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Abstract

Federated learning allows distributed medical institu-

tions to collaboratively learn a shared prediction model

with privacy protection. While at clinical deployment, the

models trained in federated learning can still suffer from

performance drop when applied to completely unseen hos-

pitals outside the federation. In this paper, we point out and

solve a novel problem setting of federated domain gener-

alization (FedDG), which aims to learn a federated model

from multiple distributed source domains such that it can

directly generalize to unseen target domains. We present

a novel approach, named as Episodic Learning in Contin-

uous Frequency Space (ELCFS), for this problem by en-

abling each client to exploit multi-source data distributions

under the challenging constraint of data decentralization.

Our approach transmits the distribution information across

clients in a privacy-protecting way through an effective con-

tinuous frequency space interpolation mechanism. With the

transferred multi-source distributions, we further carefully

design a boundary-oriented episodic learning paradigm to

expose the local learning to domain distribution shifts and

particularly meet the challenges of model generalization in

medical image segmentation scenario. The effectiveness

of our method is demonstrated with superior performance

over state-of-the-arts and in-depth ablation experiments on

two medical image segmentation tasks. The code is avail-

able at https://github.com/liuquande/FedDG-ELCFS.

1. Introduction

Data collaboration across multiple medical institutions is

increasingly desired to build accurate and robust data-driven

deep networks for medical image segmentation [7, 18, 50].

Federated learning (FL) [20] has recently opened the door

for a promising privacy-preserving solution, which allows

training a model on distributed datasets while keeping data
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Figure 1. (a) The novel problem setting of federated domain gen-

eralization (FedDG), which aims to learn a federated model from

multiple decentralized source domains such that it can directly

generalize to completely unseen target domains. (b) Our main

idea to tackle FedDG by transferring distribution information in

frequency space and episodic learning at each local client.

locally. The paradigm works in a way that each local client

(e.g., hospital) learns from their own data, and only aggre-

gates the model parameters at a certain frequency at the cen-

tral server to generate a global model. All the data samples

are kept within each local client during federated training.

Although FL has witnessed some pilot progress on med-

ical image segmentation tasks [4, 44, 49], all existing works

only focus on improving model performance on the internal

clients, while neglecting model generalizability onto unseen

domains outside the federation. This is a crucial problem

impeding wide applicability of FL models in real practice.

The testing medical images encountered in unseen hospi-

tals can differ significantly from the source clients in terms

of data distributions, due to the variations in imaging scan-

ners and protocols. How to generalize the federated model

under such distribution shifts is technically challenging yet

unexplored so far. In this work, we identify the novel prob-

lem setting of Federated Domain Generalization (FedDG),

which aims to learn a federated model from multiple decen-

tralized source domains such that it can directly generalize

to completely unseen domains, as illustrated in Fig. 1 (a).

Unseen domain generalization (DG) is an active research

topic with different methods being proposed [3, 8, 11, 24,

25, 26, 29, 37, 43], but the federated paradigm with dis-
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tributed data sources poses new challenges for DG. With

the goal to extract representations that are robust to distri-

bution shift, existing DG approaches usually require access

to multi-source distributions in the learning process. For in-

stance, adversarial feature alignment methods [26, 29] have

to train the domain discriminator with samples from differ-

ent source datasets. Meta-learning based methods [8, 24]

need to use multi-source data of different distributions to

construct virtual training and virtual testing domains within

each minibatch. Whereas in federated paradigm, data are

stored distributedly and the learning at each client can only

access its local data. Therefore, current DG methods are

typically not applicable in FedDG scenario. In addition, the

local optimization would make model biased to its own data

distribution, thus less generalizable to new target domains.

To solve this FedDG problem, our insight is to enable

each client to access multi-source data distributions in a

privacy-protecting way. The idea is motivated by the knowl-

edge that the low-level distributions (i.e., style) and high-

level semantics of an image can be respectively captured

by amplitude and phase spectrum in the frequency space, as

revealed by visual psychophysics [13, 42, 57]. We can con-

sider exchanging these amplitude spectrum across clients to

transmit the distribution information (cf. Fig. 1 (b)), while

keeping the phase spectrum with core semantics locally for

privacy protection. Based on this, we also devise a con-

tinuous frequency space interpolation mechanism, which

interpolates between the local and transferred distributions

for enriching the established multi-domain distributions for

each local client. This promotes the local training to gain

domain-invariance benefiting from a dedicated dense distri-

bution space. With these established distributions, we ex-

pose the local learning to domain distribution shifts via an

episodic training paradigm to enhance the generalizability

of local parameters. A novel meta-update objective function

is designed to guide cross-domain optimization attending to

the boundary area. This is notably important for medical

image segmentation applications where generalization er-

rors often come from imprecise predictions at ambiguous

boundary of anatomies.

