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Abstract

Transport processes are ubiquitous. They are, for exam-

ple, at the heart of optical flow approaches; or of perfu-

sion imaging, where blood transport is assessed, most com-

monly by injecting a tracer. An advection-diffusion equa-

tion is widely used to describe these transport phenomena.

Our goal is estimating the underlying physics of advection-

diffusion equations, expressed as velocity and diffusion ten-

sor fields. We propose a learning framework (YETI) build-

ing on an auto-encoder structure between 2D and 3D im-

age time-series, which incorporates the advection-diffusion

model. To help with identifiability, we develop an advection-

diffusion simulator which allows pre-training of our model

by supervised learning using the velocity and diffusion ten-

sor fields. Instead of directly learning these velocity and

diffusion tensor fields, we introduce representations that

assure incompressible flow and symmetric positive semi-

definite diffusion fields and demonstrate the additional ben-

efits of these representations on improving estimation ac-

curacy. We further use transfer learning to apply YETI on

a public brain magnetic resonance (MR) perfusion dataset

of stroke patients and show its ability to successfully dis-

tinguish stroke lesions from normal brain regions via the

estimated velocity and diffusion tensor fields.

1. Introduction

Many transport phenomena can be formalized by par-

tial differential equations (PDEs). However, numerically

solving PDEs is expensive for high spatial dimensions

and across timescales [4]. Significant developments in

deep learning have recently led to an explosive growth of

data-driven solutions for PDEs via deep neural networks

(DNNs). This work either directly models the solution via
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DNNs [14, 41, 45] or learns mesh-free, infinite-dimensional

operators with DNNs [31, 6, 39, 44, 28].

Despite of the significant progress achieved by the afore-

mentioned methods for solving PDEs forward, inverse PDE

problems, i.e., parameter estimation, remains challeng-

ing [29, 47]. Such problems have been extensively explored

in the context of optical flow and for general image reg-

istration, where the underlying PDE model is typically an

advection equation and the sought-for parameter is a dis-

placement or velocity vector field [22, 7, 37, 5, 21]. DNN

solutions have also been studied [12, 49, 3, 43].

In contrast, we are interested in estimating the spatially-

varying velocity and diffusion tensor fields (termed

physics parameter fields in what follows) for more general

advection-diffusion equations. Challenges arise from iden-

tifiability (i.e., if observed transport is due to advection or

diffusion), physical plausibility (e.g., for fluid flow, vector

fields should be divergence-free) and diffusion tensor struc-

ture (i.e., predominant direction and anisotropy). Further,

while optical flow and registration approaches typically deal

with image pairs, the parameter estimation for advection-

diffusion equations is generally based on time-series data.

Limited work to estimate the parameter fields of

advection-diffusion equations exist. Tartakovsky et al. [47]

do not consider advection or diffusion tensors, but instead

proposed a DNN to learn 2D diffusion fields only from dif-

fusion PDEs. Bézenac et al. [10] learn 2D velocity and dif-

fusion fields of advection-diffusion PDEs by DNNs. Liu et

al. [30] proposed an optimization approach to estimate ve-

locity and diffusion fields of an advection-diffusion equa-

tion in 3D. Though promising, the numerical optimization

approach is time-consuming, especially when dealing with

large datasets. Koundal et al. [24] use optimal mass trans-

port combined with a spatially constant diffusion. Note that

all aforementioned methods assume isotropic diffusion (i.e.,

not general diffusion tensors), which is insufficient to ac-

curately model complex materials (e.g., anisotropic porous

media, brain tissue) where diffusion is mostly anisotropic.
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Further, both the approaches by Bézenac et al. [10] and Liu

et al. [30] suffer from potential identifiability issues as they

are both only based on fitting the observed time-series data

without explicitly controlling how to allocate between the

velocity and diffusion fields; though an inductive bias is in-

troduced by considering divergence-free vector fields only,

via a loss term in [10] and a special parameterization in [30].

We therefore introduce a novel learning framework,

termed YETI, which works in 2D and 3D, to discover the un-

derlying velocity and diffusion tensor fields from observed

advection-diffusion time-series. Our contributions are:

• A novel advection-diffusion learning model. Given an

advection-diffusion process, YETI not only predicts

the transport dynamics, but also reconstructs the un-

derlying velocity and diffusion tensor fields.

• Representation theorems for divergence-free vectors

and symmetric PSD tensors. Our estimates are

grounded in theorems ensuring realistic constraints

on the learned physics parameter fields by construc-

tion. This also helps to significantly improve the dif-

fusion reconstruction by providing supervision on its

anisotropic structure during training.

• Advection-diffusion simulator. We develop a simulator

for quasi-realistic advection-diffusion that can be used

for physics-parameter-supervised model training.

