T ) =

T
∏

t=2

pθ(z1:t)

pθ(z1:t−1)
. (3)

Given the complexity of stochastic data distribution in videos

and the possible rapid transition between frames, training

a good prior model is a main challenge to obtain satisfying

compression performance. We propose a GAN-based adver-
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sarially trained ConvLSTM network to make predictions ẑ

on zopt for video frame reconstruction.

As opposed to previously proposed methods, our predic-

tion model P (·) produces estimated latent vectors instead of

frames. This method requires significant attention to define

a proper reconstruction objective function since element-

wise error in latent space is often insufficient to measure

spatial domain image reconstruction fidelity. The proposed

prediction network is trained under an adversarial setup to

exploit the complex similarity metric implicitly learned by

a discriminator [24], which plays a critical role under the

latent space prediction regime. Involving the discriminator

objective [37] in the cost function improves the LSTM cells

to establish more effective memory in terms of learning the

temporal correlation. The loss function in our framework is

expressed as

L = λ ·
{

Ez∼pz

[

log (1−D(G(P (z<t|x<t))))
]

+Ez∼popt

[

log (D(G(zopt|x<t)))
]

}

+(1− λ) · Ep(z<t)

[

log p(zt|z<t)
]

,

(4)

where G(·) is the generator network that reconstructs a

frame x from a latent z and D(·) is the discriminator net-

work that judges whether a frame belongs to a valid frame

sequence as shown in Figure 3. The first term of the above

loss function refers to the cross entropy of the discriminator

cost function and the second term indicates the prediction er-

ror. Crucially, the image and video compression frameworks

share the same generator (decoder) to reconstruct a frame x

from a latent z. The generator parameters are inherited from

image compression thus fixed when training the prediction

network. As shown in Figure 2, the reconstructed latent vec-

tors, z̃ = ẑ +Q(r), inevitably lose some information from

the optimal ones, zopt = ẑ + r, due to discretization Q(r).
Note that the quantization distortion metric is not presented

in the prediction network loss, thus a well-trained generator

G(z) is crucial to minimize the loss between the target frame

xt and x̃t synthesized/generated from z̃t.

3.3. Quantization and Entropy Coding

Now we describe the quantization and entropy coding

of the residual rt from latent prediction incorporated in the

proposed video compression framework.

Quantization: We apply ADMM [40] quantization with a

goal to find discretized vectors with minimal degradation of

quality compared to the original frames. A generic quantiza-

tion problem can be described as follows:

min
r

f(r) subject to r ∈ S, (5)

where S is a quantized set and f is a loss function. In

the context of residual quantization, the loss function (6) is

defined as

f(r) = dl(zopt, (ẑ+r))+ds(x,G(ẑ+r)) subject to r ∈ S.

(6)

The optimization problem above is given by a combination

of a) the latent space distortion dl given the optimal zopt, and

b) the distortion ds(·) in spatial domain reconstruction. It is

non-convex and not solvable with stochastic gradient descent

(SGD) due to the quatization constraint. Moreover, direct

quantization is likely to cause gradient vanishing. Ren et

al. [40] address these issues with ADMM using an indicator

function and combining it with a differentiable loss function.

During iterations, ADMM method projects all elements of

residual latent vectors to different quantized levels and mini-

mizes the loss function in parallel. This guarantees that all

elements are quantized in the process to find the optimal

level.

In ADMM quantization, the problem (5) is redirected

to optimizing the cost function minr f(r) + g(u) subject

to r = u by introducing u as an auxiliary variable. The

indicator function g(u) is 0 if u ∈ S or ∞ otherwise.

min
r

f(r) + g(u) subject to r = u (7)

g(u) =

{

0 if u ∈ S

+∞ otherwise
(8)

Then, the augment Largrangian method decomposes the

dual variable optimization problem into two partial updating

tasks performed iteratively and separately as described in (9),

(10), and (11). With the addition of a convex and differen-

tiable regularization term, the optimal solution is iteratively

approximated through SGD with Adam optimizer.

rk+1 = argmin
r

f(r) +
µ

2
· ‖r − uk + ηk‖

2
2 (9)

uk+1 = argmin
u

g(u) +
µ

2
· ‖rk+1 − u+ ηk‖

2
2 (10)

ηk+1 = ηk + rk+1 − uk+1 (11)

Eq. (10) is solved by the Euclidean projection of rk+1 + ηk
onto the quantized set S, which is formulated as uk+1 :=
ΠS (rk+1 + ηk) where ΠS is the projection function.