Our main contributions are highlighted as follows:

• We tackle the novel and practical problem of Feder-

ated Domain Generalization. To the best of our knowl-

edge, this is the first work to improve generalizability

on completely unseen domains for federated models.

• We propose a privacy-preserving solution to learn the

generalizable FL model under decentralized datasets,

through an effective continuous frequency space inter-

polation mechanism across clients.

• We present a novel boundary-oriented episodic learn-

ing scheme for the local training at a client, which ex-

poses local optimization to domain shifts and enhances

model generalizability at ambiguous boundary area.

• We conduct extensive experiments on two typical med-

ical image segmentation tasks, i.e., retinal fundus im-

age segmentation (four datasets) and prostate MRI seg-

mentation (six datasets). Our achieved superior per-

formance over state-of-the-arts and in-depth analytical

experiments demonstrate the efficacy of our approach.

2. Related Work

2.1. Federated Learning in Medical Imaging

Federated learning [15, 20, 36, 56] provides a promis-

ing privacy-preserving solution for multi-site data collabo-

ration, which develops a global model from decentralized

datasets by aggregating the parameters of each local client

while keeping data locally. Representatively, McMahan et

al. [36] propose the popular federated averaging algorithm

for communication-efficient federated training of deep net-

works. With the advantage of privacy protection, FL has

recently drawn increasing interests in medical image appli-

cations [4, 18, 22, 27, 45, 49, 51]. Sheller et al. [49] is a pilot

study to investigate the collaborative model training without

sharing patient data for the multi-site brain tumor segmenta-

tion. Later on, Li et al. [27] further compare several weights

sharing strategies in FL to alleviate the effect of data imbal-

ance among different hospitals. However, these works all

focus on improving performance on internal clients, with-

out considering the generalization issue for unseen domains

outside the federation, which is crucial for wide clinical us-

ability. Latest literature has studied a related problem of

unsupervised domain adaptation in FL paradigm [28, 41],

whereas these methods typically require data from the target

domain to adapt the model. In practice, it would be time-

consuming or even impractical to collect data from each

new hospital before model deployment. Instead, our tack-

led new problem setting of FedDG aims to directly gener-

alize the federated model to completely unseen domains, in

which no prior knowledge from the target domain is needed.

2.2. Domain Generalization

Domain generalization [5, 9, 12, 14, 43, 47, 58, 59]

aims to learn a model from multiple source domains

such that it can directly generalize to unseen target do-

mains. Among previous efforts, some methods aim to

learn domain-invariant representations by minimizing the

domain discrepancy across multiple source domains [11,

16, 26, 29, 32, 37, 38, 55]. For example, Motiian et

al. [37] utilize a contrastive loss to minimize the distance

between samples from the same class but different domains.

Some other DG methods are based on meta-learning, which

is an episodic training paradigm by creating meta-train

and meta-test splits at each iteration to stimulate domain

shift [1, 8, 24, 30]. Li et al. [30] employ meta-learning
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to learn an auxiliary loss that guides the feature extractor

to learn more generalized features. However, these meth-

ods typically require centralizing multi-domain data in one

place for learning, which violates privacy protection in fed-

erated learning setting with decentralized datasets.

There are other methods tackling DG by manipulating

deep neural network architectures [19, 23, 35], leveraging

self-supervision signals [3, 54], designing training heuris-

tics [17, 25], or conducting data augmentations [48, 53, 60,

61], which are free from requirement of data centralization.

Representatively, Carlucci et al. [3] adopt self-supervised

learning by solving jigsaw puzzles. Zhang et al. [60] con-

duct extensive data augmentations on each source domain

by stacking a series of transformations. These approaches,

when applied in FL paradigm, can helpfully act as regular-

izations for the local training with individual source domain

data, yet hardly exploit the rich data distributions across

domains. Our method instead, aims to transfer the distri-

bution information across clients to make full use of the

multi-source distributions towards FedDG. We also experi-

mentally compare with these typical methods under the FL

setting with superior performance demonstrated.