• A two-phase learning strategy. (1) We initially train

our model on a simulated dataset with ground truth

physics to improve identifiability when estimating ve-

locity and diffusion from advection-diffusion; (2) We

apply PDE-based transfer learning for transport dy-

namics via a time-series auto-encoder, which allows

us to discover unknown velocity and diffusion fields

of advection-diffusion processes for real world data.

2. Background and Problem Setup

Advection-diffusion PDEs are used to describe a large

family of physical processes, e.g., fluid dynamics, heat con-

duction, and wind dynamics [10]. Advection refers to the

transport with fluid flow, diffusion is driven by the gradient

of mass concentration. Let C(x, t) denote the mass concen-

tration at location x in a bounded domain Ω⊂R
d (d = 2, 3),

at time t. The local mass concentration changes of an

advection-diffusion process are described by the PDE

∂C(x, t)

∂ t
=−∇(V(x) ·C(x, t))︸ ︷︷ ︸

Fluid flow

+∇ · (D(x)∇C(x, t))︸ ︷︷ ︸
Diffusion

, (1)

for specified boundary conditions (B.C.). The spatially-

varying velocity field V (V(x) ∈ R
d) and diffusion tensor

field D (D(x) ∈R
d×d) describe the advection and diffusion.

Incompressible Flow In fluid mechanics, incompress-

ibility describes a flow with constant density within a parcel

of fluid moving with the flow velocity. This is a common

assumption for fluids in practice as the density variation is

negligible in most scenarios [23]. Mathematically, the ve-

locity field of an incompressible flow has zero divergence

(i.e., is divergence-free), which simplifies Eq. (1) to

∂C(x, t)

∂ t
=−V(x) ·∇C(x, t)︸ ︷︷ ︸

Incompressible flow

+∇ · (D(x)∇C(x, t))︸ ︷︷ ︸
Diffusion

. (2)

Note when D → 0, Eq. (2) is simply an advection equation,

which is the basis for many variational optical flow or image

registration methods [22, 7, 37, 5, 21, 48, 12, 49, 3, 43].

Symmetric Positive Semi-definite (PSD) Diffusion Dif-

fusion can be generally modeled via symmetric positive-

definite tensors1. In practice, diffusion tensors, D, are as-

sumed to be symmetric positive semi-definite (PSD) [40].

Perfusion Imaging Using an intravascular tracer, perfu-

sion imaging is used to quantify blood flow through brain

parenchyma [11]. Its resulting tracer concentration image

time-series can be viewed as the tracer being transported

by blood flow within the vessels (advection) while diffus-

ing within the extracellular space (diffusion) [46, 20, 9, 30].

Perfusion imaging is the motivating application behind our

approach, yet our approach applies generally to parameter

estimation for advection-diffusion equations.

3. Constraint-free Representations

As explained in Sec. 2, incompressibility and symmetric

PSD-ness are commonly used realistic assumptions for fluid

flow and diffusion. This section introduces two theorems

to represent divergence-free velocity fields and symmetric

PSD diffusion tensor fields based on potentials and rep-

resentative matrices to obtain divergence-free vector fields

and PSD tensors by construction, even at test time.

3.1. Divergence­free Vector Representation
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Figure 1: Representing a 3D divergence-free vector field

(V) by the curl of vector potentials (Ψ) via Eq. (3).

Bézenac et al. [10] penalize deviations of the learned ve-

locity fields from zero divergence. However, zero diver-

1For simplicity D is often chosen as a scalar field or even as a constant,

which amounts to an isotropic diffusion assumption. However, diffusion

in complex materials (e.g., anisotropic porous media, brain tissue) is gen-

erally anisotropic, hence requiring the estimation of general PSD tensors.
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gence cannot be guaranteed and is only encouraged dur-

ing training. Kim et al. [23] parametrize velocity vectors

via the curl of vector fields, but do not consider the bound-

ary conditions that should be imposed on the vector poten-

tials in bounded domain scenarios [13, 1, 33, 2]. Therefore,

we seek a representation which enables us to learn velocity

fields V on a domain Ω⊂R
d (d = 2, 3) with smooth bound-

ary such that (1) V is divergence-free by construction; and

(2) any divergence-free V can be represented.

Specifically, we introduce the representation theorem for

divergence-free velocity fields below. (See complete proof

for Theorem 1 in Supp. A.)

Theorem 1 (Divergence-free Vector Field Representa-

tion by the Curl of Potentials). For any vector field V ∈
Lp(Ω)d on a bounded domain Ω ⊂ R

d with smooth bound-

ary ∂Ω. If V satisfies ∇ ·V = 0, there exists a potential Ψ in

Lp(Ω)α such that (α = 1 when d = 2, α = 3 when d = 3)

V = ∇×Ψ, Ψ ·n
∣∣
∂Ω

= 0, Ψ ∈ Lp(Ω)α . (3)

Conversely, for any Ψ ∈ Lp(Ω)α , ∇ ·V = ∇ · (∇×Ψ) = 0.

With Theorem 1, we learn a divergence-free velocity

field via its potential Ψ, to ensure the divergence-free prop-

erty of V while bypassing direct constraints on V itself.