In our proposed method, we adopt an adaptive non-

uniform quantization scheme where the quantization set is

determined specifically for each video clip and transmitted

together with the compressed data. Non-uniform quantiza-

tion is implemented by selecting a subset of uniformly quan-

tized levels and we only store/transmit the entropy coded

indices of the selected quantization levels instead of the

original value.

Entropy coding: A well-trained prediction model produces

very sparse (with few non-zero elements) residual latent rep-

resentations after quantization. The quantized residual vector

is reshaped and stored in the compressed sparse row format
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Figure 4. Comparison of our proposed approach with H.264, H.265, and learning-based codecs [50, 31, 15, 51, 3] for PSNR, and

[50, 31, 19, 12, 51, 3] for MS-SSIM on UVG and VTL datasets. Our video codec is not optimized specifically for PSNR or MS-SSIM.

and finally entropy coded with Adaptive Arithmetic Coding

[22]. After this final step, our codec achieves extremely high

compression ratios with superior/competitive reconstruction

quality compared to conventinal codecs.

3.4. Rate­distortion control

In order to allow a wide range of rate-distortion trade-off,

the compression rate (or bit-per-pixel, bpp) of our method

is controlled by changing the number of elements in the

latent vector and the number of quantization levels for the

residuals. The transmitter in our approach continuously

monitors the quality of the reconstructed (decompressed)

frame using a distortion metric d(xt, x̃t) shown in Figure

2 to adjust the compression method on-the-fly. Note that

the prediction based residual encoding can occasionally fail

when the scene changes abruptly. In rare occasions, the

generator (decoder) may yields inferior reconstructed frame

x̃t due to limitations of the trained generator model. The

frames that cause these issues are defined as key-frames and

we encode key-frames using a conventional image codec

BPG [9]. These key-frames are equivalent to intra-coded

frames in conventional video codecs. This adaptive encoding

prevents catastrophic failures in the proposed method that is

designed to cover a wide range of rate-distortion trade-off

space.

4. Experiments

4.1. Experiment setup

In the previous section, we introduced the loss function

(eq. 4) that combines the loss of the latent reconstruction and

the discriminator loss to enhance the quality of the recon-

structed image from our prediction network. We empirically

choose λ = 0.1 during the training to balance the first and

second term. Adding the discriminator loss term does not

necessarily improve the PSNR/SSIM metric but it does en-

hance the subjective quality of video/image. The number of

iterations typically needed for ADMM quantization in our

task is 50. The structure of DNNs (including the number

of layers and kernel sizes, etc.) used in the experiment is

specified in the supplementary material.

4.2. Video compression: datasets, metrics, and
analysis

Datasets: Our framework is trained with the Kinetics dataset

[10] and the UGC dataset [48]. In the Kinetics dataset,

we use roughly 98,000 videos each lasting for around 10

seconds with resolution higher than 720p. The UGC dataset

has a rich collection of contents such as lecture, animation,

and music videos with more than 1500 clips for an average

length of 20 seconds. Training and evaluation datasets are

mutually exclusive. We evaluate our approach using Video

Trace Library (VTL) [1] and Ultra Video Group (UVG) [35]

datasets. The VTL dataset contains 20 videos with around

40,000 frames of resolution 352×288. The UVG dataset has

16 videos, and we test on the original 8 videos with overall

3,900 frames of resolution 1920 × 1080 to compare with

other existing methods.

Metrics: We quantitatively compare our experimental re-

sults with the most prevailing hand-crafted video codecs

as well as learning-based codecs recently proposed. The

quality distortion is measured by PSNR and MS-SSIM of

decompressed frames. For the conventional codecs, H.264

and H.265, we use the ffmpeg very-fast mode with a GOP of

10/12 for the VTL/UVG dataset.