3. Method

We start with the formulation for federated domain gen-

eralization and its challenges in medical image segmen-

tation scenario. We then describe the proposed method

Episodic Learning in Continuous Frequency Space (EL-

CFS) to explicitly address these challenges. An overview

of the method is shown in Fig. 2.

3.1. Federated Domain Generalization

Preliminaries: In FedDG, we denote (X ,Y) as the joint

image and label space of a task, S = {S1,S2, ...,SK} as

the set of K distributed source domains involved in feder-

ated learning. Each domain contains data and label pairs

of Sk = {(xk
i , y

k
i )}

Nk

i=1, which are sampled from a domain-

specific distribution (X k,Y). The goal of FedDG is to learn

a model fθ : X → Y using the K distributed source do-

mains, such that it can directly generalize to a completely

unseen testing domain T with a high performance.

Standard federated learning paradigm involves the com-

munication between a central server and the K local clients.

At each federated round t, every client k will receive the

same global model weights θ from the central server and

update the model with their local data Sk for E epochs.

The central server then collects the local parameters θk from

all clients and aggregates them to update the global model.

This process repeats until the global model converges. In

this work, we consider the most popular federated averaging

algorithm (FedAvg) [36], which aggregates the local param-

eters with weights in proportional to the size of each local

dataset to update the global model, i.e., θ =
∑K

k=1
Nk

N
θk,

where N =
∑K

k=1 N
k. It is worth noting that our method

can also be flexibly incorporated to other FL backbones.

Challenges: With the goal of unseen domain general-

ization, a model is expected to thoroughly investigate the

multi-source data distributions to pursue domain-invariance

of its learned latent space. However, the federated setting

in the specific medical image segmentation scenario poses

several challenges for that. First, the multi-source data in

FL are stored distributedly and the learning at each client

can only access its individual local distribution, which con-

strains to make full use of the multi-source distributions to

learn generalizable parameters. Second, though FL has col-

laborated multi-source data, the medical images acquired

from different clinical sites can present large heterogeneity.

This leads to distinct distributions among the collaborative

datasets, which is insufficient to ensure domain invariance

in a more continuous distribution space to attain good gen-

eralizability in complex clinical environments. Third, the

structure of medical anatomises usually present high ambi-

guity around its boundary region, raising challenge for pre-

vious DG techniques that typically lacks assurance for the

domain-invariance of features in such ambiguous region.

3.2. Continuous Frequency Space Interpolation

To address the restriction of decentralized datasets, the

foundation of our solution is to exchange the distribution in-

formation across clients, such that each local client can get

access to multi-source data distributions for learning gener-

alizable parameters. Considering that sharing raw images is

forbidden, we propose to exploit the information inherent in

the frequency space, which enables to separate the distribu-

tion (i.e. style) information from the original images to be

shared between clients without privacy leakage.

Specifically, given a sample xk
i ∈ R

H×W×C (C = 3 for

RGB image and C = 1 for grey-scale image) from the k-th

client, we can obtain its frequency space signal through fast

Fourier transform [39] as:

F(xk
i )(u, v, c) =

H−1∑

h=0

W−1∑

w=0

xk
i (h,w, c)e−j2π( h

H
u+ w

W
v). (1)

This frequency space signal F(xk
i ) can be further decom-

posed to an amplitude spectrum Ak
i ∈ R

H×W×C and a

phase spectrum Pk
i ∈ R

H×W×C , which respectively reflect

the low-level distributions (e.g. style) and high-level seman-

tics (e.g. object) of the image. To exchange the distribution

information across clients, we first construct a distribution

bank A = [A1, ...,AK ], where each Ak = {Ak
i }

Nk

i=1 con-

tains all amplitude spectrum of images from the k-th client,

representing the distribution of X k. This bank is then made

accessible to all clients as shared distribution knowledge.

Next, we design a continuous interpolation mechanism

within the frequency space, aiming to transmit multi-source
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Figure 2. Overview of our proposed episodic learning in continuous frequency space (ELCFS). The distribution information is exchanged

across clients from frequency space with an continous interpolation mechanism, enabling each local client to access the multi-source

distributions. An episodic training paradigm is then established to expose the local optimization to domain shift, with explicit regularization

to promote domain-independent feature cohesion and separation at the ambiguous boundary region for improving generalizability.

distribution information to a local client leveraging the dis-

tribution bank. As shown in the left part of Fig. 2, given a lo-

cal image xk
i at client k, we can replace some low-frequency

component of its amplitude spectrum with the ones in dis-

tribution bank A, while its phase spectrum is unaffected to

preserve the semantic content. As an outcome, we can gen-

erate images with transformed appearances exhibiting dis-

tribution characteristics of other clients. More importantly,

we continuously interpolate between amplitude spectrum of

local data and the transferred amplitude spectrum of other

domains. In this way, we can enrich the established multi-

domain distributions for each local client, benefiting from

a dedicated dense space with smooth distribution changes.