3.2. Symmetric PSD Tensor Representation

λ3 u3

λ1 u1λ1 u1 λ2 u2λ2 u2

D =
[
u1 u2 u3

]
︸ ︷︷ ︸
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
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
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Figure 2: Representing a 3D symmetric PSD diffusion ten-

sor (D) by eigenvectors (U) and eigenvalues (Λ) via Eq. (5).

Similar to Sec. 3.1, we aim for a representation for ten-

sors D such that (1) D is a symmetric PSD tensor by con-

struction, and (2) any symmetric PSD D can be represented.

Notation. Denote the n×n symmetric PSD tensor group as

PSD(n)≡ {D ∈ R
n×n

∣∣∀x ∈ R
n : xT Dx ≥ 0}. (4)

First, consider the spectral decomposition of D:

D = UΛUT , D ∈ PSD(n), U ∈ SO(n), Λ ∈ SD(n), (5)

where the columns of U are the eigenvectors of D, which

belong to the special real orthogonal group SO(n):

SO(n)≡ {U ∈ R
n×n

∣∣UT U = I, det(U) = 1}, (6)

and Λ are the corresponding non-negative eigenvalues, in

the special group of non-negative diagonal matrices:

SD(n)≡ {diag(λ1, ...λn) ∈ R
n×n

∣∣λ1, ..., λn ≥ 0}. (7)

Combining the surjective Lie exponential mapping on

SO(n) (exp : so(n) 7→ SO(n), so(n) is the group of skew-

symmetric matrices) [27] with the isomorphic mapping

from the space of upper triangular matrices with zero diago-

nal entries to so(n) (α : R
n(n−1)

2 7→ so(n)) [26], we give the

following representation theorem for symmetric PSD ten-

sors. (See complete proof for Theorem 2 in Supp. B).

Theorem 2 (Symmetric PSD Tensor Representation by

Spectral Decomposition). For any tensor D ∈ PSD(n),
there exists an upper triangular matrix with zero diago-

nal entries, B ∈ R
n(n−1)

2 , and a diagonal matrix with non-

negative diagonal entries, Λ ∈ SD(n), satisfying:

D = UΛUT , U = exp(B−BT ) ∈ SO(n). (8)

Conversely, for any upper triangular matrix with zero di-

agonal entries, B ∈ R
n(n−1)

2 , and any diagonal matrix with

non-negative diagonal entries, Λ ∈ SD(n), Eq. (8) results in

a symmetric PSD tensor, D ∈ PSD(n).

Therefore, we can learn a symmetric PSD diffusion ten-

sor via its representative matrices B and Λ based on The-

orem 2, to ensure the symmetric PSD property of D while

not imposing it on the learning space. In implementation,

we use the Cayley retraction [26] to approximate the expo-

nential mapping on SO(n), to reduce computational costs.

4. YETI: discovering hidden phYsics bEhind

Transport dynamIcs

Sec. 3 described the representation theorems for

divergence-free vector fields and symmetric PSD tensor

fields, which allow imposing constraints by construction.

This section introduces our learning scheme, YETI, for dis-

covering the divergence-free velocity fields (V) and sym-

metric PSD diffusion fields (D) underlying an observed

advection-diffusion process. YETI consists of two phases:

(1) Direct physics learning: reconstructs physics parame-

ters (V, D) from input time-series of transport dynamics,

trained on a simulated dataset under the supervision of

ground truth physics parameters; (2) Latent physics learn-

ing: transfers the pre-trained model from the direct physics

learning phase to real mass concentration time-series. As

the ground truth physics parameters are unknown in this

case, transfer learning proceeds via a time-series auto-

encoder which integrates the advection-diffusion PDE.

Due to the large size of the concentration time-series, es-

pecially for 3D domains, YETI trains on patches. Given a

time-series C = {Cti ∈R(Ω)
∣∣i= 1, 2, ..., NT}, we randomly

extract 323 (322 for 2D domains) patches from same spa-

tial locations (Ωp ⊂ Ω), across Nin time points. Each train-

ing sample (Cp) starts from a randomly selected time point

ti (i ∈ {1, 2, ..., NT − Nin + 1}), resulting in Cp = {C
t j
p ∈

R(Ωp)
∣∣ j = i, ..., i+Nin −1} (Fig. 3 (top left)).