Analysis: The experimental results on VTL and UVG

dataset in Figure 4 show that our work outperforms

AVC/H.264, HEVC/H.265, and the state-of-the-art DNN

based codecs for the most of tested bits-per-pixel (bpp) rates

in terms of PSNR and MS-SSIM. Figure 1 is the visual-

ization of a frame from the UVG dataset showing that our

approach gives equally if not more visually appealing recon-

structed frames under a lower/same bpp compared with other

codecs. Additional visualization results from our method are

available in the supplementary material. We observed from

the output that incorporating discriminator loss in training

can provide more complex details and realistic quality. Al-

though this subjective quality gain is not always captured

by the commonly adopted pixel-wise distortion metric such

as PSNR and MS-SSIM, our method still achieves better

results in the rate-distortion tradeoff measured by PSNR

and MS-SSIM compared to other video codecs. Note that

our scheme is flexible to adopt a different set of zopt,t that
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Figure 5. Visualization of our model results. The prediction network predicts for the next-frame latent according from several preceding

latents (second left). The residual (second right) in the latent space is added to the predicted latent for final reconstruction via the generator.

minimizes an application-specific target metric (instead of

generic MSE) such as a CNN feature loss or discrimina-

tor loss if the decompressed video is intended for machine

learning based applications. We observed our PSNR in a

very low bpp regime can be lower than that of some other

codecs (Figure 4 second left). It is mainly because of two

factors: 1) there is resolution mismatch between training and

evaluation datasets, and 2) our target z minimizes a com-

bined loss as shown in eq.(4) for superior subjective quality

on reconstructed frames although it may result in slightly

degraded PSNR.

4.3. Latent space video prediction

We present an example video frame directly generated

from the predicted latent ẑt (without residual compensation)

in Figure 1 top right and Figure 5 second left. The result

shows that our approach produces effective next-frame pre-

diction to achieve high compression rates. Figure 6 right

shows the quality of video entirely generated from the pre-

dicted latent ẑt in terms of PSNR on UVG [35] dataset.

For this experiment, the prediction-only mode produces the

video sequences from predicted next-frame latents ẑt with-

out residual compensation whereas the input to the predictor

is the reconstructed latents z̃<t. The result in Figure 6 right

shows that our approach provides high quality next-frame

prediction while the average prediction quality saturates as

the bit rate increases. Note that the bit rate for the prediction-

only mode is overstated because it is mostly dominated by

residuals which are unused in the prediction-only mode. The

observation implies that while the reconstructed latents, z̃t,

can learn the spatial domain correlation within a frame very

well, there remains non-negligible inter-frame temporal pre-

diction errors caused by complex motion dynamics. In the

video compression task, we alleviate this issue and achieve

significant quality improvements by saving and transmitting

key-frames and residuals. For the majority of normal video

frame sequences that have strong temporal correlations, the

proposed prediction method provides reliable and accurate

prediction for compression. For occasional abnormal se-

quences, we exploit the limitation of the prediction network

for the task of abnormal event detection (Sec. 4.5).

Figure 6. Code length distribution for different compression ra-

tios (left) and evaluation of next-frame prediction performance

(right). The prediction-only method generates the video sequences

from predicted next-frame latents ẑt without residual compensation

whereas the input to the predictor is the reconstructed latents z̃t.

Note that bpp values for the prediction-only curve do not reflect the

actual code size (which should be very close to 0 as residuals are

discarded). They are just proportional to the latent space dimension

we adopted for the experiment.

4.4. Compressed data size distribution

As described in Section 3.1, we first transmit k = 6 ini-

tial frames without prediction in their latent representation

zopt, and they are fed to the prediction ConvLSTM network

to initialize the latent sequence. During the regular codec

operation after initialization, we keep monitoring the quality

of reconstructed frames x̃t compared with the raw frame

by evaluating the MSE distortion d(xt, x̃t) = ‖xt − x̃t‖
2.

When the distortion exceeds a predefined threshold, we de-

clare that frame a key-frame and transmit the BPG-coded

frame directly to the receiver (without using the latent do-

main residual). To further inspect the implication of this pro-

posed approach, we analyze the distribution of code length

for different bit-rates in Figure 6 left. The result shows that

residual latent vectors dominate the overall compressed data

as expected. The proportion of key-frames is dependent on

the video content (abrupt scene changes incur more key-

frames) but it is less significant especially for very low or

high compression rates. We set a lower distortion thresh-

old for the higher image quality target. Thus it is likely to

encounter more intra-coded key-frames for higher quality

video compression. On the other hand, allowing more bits

per pixel reduces the distortion, thereby decreases the num-
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ber of bits for key-frame transmission. Because of these two

counteracting effects, the bit allocation for the key-frames

shown in Figure 6 left shows a non-monotonic pattern with

relatively fewer bits at two extremes (lowest and highest

rates), while more bits are allocated to key-frames when the

compression is at a medium level.

