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Abstract

Shadow removal is a computer-vision task that aims to

restore the image content in shadow regions. While al-

most all recent shadow-removal methods require shadow-

free images for training, in ECCV 2020 Le and Samaras

introduces an innovative approach without this requirement

by cropping patches with and without shadows from shadow

images as training samples. However, it is still laborious

and time-consuming to construct a large amount of such

unpaired patches. In this paper, we propose a new G2R-

ShadowNet which leverages shadow generation for weakly-

supervised shadow removal by only using a set of shadow

images and their corresponding shadow masks for train-

ing. The proposed G2R-ShadowNet consists of three sub-

networks for shadow generation, shadow removal and re-

finement, respectively and they are jointly trained in an end-

to-end fashion. In particular, the shadow generation sub-

net stylises non-shadow regions to be shadow ones, lead-

ing to paired data for training the shadow-removal sub-net.

Extensive experiments on the ISTD dataset and the Video

Shadow Removal dataset show that the proposed G2R-

ShadowNet achieves competitive performances against the

current state of the arts and outperforms Le and Samaras’

patch-based shadow-removal method.

1. Introduction

Shadows are areas of darkness in a scene where the light

is fully or partially occluded. Shadows are very common in

natural images and might bring challenges to many exist-

ing computer vision tasks [24, 12, 18, 14]. Shadow removal

by restoring the image information in shadow regions have

been a long studied research problem [2, 15, 27, 19, 40, 23]

and has been shown to be beneficial to improve the perfor-

mance in various tasks.

Recently, with the use of the convolutional neural net-

works (CNNs), many learning based shadow removal ap-

proaches [25, 32, 9, 10, 16, 22, 20, 17] have been proposed,

*Co-corresponding authors. Code is available at https://github.

com/hhqweasd/G2R-ShadowNet.
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Figure 1. An illustration of our basic idea of incorporating shadow

generation for learning shadow removal by using only shadow im-

ages. The pixels located in the pink and green boundaries of the

input shadow image form the shadow and random non-shadow re-

gions, respectively. The pink and green arrows stand for the mask-

ing operation that only preserves the region with the value of 1 on

the mask, while the orange and blue arrows represent the process

of shadow generation and shadow removal, respectively.

resulting in significantly better performance than the tradi-

tional ones [4, 8, 13, 38]. For most of them [25, 32, 9, 16]

a set of paired shadow images and their corresponding

shadow-free version are used to train the network in a fully-

supervised manner. However, it is difficult to capture and

collect such paired image data in uncontrolled natural envi-

ronment due to the illumination change from time to time. If

we capture such data pairs in a controlled lab environment,

limited scenarios might also weaken the generalisation abil-

ity of the trained model.

To address these problems, recent researches [10, 22]

start to explore unsupervised methods for shadow removal

by using unpaired shadow and shadow-free images. How-

ever, these unsupervised methods might introduce huge do-

main gap between the shadow and shadow-free images in

the training set. In addition, in practice, it is still difficult

to capture a large set of shadow-free images with good va-

riety. To handle this problem, in their ECCV20 paper [17],

Le and Samaras introduces a novel unsupervised shadow

removal method using only shadow images. More specif-

ically, they leverage the fact that a shadow image usually

contains both shadow and non-shadow regions. This way,

a set of shadow and shadow-free patches can be cropped to
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construct unpaired data for network training. By cropping

unpaired patches from the same images, their domain gap

can also be well controlled.

Although the patch cropping in [17] only requires the

shadow masks that can be obtained by using an exist-

ing shadow detection method [43, 18, 41, 9, 33], it in-

volves a careful design of cropping-window size, a set of

strict physics-based constraints, and heavy computational

load [17]. In this paper, we propose a new approach to ad-

dress these problems by incorporating a shadow generation

module, while keeping the desirable property of using only

shadow images, as illustrated in Fig.1.

Specifically, we propose a new G2R-ShadowNet that

consists of three sub-networks for shadow generation,

shadow removal and refinement, respectively. Given an

input shadow image, the shadow-generation sub-net gen-

erates pseudo shadows for each shadow-free region and

such pseudo shadows are then paired with the correspond-

ing original shadow-free region to form the training data.

After that, these constructed pair data are used to train the

shadow removal sub-net to remove the generated shadows.

Finally, the shadow-removal results are refined by leverag-

ing the context information such that their colour and illu-

mination are consistent with their surrounding areas. We

conduct extensive experiments on the ISTD dataset and the

Video Shadow Removal dataset to demonstrate the effec-

tiveness of our proposed method.

The main contributions of this work are as follows:

• We tackle the shadow removal task from a novel

perspective of constructing paired shadow and non-

shadow data using only the shadow images and the

corresponding shadow masks.

• We develop G2R-ShadowNet, a novel shadow-

removal network, which consists of three sub-nets for

shadow generation, shadow removal, and refinement,

respectively. G2R-ShadowNet is weakly-supervisedly

trained in an end-to-end fashion.

• We conduct extensive experiments on two public

datasets and show that the proposed G2R-ShadowNet

achieves competitive performances against the current

state of the arts and outperforms Le and Samaras’

patch-based shadow-removal method.