4.1. Direct Physics Learning Phase

YETI can use different convolutional neural network ar-

chitectures. Here we modify the networks from [8] ([42])
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: MaxPool (2) + (Conv. (3) + BN + LeakyReLU) ×2

, : ConvTransp. (2) + (Conv. (3) + BN + LeakyReLU) ×2

Time-Series Sample C|Ω×NT

t1 t2 t3 ti ti+Nin−1 tNT

Input Patch Cp|Ωp×Nin

32
64

128
256

Dynamics encoder

256
128

64
32 3+3

3D

(1+2)

(2D)

3 (1)

V-, D-decoder

Ψ̂

B̂⊕
Λ̂

Skip connections

Theorem 1

(Fig. 1) V̂

3 (2)

Theorem. 2

(Fig. 2) D̂

6 (3)

LDir (Sec. 4.1) wSS LSS (Sec. 4.2)

Advection-Diffusion

PDE Solver (Sec. 4.2)

Time-series Prediction Ĉp

Nδ t = ∆t/δ t

ti ti +δt ti +2δt ti+1 ti+Nout−1

LCC (Sec. 4.2)

Alg. 1: Pseudocode for YETI

Input: Time series of mass concentration

C|Ω×NT
= {Cti ∈ R(Ω)

∣∣i = 1, 2, ..., NT}

Output: V̂, D̂, Û, Λ̂, {Ĉ
t j
p ∈ R(Ωp)| j = i, . . . , i+Nout −1}

1 while LDir not converged do // Direct Physics Learning

2 Randomly pick time-course as training sample

Cp|Ωp×Nin
= {C

t j
p ∈ R(Ωp)

∣∣ j = i, ..., i+Nin −1}

3 Reconstruct potential Ψ, B, Λ (Sec. 4.1)

4 Represent divergence-free V by Ψ via Eq. (3)

5 Represent symmetric PSD D by B, Λ via Eq. (8)

6 Compute LDir and backpropagate

7 while LLat not converged do // Latent Physics Learning

8 Process forward line 2-6

9 for t = ti +δ t, . . . , ti+1, ti+1 +δ t, . . . , ti+Nout−1 do

10 Discretize in space (Sec. 4.2)

11 Compute advection-diffusion PDE via Eq. (2)

12 Impose patch-based virtual B.C. via Eq. (12)

13 Integrate in time (Sec. 4.2), obtain Ĉt+δ t
p

14 Compute LLat and backpropagate

Figure 3: YETI learning scheme bird’s eye view. The model is first pre-trained on simulated data for the reconstruction of the

physics parameter fields (V and D) from input time-series. Supervision is based on the ground truth physics parameter fields

(Sec. 4.1). Next, real data is used for transfer learning in an auto-encoder setup for input time-series. This allows recovering

the hidden physics of the velocity and diffusion tensor fields that best fit the input time-series (Sec. 4.2).

to estimate V, D on 3D (2D) domains. As shown in Fig. 3

(bottom left), Cp is first processed by a dynamics encoder

which extracts latent features from input time-series. The

images of the input time-series are simply treated as input

channels. Next, two separate decoders learn the mappings

to the potentials of V and D. The V-decoder outputs the

potential Ψ̂ to represent the corresponding divergence-free

velocity field V̂ via Theorem 1. Likewise, the D-decoder

outputs B̂ concatenated with Λ̂ to express the reconstructed

symmetric PSD diffusion tensor field D̂ via Theorem 2. The

reconstruction loss of the predicted V̂, D̂ is

LVD =
1

|Ωp|

∫

Ωp

∥∥V− V̂
∥∥

2
+
∥∥D− D̂

∥∥
F

dx , (9)

where V, D denote the ground truth physics parameters and

∥ · ∥2, ∥ · ∥F the vector 2-norm and tensor Frobenius norm.

Structure-informed Supervision In order to improve the

network’s ability to capture the anisotropic structure of dif-

fusion tensors, we further impose supervision on the eigen-

vectors (Û) and eigenvalues (Λ̂) of D̂ (Fig. 2). Note Û =
[û1, û2(, û3)] is an intermediate output from B̂ via Eq. (8).

LUΛ =
1

|Ωp|

∫

Ωp

3(2)

∑
i=1

min
{∥∥ui± ûi

∥∥
2

}
+
∥∥Λ− Λ̂

∥∥
F

dx , (10)

where the element-wise min is used for resolving the sign

ambiguities regarding the eigenvector directions.

Overall, the complete loss for direct physics learning is

LDir = LVD +wUΛ LUΛ , wUΛ > 0 . (11)

4.2. Latent Physics Learning Phase

In this phase, we transfer the pre-trained model from

Sec. 4.1 to time-series datasets where the ground truth V, D

are unknown, thus training is supervised by the transport

dynamics. Specifically, we use an advection-diffusion PDE

solver to integrate the initial state (C
ti
p) forward in time to

ti+Nout−1 via Eq. (2) (Fig. 3 (bottom right)), and fine-tune the

physics reconstruction model by minimizing the differences

between the predicted (Ĉp) and the input (Cp) time-series.