Formally, this is achieved by randomly sampling an ampli-

tude spectrum item An
j (n 6= k) from the distribution bank,

then synthesize a new amplitude spectrum by interpolating

between Ak
i and An

j . Let M = ✶(h,w)∈[−αH:αH,−αW :αW ]

be a binary mask which controls the scale of low-frequency

component within amplitude spectrum to be exchanged,

whose value is 1 at the central region and 0 elsewhere. De-

note λ as the interpolation ratio adjusting the amount of dis-

tribution information contributed by Ak
i and An

j , the gener-

ated new amplitude spectrum interacting distributions for

local client k and external client n is represented as:

Ak→n
i,λ = ((1− λ)Ak

i + λAn
j ) ∗M+Ak

i ∗ (1−M). (2)

After obtaining the interpolated amplitude spectrum Ak→n
i,λ ,

we then combine it with the original phase spectrum to gen-

erate the transformed image via inverse Fourier transform

F−1 as follows:

xk→n
i,λ = F−1(Ak→n

i,λ ,Pk
i ), (3)

where the generated image xk→n
i,λ preserves the original se-

mantics of xk
i while carrying a new distribution interacted

between X k and Xn. In our implementation, the inter-

polation ratio λ will be dynamically sampled from [0.0,

1.0] to generate images via a continuous distribution space.

As intuitive examples shown in Fig. 2, our interpolation

operation allows the generated samples to bridge the in-

termediate space between distinct distributions across do-

mains. Note that the method described above does not re-

quire heavy computations, thus can be performed online as

the local learning goes on. Practically, for each input xk
i ,

we will sample an amplitude spectrum An
j from the distri-

bution bank for each external client n 6= k, and transform

its image appearance as Eqs. (2-3). Through this, we obtain

K−1 transformed images {xk→n
i,λ }n 6=k of different distribu-

tions, which share the same semantic label as xk
i . For ease

of denotation, we represent these transformed images as tki
hereafter, i.e. tki ={xk→n

i,λ }n 6=k. Furthermore, this approach

does not violate the privacy concern since the phase spec-

trum containing core semantics are retained at each client

throughout the whole process, and the raw images cannot

be reconstructed with the amplitude spectrum alone [46].

3.3. Boundary­oriented Episodic Learning

The above constructed continuous multi-source distribu-

tions at each local client provide the materials to learn gen-

eralizable local parameters. In the following, we carefully

design a boundary-oriented episodic learning scheme for lo-

cal training, by particularly meeting challenges of model

generalization in medical image segmentation scenario.

Episodic learning at local client: We establish the local

training as an episodic meta-learning scheme, which learns

generalizable model parameters by simulating train/test do-

main shift explicitly. Note that in our case, the domain shift

at a local client comes from the data generated from fre-

quency space with different distributions. Specifically, in

each iteration, we consider the raw input xk
i as meta-train

and its counterparts tki generated from frequency space as

meta-test presenting distribution shift (cf. Fig. 2). The
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meta-learning scheme can then be decoupled to two steps.

First, the model parameters θk are updated on meta-train

with segmentation Dice loss Lseg:

θ̂k = θk − β∇θkLseg(x
k
i ; θ

k), (4)

where β denotes the learning rate for the inner-loop up-

date. Second, a meta-update is performed to virtually eval-

uate the updated parameters θ̂k on the held-out meta-test

data tki with a meta-objective Lmeta. Crucially, this objec-

tive is computed with the updated parameters θ̂k, but opti-

mized w.r.t the original parameters θk. Such optimization

paradigm aims to train the model such that its learning on

source domains can further fulfill certain properties that we

desire in unseen domains, which are quantified by Lmeta.