Our evaluation on UVG dataset confirms that the key-

frames occupy on average only 8.73% of the total code

length. The bit streams for prediction residual encoding

account for 84.8% of the total compressed bit sequence

on average, while the rest 6.48% contributes to the initial

frames. According to our inspection on the composition of

the compressed signal, the residual rt is 8× more sparse

(fewer non-zero values) than the target latent representation

zopt,t on average. This validates that generating accurate

prediction is a key enabler for our codec.

4.5. Application: scene anomaly detection

We extend our study and experiments to anomaly detec-

tion on surveillance video clips, which mostly contain ho-

mogeneous contents with relatively small changes between

scenes. With the assumption that our prediction model reli-

ably predicts the next frame in normal scenes, an anomalous

event is detected when the difference between the predicted

latent vector and the target zopt of the frame is substantial.

We quantify the error of prediction caused by the abnor-

mal event by computing the Euclidean distance between the

predicted and target latent vector.

Following the regularity score proposed in [13], e(t) is

the L2 distance between the prediction and target latent at

frame index t. The score S(t) reflects the normality of the

frame within the sequence of time duration T .

e(t) = ‖zopt − z̃t‖2

S(t) = 1− e(t)−minτ (e(τ))
maxτ (e(τ))

, τ=t−T,t−T+1,··· ,t

(12)

The regularity score (eq.12) indicates that relatively small

prediction error produce a score close to 1, while it will

drop significantly when large prediction error is encountered

because of an abnormal (i.e., unseen during the prediction

training) event in the scene. Figure 7 visualizes the change

of the regularity score in a video clip.

We benchmark the anomaly detection performance on

several widely used datasets with distinctive features. UCSD

[32] Ped1 contains 40 abnormal events in 70 video clips,

and UCSD Ped2 has 12 abnormal events in 28 videos. The

Subway entrance / exit dataset [2] has 96 / 43 minutes video

with 66 / 19 abnormal events. Avenue dataset [29] com-

prises overall 47 abnormal events. Our predictor network

is solely trained for the video compression task, and it has

not been retrained for the anomaly detection. We evaluate

our approach on the test sequences of those datasets in terms

of area under the Receiver Operation Characteristic (ROC)

Figure 7. Regularity score (blue curve in the figure) along the frame

sequence. Normal scenes typically score > 0.9 whereas abnormal

events cause steep score degradation.

Table 1. Anomaly detection performance evaluated by area under

ROC curve (AUC %).

Methods
UCSD UCSD Subway Subway CUHK

Ped 1 Ped 2 Entrance Exit Avenue

Wang et al. [47] 72.7 87.5 81.6 84.9 –

Hasan et al. [20] 81.0 90.0 94.3 80.7 70.2

Chong et al. [13] 89.9 87.4 84.7 94.0 80.3

Liu et al. [27] 83.1 95.4 – – 84.9

Gong et al. [18] – 94.1 – – 83.3

Ours 90.9 93.6 88.2 94.5 85.4

curve (AUC), which cumulatively reflects the ROC metric.

Generally, higher AUC indicates better performance.

In our scheme, normal scenes with learned patterns

mostly do not trigger false alarms as they create small fluctu-

ations in the regularity score S(t). However, when an abnor-

mal event happens, the regularity score significantly drops

with a high probability. This abnormal event detection is just

a byproduct of our compression algorithm. Nonetheless, our

event detection performance shown in Table 1 exhibits com-

parable/superior accuracy compared with others specifically

designed for the task.

5. Conclusion

We propose a GAN based framework that accomplishes

video prediction and compression. Our method simultane-

ously learns a transform of the original video into a lower-

dimensional latent representation as well as a temporally-

conditioned probabilistic model. The performance evalua-

tions show that our work achieves superior/competitive result

compared to other (learning-based) codecs for a wide range

of rate-distortion trade-off. Our performance gain majorly

attributes to the approach that reduces both the spatial and

temporal redundancy by combining image compression and

video prediction in latent space. We also demonstrate an

application using the video prediction score to detect an ab-

normal event, showing competitive accuracy compared to

algorithms specifically optimized for that task.
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