Numerical Solution We use a first-order upwind scheme

[25] to approximate the differential operators of the advec-

tion term in Eq. (2), and a nested central-forward-backward

difference scheme for the diffusion term. Discretizing all

the spatial derivatives on the right side of Eq. (2) results in

a system of ordinary differential equations (ODEs), which

can be solved by numerical integration. We use the RK45

method to advance in time (δ t) to predict Ĉt+δ t . Note when

the input mass transport time-series has relatively large tem-

poral resolution (∆t), the chosen δ t should be smaller than

∆t (Fig. 3 (top right)) to satisfy the Courant-Friedrichs-

Lewy (CFL) condition [19, 25], thereby ensuring stable nu-

merical integration. (See numerical discretization details

and stability discussions in Supp. C.)

Patch-based Boundary Conditions Improperly-chosen

boundary conditions (B.C.) can cause stability issues dur-

ing numerical integration. As the boundaries (∂Ωp) of ex-

tracted patches are typically not the actual domain bound-

aries (∂Ω), they need to be carefully specified. We set up

Cauchy B.C. [47] as virtual B.C. for training patches:

Ĉ
t j
p

∣∣
∂Ωp

=C
t j
p

∣∣
∂Ωp︸ ︷︷ ︸

1 Dirichlet

,
∂Ĉ

t j
p

∂n

∣∣∣∣
∂Ωp

= 0

︸ ︷︷ ︸
2 Zero-Neumann

, ( j = i, ..., i+Nout−1)

(12)
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t = 1 t = 8 t = 16 t = 24 t = 32 t = 40

Figure 4: One example of anisotropic moving Gaussian.

C
t j
p , Ĉ

t j
p denote the input and predicted mass concentration

for patch Cp at time t j, respectively. n is the outward unit

vector normal to ∂Ωp. By imposing Eq. (12) we assume no

flux across ∂Ωp (zero-Neumann B.C.) and values on ∂Ωp

reflect the actual amount of mass (Dirichlet B.C.). We fur-

ther discard the boundaries of predicted time-series (Ĉp) to

reduce potential artifacts introduced by the virtual B.C.

Losses Given an input training sample {C
t j
p ∈ R(Ωp)| j =

i, . . . , i + Nin − 1}, we compute the mean squared error

of the predicted time series Ĉp at output collocation time

points ti, . . . , ti+Nout−1, to encourage predictions close to ob-

served values. We also account for spatial gradient differ-

ences [34] at each collocation time point. Therefore, the

collocation concentration loss (LCC) is defined as

LCC =
1

Nout

i+Nout−1

∑
j=i

∫

Ωp

∣∣Ct j
p −Ĉ

t j
p

∣∣2 +w∇

∥∥∇C
t j
p −∇Ĉ

t j
p

∥∥2

2

|Ωp|
dx,

(13)
where ∇ denotes the spatial derivative, w∇ > 0.

Assuming the physics parameter fields are spatially

smooth, we add a regularization term (LSS) on the gradi-

ent fields of each component of the reconstructed V̂, D̂:

LSS =
1

|Ωp|

∫

Ωp

( 3(2)

∑
i=1

∥∇V̂i∥
2
2 +

9(4)

∑
i=1

∥∇D̂i∥
2
2

)
dx . (14)

Overall, the complete loss for latent physics learning is

LLat = LCC +wSS LSS , wSS > 0 . (15)

5. Experimental Results

In Sec. 5.1-5.2, we test on simulated time-series in 2D

and 3D. We show the significant improvements achieved by

YETI’s direct physics learning with structure-informed su-

pervision. In Sec. 5.3, we transfer YETI’s pre-trained model

on simulated data to real time-series of MR perfusion im-

ages from stroke patients. We demonstrate YETI’s ability in

distinguishing stroke lesions from normal brain regions via

its reconstructed physics parameters fields (V̂, D̂).

5.1. 2D Simulation: Anisotropic Moving Gaussian

Dataset We simulate advection-diffusion in 2D on-the-fly

(Fig. 4). Each sample is a 2D image time-series of size

642 × 40 (on a 642 domain with 1mm uniform spacing;

NT = 40 with time interval ∆t = 0.01s). Every time-series

records the advection-diffusion of mass concentration ini-

tialized by a Gaussian (σ = 2) at a randomly selected cen-

ter and transported by V, D, computed by potential Ψ, B, Λ.

Specifically, the nonzero entries in B are assigned values

randomly, resulting in random diffusion eigenvectors direc-

tions. All components of Λ are randomly sampled from

range [0,1], and Ψ is randomly sampled within [−10,10], to

assure numerical stability of the simulation (See Supp. C).

Experiments We compare three learning settings: (1)

“Dynamics-supervised” YETI, where we only supervise on

the time-series and directly train in the latent physics learn-

ing phase (line 7-14 (Alg. 1)). (2) “VD-supervised” YETI,

where we train in the direct physics learning phase (line 1-6

(Alg. 1)) yet without structure-informed supervision. I.e.,

LVD is the only training loss. (3) “Structure-informed”

YETI, the proposed direct physics learning phase (Sec. 4.1).