Boundary-oriented meta optimization: We define the

Lmeta with considering specific challenges in medical im-

age segmentation. Particularly, it is observed that the

performance drop of segmentation results at unseen do-

mains outside federation often comes from the ambigu-

ous boundary area of anatomies. To this end, we design

a new boundary-oriented objective to enhance the domain-

invariant boundary delineation, by carefully learning from

the local data xk
i and the corresponding tki generated from

frequency space with multi-source distributions. The idea is

to regularize the boundary-related and background-related

features of these data to respectively cluster to a com-

pact space regardless of their distributions while reducing

the clusters overlap. This is crucial, since if the model

cannot project their features around boundary area with

distribution-independent class-specific cohesion and sepa-

ration, the predictions will suffer from ambiguous decision

boundaries and still be sensitive to the distribution shift

when deployed to unseen domains outside federation.

Specifically, we first extract the boundary-related and

background-related features for the input samples. Given

image xk
i with segmentation label yki , we can extract its bi-

nary boundary mask yki bd and background mask yki bg with

morphological operations on yki . Here, the mask yki bg only

contains background pixels around the anatomy boundary

instead of from the whole image, as we expect to enhance

the discriminability for features around the boundary re-

gion. Let Zk
i denote the activation map extracted from layer

l, which is interpolated with bilinear interpolation to keep

consistent dimensions as yki . Then the boundary-related and

background-related features of xk
i can be extracted from Zk

i

with masked average pooling over yki bd and yki bg as:

hk
i bd =

∑
h,w

Zk
i ∗ yk

i bd∑
h,w

yk
i bd

;hk
i bg =

∑
h,w

Zk
i ∗ yk

i bg∑
h,w

yk
i bg

, (5)

where ∗ denote element-wise product. The produced hk
i bd

and hk
i bg are single-dimensional vectors, representing the

averaged region-level features of the boundary and back-

ground pixels. By further performing the same operation

for K-1 transformed images tki with different distributions

transferred from the frequency space, we accordingly obtain

together K boundary-related and K background-related

features.

Next, we enhance the domain-invariance and discrim-

inability of these features, by regularizing their intra-class

cohesion and inter-class separation regardless of distribu-

tions. Here, we employ the well-established InfoNCE [6]

objective to impose such regularization. Denote (hm, hp)

as a pair of features, which is a positive pair if hm and hp

are of the same class (both boundary-related or background-

related) and otherwise negative pair. In our case, the In-

foNCE loss is defined over each positive pair (hm, hp)

within the 2×K region-level features as:

ℓ(hm, hp) = −log
exp(hm ⊙ hp/τ)∑2K

q=1,q 6=m
F(hm, hq) · exp(hm ⊙ hq/τ)

,

(6)

where ⊙ denote the cosine similarity: a⊙b = 〈a,b〉
||a||2||b||2

; the

value of F(hm, hq) is 0 and 1 for positive and negative pair

respectively; τ denotes the temperature parameter. The final

loss Lboundary is the average of ℓ over all positive pairs:

Lboundary =

2K∑

m=1

2K∑

p=m+1

(1− F(hm, hp)) · ℓ(hm, hp)

B(K, 2)× 2
, (7)

where B(K, 2) is the number of combinations.

Overall local learning objective: The overall meta ob-

jective is composed of the segmentation dice loss Lseg and

the boundary-oriented objective Lboundary as:

Lmeta = Lseg(t
k
i ; θ̂

k) + γLboundary(x
k
i , t

k
i ; θ̂

k), (8)

where θ̂k is the updated parameter from Eq. 4, γ is a balanc-

ing hyper-parameter. Finally, both the inner-loop objective

and meta objective will be optimized together with respect

to the original parameter θk as:

argmin
θk

Lseg(x
k
i ; θ

k) + Lmeta(x
k
i , t

k
i ; θ̂

k). (9)

In a federated round, once the local learning is finished, the

local parameters θk from all clients will be aggregated at

the central server to update the global model.

4. Experiments

We extensively evaluate our method on two medical im-

age segmentation tasks, i.e., the optic disc and cup seg-

mentation on retinal fundus images [40], and the prostate

segmentation on T2-weighted MRI [31]. We first conduct

comparison with DG methods that can be incorporated in

the federated paradigm, and then provide in-depth ablation

studies to analyze our method.
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4.1. Datasets and Evaluation Metrics

We employ retinal fundus images from 4 different

clinical centers of public datasets [52, 10, 40] for optic

disc and cup segmentation. For pre-processing, we center-

crop a 800 × 800 disc region for these data uniformly,

then resize the cropped region to 384×384 as network in-

put. We further collect prostate T2-weighted MRI images

from 6 different data sources partitioned from the public

datasets [2, 21, 31, 33] for prostate MRI segmentation task.