Specifically, the input time-series length for all models is

Nin = 10. For “dynamics-supervised” YETI, we set Nout =
10, w∇ = 0.5, wSS = 0.1. For “structure-informed” YETI,

we set wUΛ = 0.5. We use Adam with learning rate 10−3

and a decay factor of 0.1 per 500 iterations, for all models.

We test on 50 samples per 500 training iterations. Recon-

structed physics (V̂, D̂, Û, Λ̂) on the entire domain are ob-

tained by splicing the output patches together. By solving

the advection-diffusion PDE forward with V̂, D̂ we obtain

the predicted time-series Ĉ on the original domain.

For evaluation, we compute the following mean relative

absolute error (RAE) for the reconstructed V̂, D̂, Û, Λ̂:

ErrF =
1

|Ω|

∫

Ω
∥F− F̂∥/∥F∥dx , (16)

where F, F̂ denote ground truth and prediction, ∥ · ∥ is the

absolute, 2-norm or Frobenius norm for scalars, vectors or

tensors. Time-series error (ErrC) is the average mean RAE

over time-series predicted on all collocation time points.

Fig. 5 compares the reconstruction errors of the three

models throughout learning. Eventually all models achieve

comparable accuracy with respect to the time-series pre-

diction. However, without explicit supervision on V and

D, “dynamics-supervised” YETI leads to much higher er-

rors on reconstructed V̂, D̂. While “VD-supervised” YETI

reaches similar performance to “structure-informed” YETI

with respect to V̂, it results in higher ErrD, which can also

be observed from its worse performance in reconstructing

the structural diffusion quantities (ErrU, ErrΛ). This per-

formance gap becomes much larger in Sec. 5.2, for more

complex advection-diffusion patterns in 3D.

5.2. 3D Simulation: Brain Advection­Diffusion

Dataset We developed a brain advection-diffusion sim-

ulator based on the IXI brain dataset2. We use 200 pa-

tients with complete collections of T1-/T2-weighted im-

ages, MRA, and diffusion-weighted images (DWI) to sim-

2Available for download: http://brain-development.org/ixi-dataset/.
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Err(C)

Figure 5: Mean relative absolute error (RAE) of “dynamics-supervised” YETI (grey), “VD-supervised” YETI (blue) and

“structure-informed” YETI (orange) for anisotropic moving Gaussian. Horizontal axes indicate training iterations, vertical

axes show RAE in log scale. The banded curves indicate the 25% & 75% percentile of the errors among 50 test samples.

MRA Vessels [36] Vessel Direction [17] Velocity

DWI

DTI
Fitting [18]

DTI

Scalar
Maps [38]

CbO

FA

trD

t = 1 t = 10 t = 20 t = 30

Figure 6: Top: Velocity simulation (maximum intensity pro-

jection), last two vector maps in RGB. Middle: Diffusion

simulation. Bottom: Time-series of a sagittal slice from a

brain advection-diffusion sample. (See details in Supp. D.)

ulate 3D velocity and diffusion tensor fields3. All images

are resampled to isotropic spacing (1mm) and rigidly regis-

tered intra-subject by ITK [36]. We simulate velocity fields

from brain vessels segmented by ITK-TubeTK using T1-

/T2-weighted and MRA images (Fig. 6 (top)). Diffusion

tensors are estimated from the DWIs using Dipy [18] (Fig. 6

(middle)). We scale the value range of velocity fields to

[−1, 1] and that of diffusion fields to [−0.2, 0.2]. Account-

ing for various transport effects from advection and diffu-

sion, we additionally compute velocity and diffusion fields

with 50% of the original velocity and diffusion values. For

each brain advection-diffusion sample, the initial concen-

tration state is assumed to be given by the MRA image with

3Our goal is to obtain nontrivial velocity and diffusion tensor fields

for 3D advection-diffusion simulation. These will likely not be realistic

perfusion simulations, but are beneficial for network pre-training, similar

in spirit to the synthetic datasets for optical flow training [12, 35].

∥V∥2 trD FA CbO

Figure 7: Physics reconstruction performance for one slice

from a test case (∥V∥2 shown in maximum intensity pro-

jection). 1st row: the ground truth; 2nd row: “dynamics-

supervised” YETI; 3rd row: “VD-supervised” YETI; 4th

row: “structure-informed” YETI.

intensity ranges rescaled to [0, 1]. Time-series (length NT =
40, interval ∆t = 0.1s) are then simulated given these ve-

locity and diffusion tensor fields by our advection-diffusion

PDE solver (Fig. 6 (bottom)). Thus the simulated dataset

includes 800 brain advection-diffusion time-series (4 time-

series for each of the 200 subjects). We randomly select 40

time-series for validation and testing, respectively. (Supp. D

describes the simulation in detail.)

Experiments We test the same three models described in

Sec. 5.1 with input time-series length Nin = 5 for all models.

For “dynamics-supervised” YETI, we set Nout = 5, w∇ =
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Figure 8: Mean relative absolute error (RAE) of “VD-supervised” YETI (blue) and “structure-informed” YETI (orange) for

brain advection-diffusion dataset. Horizontal axes indicate training epoch, vertical axes show RAE in log scale. The banded

curves indicate the 25% & 75% percentile of the errors among 40 test samples.

1, wSS = 0.1. For “structure-informed” YETI, we set wUΛ =
1. All models are trained using Adam with learning rate 5×
10−4 and a decay factor of 0.1 every 50 epochs.

For comparison, we compute ∥V∥2, the 2-norm map for

the reconstructed velocity fields. To analyze the recon-

structed diffusion tensors, we consider three diffusion scalar

maps widely used in diffusion tensor imaging [38]: (1)

Trace (trD), sum of tensor eigenvalues (Λ), indicating the

overall diffusion strength; (2) Fractional anisotropy (FA),

FA =

√
1

2

√
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2

λ 2
1 +λ 2

2 +λ 2
3

, (17)

where Λ = diag
(
λ1, λ2, λ3

)
, measuring the amount of

diffusion anisotropy; (3) Principal diffusion orientation

(Uprin), the eigenvector corresponding to the largest eigen-

value. The element-wise absolute value of Uprin scaled

by FA is used for color-by-orientation (CbO) visualization.

Mean RAE (Eq. (16)) is used to evaluate the reconstruction

performances on Ĉ, V̂, and trD, FA, Uprin of D̂.

Fig. 7 visualizes the reconstruction results of the three

models. Without supervision on the physics parameter

fields, “dynamics-supervised” YETI cannot identify the ve-

locity and diffusion tensor fields well from the advection-

diffusion time-series: the reconstructed V̂ is mixed up with

D̂, resulting in a noisy ∥V̂∥2 map and D̂ loses most local

structure. While “VD-supervised” YETI achieves much bet-

ter reconstruction performance regarding the overall mag-

nitudes of velocity and diffusion (i.e., ∥V∥2, trD), it strug-

gles to infer the anisotropic diffusion structure, which re-

sults in unrealistic FA and CbO maps. In contrast, the pro-

posed “structure-informed” YETI achieves significant re-

construction improvements and, in particular, successfully

captures diffusion anisotropy. Fig. 8 also illustrates this ef-

fect by comparing the mean RAE of “VD-supervised” and

“structure-informed” YETI on all test samples. Although

the two models eventually achieve similar ErrC, ErrV and

ErrtrD
, without guidance on the diffusion tensor structure

(by their eigenvectors and eigenvalues), VD-supervised”

YETI tends to get stuck in sub-optimal local minima and

thus does not learn the anisotropic diffusion structure well.

5.3. ISLES2017: Brain Perfusion Dataset

Perfusion images (Sec. 2) reflect local changes of in-

jected tracer transport across time, and are widely used to

assess cerebrovascular diseases, including acute stroke [11].

For stroke patients, different observed tracer concentration

time-series between the lesion and normal regions can in-

dicate abnormal perfusion patterns, e.g., insufficient blood

flow to a particular region of the brain.

Dataset We test on the public Ischemic Stroke Lesion

Segmentation (ISLES) 2017 dataset [32], including 75 (43

training, 32 testing) ischemic stroke patients. Each patient

has a 4D dynamic susceptibility contrast (DSC) MR per-

fusion image (with 40 to 80 available time points, time

interval ≈ 1s) [15]. Gold-standard lesion segmentations

are provided for patients in the training set. All images

are resampled to isotropic spacing (1mm) and rigidly reg-

istered intra-subject via ITK. Based on the relation between

MR signal and tracer concentration [16], we obtain a tracer

concentration time-series for each patient, {Cti ∈ R(Ω)| i =
1, 2, . . . , NT}, where t1 is the time-to-peak for total concen-

tration over the entire brain, at which we assume the in-

jected tracer has been fully transported into the brain [30].

We randomly select 10 patients with lesion maps for test-

ing. The remaining 65 concentration time-series are flipped

along the axial axis for data augmentation, resulting in a

total of 130 time-series samples, from which we randomly

select 10 samples for validation, the others are for training.

Experiments We transfer the pre-trained “structure-

informed” YETI (Sec. 5.2) on the ISLES tracer concentra-

tion time-series data (Sec. 4.2, line 7-14 (Alg. 1)). Specifi-

cally, we set Nin = Nout = 5, w∇ = 0.5, wSS = 0.1. We use

the Adam optimizer with learning rate set to 10−4.

As in the PIANO approach proposed by Liu et al. [30],

we compute two feature maps for the reconstructed veloc-

ity: (1) Vrgb: color-coded orientation map of V̂; (2) ∥V∥2:

2-norm of V̂. PIANO models diffusion as scalar fields (D),

which is directly used as a feature map. We use trace

(trD) and color-by-orientation (CbO) maps, introduced in

Sec. 5.2, as YETI’s feature maps for its reconstructed diffu-
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Lesion Vrgb ∥V∥2 trD CbO

Figure 9: Lesion segmentation and corresponding YETI fea-

ture maps of the same slice for four test stroke patients.