All the data are pre-processed to have similar field of view

for the prostate region and resized to 384×384 in axial plane.

We then normalize the data individually to zero mean and

unit variance in intensity values. Note that for both tasks,

the data acquired from different clinical centers present het-

erogeneous distributions due to the varying imaging con-

ditions. The example cases and sample numbers of each

data source are presented in Fig. 3. Data augmentation of

random rotation, scaling, and flipping are employed in the

two tasks. For evaluation, we adopt two commonly-used

metrics of Dice coefficient (Dice) and Hausdorff distance

(HD), to quantitatively evaluate the segmentation results on

the whole object region and the surface shape respectively.

4.2. Implementation Details

In the federated learning process, all clients use the same

hyper-parameter settings, and the local model is trained us-

ing Adam optimizer with batch size of 5 and Adam mo-

mentum of 0.9 and 0.99. The meta-step size and learning

rate are both set as 1e−3. The interpolation ratio λ in fre-

quency space is randomly sampled within [0.0, 1.0], and

we will investigate this parameter in the ablation study. The

hyper-parameter α is empirically set as 0.01 to avoid arti-

facts on the transformed images. The activation map from

the last two deconvolutional layers are interpolated and con-

catenated to extract the semantic features around boundary

region, and the temperature parameter τ is empirically set

as 0.05. The weight γ is set as 0.1 and 0.5 in the two tasks

to balance the magnitude of the training objectives. We to-

tally train 100 federated rounds as the global model has con-

verged stably, and the local epoch E in each federated round

is set as 1. The framework is implemented with Pytorch li-

brary, and is trained on two NVIDIA TitanXp GPUs.

4.3. Comparison with DG methods

Experimental setting: In our experiments, we follow

the practice in domain generalization literature to adopt the

leave-one-domain-out strategy, i.e., training on K-1 dis-

tributed source domains and testing on the one left-out un-

seen target domain. This results in four generalization set-

tings for the fundus image segmentation task and six set-

tings for the prostate MRI segmentation task.

We compare with recent state-of-the-art DG methods

that are free from data centralization and can be incorpo-

Site A
381 slices

Site C
449 slices

Site D
162 slices

Site E
249 slices

Site F
145 slices

Site B
354 slices

Site A
101 slices

Site C
400 slices

Site D
400 slices

Site B
159 slices

Figure 3. Example cases and slice number of each data source in

fundus image segmentation and prostate MRI segmentation tasks.

rated into the local learning process in federated paradigm,

including: JiGen [3] an effective self-supervised learning

approach to learn general representations by solving jigsaw

puzzles; BigAug [60] a method that performs extensive data

transformations to regularize general representation learn-

ing; Epi-FCR [25] a scheme to periodically exchange par-

tial model (classifier or feature extractor) across domains to

expose model learning to domain shift; RSC [17] a method

that randomly discards the dominating features to promote

robust model optimization. For the implementation, we fol-

low their public code or paper and establish them in the fed-

erated setting. We also compare with the baseline setting,

i.e., learning a global model with the basic FedAvg [36] al-

gorithm without any generalization technique.

Comparison results: Table 1 presents the quantitative

results for retinal fundus segmentation. We see that dif-

ferent DG methods can improve the overall generalization

performance more or less over FedAvg. This attributes to

their regularization effect on the local learning to extract

general representations. Compared with these methods, our

ELCFS achieves higher overall performance and obtains

improvements on most unseen sites in terms of Dice and

HD for both optic disc and cup segmentation. This benefits

from our frequency space interpolation mechanism which

presents multi-domain distributions to local client. Specif-

ically, for other DG methods, their local learning still can

only access the individual distribution and fail to regular-

ize the features towards domain-invariance in a diverse dis-

tribution space. In contrast, our method enables the local

learning to take full advantages of the multi-source distri-

butions and explicitly enhances the domain-invariance of

features around the ambiguous boundary region. In ad-

dition, our ELCFS achieves consistent improvements over

FedAvg across all unseen domain settings, with the over-

all performance increase of 2.02% in Dice and 2.86 in HD.

For prostate MRI segmentation, the comparison DG meth-

ods generally perform better than FedAvg, but the improve-

ments are relatively marginal. Our ELCFS obtains the high-

est Dice across all the six unseen sites and HD on most sites.