Metrics
YETI PIANO ISLES

∥V∥2 trD Uprin ∥V∥2 D CBF CBV MTT

µr

(↓)

Me. 0.37 0.81 - 0.55 0.61 0.68 0.78 0.59
Med. 0.35 0.79 - 0.56 0.58 0.69 0.82 0.61

STD 0.11 0.17 - 0.13 0.18 0.19 0.34 0.20

|t|
(↑)

Me. 111.33 36.28 - 67.76 32.86 39.26 15.98 31.83

Med. 130.38 43.28 - 54.16 38.93 29.09 8.48 27.67

STD 69.56 17.02 - 49.16 20.47 36.38 17.79 31.61

∠

(↑)

Me. - - 54.13◦ - - - - -

Med. - - 54.99◦ - - - - -

STD - - 5.96◦ - - - - -
∗ ↓ (↑) indicates the lower (higher) values are better.

Table 1: Quantitative comparison between YETI, PIANO

and ISLES maps across 10 test subjects, using Mean (Me.),

Median (Med.), Standard Deviation (STD) of relative mean

µr and mean principal diffusion angle deviation ∠.

sion tensor fields. Note the trD map reflects overall diffu-

sion magnitudes, which is similar to the D map in PIANO.

Fig. 9 shows YETI’s feature maps for four test patients;

all are highly consistent with the lesion regions. Details of

the blood flow trajectories are revealed in Vrgb by the ridged

patterns and the sharp color changes in the unaffected hemi-

sphere, while the flat patterns within the stroke lesion pro-

vide little directional information about the velocity. From

∥V∥2 and trD, one can easily locate the lesion where the

magnitudes are low. The CbO maps also show abnormali-

ties in lesions, where the lower FA (darker) and the mottled

colors reveal inconsistent Uprin with little anisotropic diffu-

sion pattern. Note that YETI’s reconstruction depends on

the observed advection-diffusion, i.e., it will not capture ef-

fects in regions where the tracer was never transported to.

Comparisons We compare YETI’s feature maps with (1)

PIANO [30] feature maps (∥V∥2, D) and (2) ISLES [32] per-

fusion summary maps (Cerebral blood flow (CBF), Cere-

bral blood volume (CBV), Mean transit time (MTT)).

Specifically, we focus on the differences between lesions

and normal regions revealed by the features maps of the

above methods. We compute three metrics between lesions

and their contralateral regions (c-lesion) obtained by mir-

roring lesions to the unaffected side via the midline of the

cerebral hemispheres: (1) Relative mean (µr ∈ [0,1]):

µr = min

{
mean in lesion

mean in c-lesion
,

mean in c-lesion

mean in lesion

}
, (18)

where min accounts for typically larger MTT (while other

metrics are typically smaller) in lesion than c-lesion; (2)

Absolute t-value (|t|): the absolute value of the unpaired

t-statistic between lesion and c-lesion; (3) Mean principal

diffusion angle deviation (∠): the average angle between

Uprin in lesion and the mirrored angle in c-lesion (Uc
prin).

The direction ambiguity of eigenvectors is resolved by tak-

ing ∠ = min
{
∠(±Uprin, Uc

prin)
}

. Note that ∠ is specific to

YETI as PIANO does not estimate diffusion tensors.

Table 1 compares maps from YETI, PIANO and ISLES

based on the above three metrics for the 10 test patients.

YETI’s ∥V∥2 maps achieve much lower µr with respect to

either mean, median or standard deviation, indicating sig-

nificantly smaller velocity magnitudes in the stroke lesions

compared to normal c-lesion regions. This can also be seen

in the absolute t-values (|t|) of ∥V∥2 which are much larger

than for all other metrics from PIANO and ISLES. Further-

more, YETI provides insights on the deviations of the prin-

cipal diffusion orientations in the lesions, where the mean

deviation angle is around 54◦ with a standard deviation of

5.96◦. Overall, YETI’s measures show more sensitivity in

distinguishing stroke from normal regions than the mea-

sures of the competing PIANO approach and the standard

perfusion measures provided as part of ISLES.

6. Conclusions

We introduced YETI, a learning framework to estimate

the divergence-free velocity vector fields and symmetric

PSD diffusion tensor fields underlying observed advection-

diffusion processes. YETI is pre-trained with simulated

datasets, which helps improve identifiability with respect to

the estimated advection and diffusion. Simulation experi-

ments in 2D and 3D demonstrate YETI’s ability to resolve

velocity and diffusion ambiguities and to recover diffusion

anisotropy. Further, we used transfer learning via a time-

series auto-encoder formulation to apply YETI on real brain

perfusion data of stroke patients. Experiments show that

YETI successfully detects abnormalities of velocity and dif-

fusion tensor fields in stroke lesions and provides more sen-

sitive measures than competing approaches.
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