Overall, our method improves over FedAvg for Dice from

85.57% to 87.39% and HD from 12.42 to 10.88, outper-

forming other DG methods. Fig. 4 shows the segmentation
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Table 1. Comparison of federated domain generalization results on Optic Disc/Cup segmentation from fundus images.

Task Optic Disc Segmentation Optic Cup Segmentation
Overall

Optic Disc Segmentation Optic Cup Segmentation
Overall

Unseen Site A B C D Avg. A B C D Avg. A B C D Avg. A B C D Avg.

Dice Coefficient (Dice) ↑ Hausdorff Distance (HD) ↓

JiGen [3] 93.92 85.91 92.63 94.03 91.62 82.26 70.68 83.32 85.70 80.47 86.06 13.12 20.18 11.29 8.15 13.19 20.88 23.21 11.55 9.23 16.22 14.71

BigAug [60] 93.49 86.18 92.09 93.67 91.36 81.62 69.46 82.64 84.51 79.56 85.46 16.91 19.01 11.53 8.76 14.05 21.21 23.10 12.02 10.47 16.70 15.39

Epi-FCR [25] 94.34 86.22 92.88 93.73 91.79 83.06 70.25 83.68 83.14 80.03 85.91 13.02 18.97 10.67 8.47 12.78 19.12 21.94 11.50 10.86 15.86 14.32

RSC [17] 94.50 86.21 92.23 94.15 91.77 81.77 69.37 83.40 84.82 79.84 85.80 19.44 19.26 13.47 8.14 15.08 23.85 24.01 11.38 9.79 17.25 16.16

FedAvg [36] 92.88 85.73 92.07 93.21 90.97 80.84 69.71 82.28 83.35 79.05 85.01 17.01 20.68 11.70 9.33 14.68 20.77 26.01 11.85 10.03 17.17 15.93

ELCFS (Ours) 95.37 87.52 93.37 94.50 92.69 84.13 71.88 83.94 85.51 81.37 87.03 11.36 17.10 10.83 7.24 11.63 18.65 19.36 11.17 8.91 14.52 13.07

Table 2. Comparison of federated domain generalization results on prostate MRI segmentation.

Unseen Site A B C D E F Average A B C D E F Average

Dice Coefficient (Dice) ↑ Hausdorff Distance (HD) ↓

JiGen [3] 89.95 85.81 84.06 87.34 81.32 89.11 86.26 10.51 11.53 11.70 11.49 14.80 9.02 11.51

BigAug [60] 89.63 84.62 83.86 87.66 81.20 88.96 85.99 10.68 11.78 12.07 10.66 13.98 9.73 11.48

Epi-FCR [25] 89.72 85.39 84.97 86.55 80.63 89.76 86.17 10.60 12.31 12.29 12.00 15.68 8.81 11.95

RSC [17] 88.86 85.56 84.36 86.21 79.97 89.80 85.80 10.57 11.84 14.76 13.07 14.79 8.83 12.31

FedAvg [36] 89.02 84.48 84.11 86.30 80.38 89.15 85.57 11.64 12.01 14.86 11.80 14.90 9.30 12.42

ELCFS (Ours) 90.19 87.17 85.26 88.23 83.02 90.47 87.39 10.30 11.49 11.50 11.57 11.08 8.31 10.88

results with two cases from unseen domains for each task. It

is observed that our method accurately segments the struc-

ture and delineates the boundary in images of unknown dis-

tributions, whereas other methods sometimes fail to do so.

4.4. Ablation Analysis of Our Method

We conduct ablation studies to investigate four key ques-

tions regarding our ELCFS: 1) the contribution of each

component to our model performance, 2) the benefit of the

interpolation operation and the choice of λ, 3) how the se-

mantic feature space around the boundary region is influ-

enced by our method, and 4) how the numbers of partici-

panting clients affect the performance of our method.

Contribution of each component: We first validate the

effect of the two key components in our method, i.e. contin-

uous frequency space interpolation (CFSI) and Boundary-

oriented Episodic Learning (BEL), by removing them re-

spectively from our method to observe the model perfor-

mance. As shown in Fig. 5, removing either part will lead

to decrease on the generalization performance in different

unseen domain settings for the two tasks. This is reasonable

and reflects how the two components play complementary

roles to the performance of our method, i.e., the generated

distributions from CFSI lays foundation for the learning of

BEL, and the BEL inversely provides assurance to effec-

tively exploit the generated distributions.

Importance of continuous interpolation in frequency

space: To analyze the effect of continuous interpolation

mechanism in ELCFS , we use t-SNE [34] to visualize the

distribution of generated images in fundus image segmenta-

tion. As shown in Fig. 6 (a), the pink points denote the local

data of a client, and other points denote the transformed data

that are generated with amplitude spectrum from different

clients. It appears that fixing λ (left) will lead to several dis-

ELCFS (Ours)Groundtruth BigAugJiGen FedAvgEPI-FCR RSC

Figure 4. Qualitative comparison on the generalization results of

different methods in fundus image segmentation (top two rows)

and prostate MRI segmentation (bottom two tows).

tinct distributions, while the continuous interpolation mech-

anism (right) can smoothly bridge the distinct distributions

to enrich the established multi-domain distributions. This

promotes the local learning to attain domain-invariance in a

dedicted dense distribution space.

We then analyze the effect of the choice of λ on our

model performance, for which we conduct experiments

with fixed values from 0.0 to 1.0 with a step size 0.2, and

continuous sampling in range of [0.0, 0.5], [0.5, 1.0] and

[0.0, 1.0]. As shown in Fig. 6 (b), compared with not trans-

ferring any distribution information (i.e., λ = 0), setting

λ > 0 as a fixed value can always improve the model per-

formance. Besides, the continuous sampling can further im-

prove the performance and the sampling range of [0.0, 1.0]

yields the best results, which reflects the benefits of contin-

uous distribution space for domain generalization.

Discriminability at ambiguous boundary region: We

plot the cosine distance between the boundary-related and

background-related features, i.e., E[hi bd ⊙ hi bg], to ana-
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Figure 5. Ablation results to analyze the effect of the two compo-

nents (i.e. CFSI and BEL) in our method.
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Figure 6. (a) Visualization of t-SNE [34] embedding for the orig-

inal fundus images at a local client (pink points) and the corre-

sponding transformed images with amplitude spectrum from dif-

ferent clients (green, yellow, and blue points); (b) Generalization

performance on optic disc segmentation under different settings of

interpolation ratio λ, with fixed value or continuous sampling from

different ranges (with error bar from three independent runs).

lyze how the semantic feature space around the boundary

region is influenced by our method. In Fig. 7 (a), the two

green lines denote the growth of feature distance in our

ELCFS and the FedAvg baseline respectively, for samples

drawn from the training source domains. We can see that

ELCFS yields a higher feature distance, indicating that the

features of the boundary and the surrounding background

region can be better separated in our method. For the two

yellow lines, sample features are drawn from the unseen do-

mains. As expected, the distance is not as high as in source

domain, yet our method also presents a clearly higher mar-

gin than FedAvg. We also quantitatively analyze the effect

of Lboundary on the model performance. As observed from

Fig. 7 (b), removing this objective from the meta optimiza-

tion leads to consistent performance drops on the general-

ization performance in different tasks.

Effect of participating client number: We further ana-

lyze how the generalization performance of our method and

FedAvg will be affected when different numbers of hospi-

tals participating in federated learning. Fig. 8 shows the

results on prostate MRI segmentation, in which we present

the generalization results on two unseen sites with the client

number gradually increasing from 1 to K−1. As expected,

the models trained with single-source data cannot obtain
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Figure 7. (a) Cosine distance between the boundary-related and

background-related features; (b) Generalization performance of

our method with or without the boundary-oriented meta objective.
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Figure 8. Curves of generalization performance on two unseen

prostate datasets (i.e., site A and B) as the number of participat-

ing clients increases, using our proposed approach and FedAvg.

good results when deployed to unseen domains. The gen-

eralization performance increases when more clients par-

ticipating in the federated training, which is reasonable as

aggregating data from multiple sources can cover a more

comprehensive data distribution. Particularly, our ELCFS

consistently outperforms FedAvg on all generalization set-

tings with different client numbers, demonstrating the stable

efficacy of our method to leverage distributed data sources

to enhance the generalizability of federated learning model.

5. Conclusion

We have proposed a novel problem setting of feder-

ated domain generalization, and presented a novel approach

for it with continuous frequency space interpolation and a

boundary-oriented episodic learning scheme. The superior

efficacy of our method is demonstrated on two important

medical image segmentation tasks. Our solution has opened

a door in federated learning to enable local client access

multi-source distributions without privacy leakage, which

has great potential to address other problems encountered in

FL, e.g., data heterogeneity. The proposed learning scheme

for encouraging boundary delineation is also generally ex-

tendable to other segmentation problems.
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