2. Related Work

2.1. Shadow generation

Our proposed G2R-ShadowNet contains a shadow gen-

erator which employs the generative adversarial networks

(GAN) [6] for generating shadows on shadow-free regions.

GAN-based shadow generation has been studied by many

researchers. Zhang et al. [39] proposed a GAN to synthe-

sise shadows for virtual objects that are inserted into im-

ages and train the network with shadow masks and paired

shadow/shadow-free images. Similarly, Liu et al. [21] de-

veloped a ARShadowGAN for augmented reality in single

light scenes, which exploits attention mechanism to model

the mapping relationship between the shadow of the vir-

tual objects and the real-world environment. These two

works [39, 21] rely on fully-supervised training which re-

quires the shadow and shadow-free images as well as the

shadow masks. In [10, 22], a mapping is learned between

the unpaired shadow and shadow-free images for shadow

removal, in which shadow generators are trained to match

the distributions of the generated shadows and the real shad-

ows based on unpaired images. However, the shadow-free

images are the prerequisites for all the above methods to

generate the shadow images. In contrast, in this paper we

sample both shadow and shadow-free regions only from

shadow images, which is also different from other methods

that need images from the target domain for their respective

applications [34, 1] or generate simulated data on the whole

images from the source domain [36].

2.2. Shadow removal

Traditional approaches remove shadows according to

image gradients [4, 7], illumination information [26, 37,

35, 38], and region properties [8, 30]. Recently, su-

pervised learning based methods trained with large-scale

paired datasets boost the shadow-removal performance sig-

nificantly [25, 32, 9, 3, 16, 20]. However, as mentioned

above, paired shadow and shadow-free images are difficult

to obtain in practice. To get rid of the dependence on paired

data, Hu et al. [10] proposed a Mask-ShadowGAN frame-

work based on the CycleGAN [42], which leverages un-

paired data to learn the adaptation from the shadow-free do-

main to the shadow domain and vice versa. Liu et al. [22]

later developed a LG-ShadowNet framework to improve the

Mask-ShadowGAN [10] by introducing a lightness-guided

strategy, which uses the learned lightness features to guide

the learning of shadow removal.

However, all these methods still need shadow-free im-

ages for training which requires very strict acquisition con-

ditions and may introduce huge gap between the source

(non-shadow) domain and the target (shadow) domain. In

this paper, the shadow and non-shadow regions are sampled

from the same shadow image and therefore, the distribu-

tion difference between the two domains is much smaller.

In addition, we apply the adversarial training only in the

shadow-generation sub-net, while Mask-ShadowGAN and

LG-ShadowNet apply it in both shadow-generation and

shadow-removal networks, which makes the whole frame-

work more difficult to converge.

As mentioned above, most related to our work is [17],

where unpaired data in form of patches are cropped from the

same shadow image according to the shadow mask. There-

fore, the constructed data show small domain gap. How-
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Figure 2. The network architecture of our proposed G2R-ShadowNet. It takes in a shadow image and its corresponding shadow mask to

produce the shadow-free result in the shadow regions. The training stage involves all the three sub-nets of shadow generation, shadow

removal and refinement, while the testing stage does not perform shadow generation.

ever, this patch-based method suffers from a heavy compu-

tational load because of the repetitive cropping of a small

step size. In addition, the strict physics-based constraints

used in this method limits the shadow types that can be

handled. Our proposed G2R-ShadowNet can address these

issues by constructing paired data from the same shadow

image using the shadow mask without repetitive cropping.

3. Methodology

In this section, we elaborate on the overall network archi-

tecture of our proposed G2R-ShadowNet, which includes

three modules: shadow generation, shadow removal, and

refinement. All the three parts are jointly trained in an end-

to-end fashion, as illustrated in Fig. 2.

3.1. Shadow generation sub­net

The shadow generation sub-net is used to construct our

training data, i.e., paired shadow and non-shadow regions,

for the shadow removal network. Specifically, we first crop

the shadow region Rs from the input image S by applying

the corresponding shadow mask: the remaining area of the

image is setting to 0 automatically. Then we randomly pick

another shadow mask M from the masks of the training set

and apply it on the shadow-free region of S to obtain a non-

shadow region Rn, whose area approximates the area of the

shadow region Rs by the constraint

Area(Rn)/Area(Rs) ∈ (1− α, 1 + α), (1)

where Area(·) computes the area of the given region and α
is a tolerance value which is set to 0.2 in our experiments.

Note that this constraint will be discarded in the cases where

Rs covers more than half of the whole image and we ran-

domly select a non-shadow region for masking and shadow

generation.

Using the above operations, we construct many pairs of

unaligned data from both shadow and non-shadow domains,

which are used to train our shadow generator G to gener-

ate pseudo shadow Rps on the non-shadow region of S via

adversarial training. A discriminator D is employed to dis-

tinguish the pseudo shadow Rps from a randomly sampled

real shadow to help train G and ensure the data distribution

similarity between the two domains.

The architecture of G mainly follows the generator pro-

posed by Hu et al. [10]. It consists of three convolutional

layers with a stride of 2 to decrease the resolution of the in-

put image, followed by nine residual blocks to extract fea-

tures, and ends with three deconvolutional layers to gen-

erate the output with the same resolution as S. Besides,

the instance normalisation [29] is applied after each convo-

lutional operation. For the architecture of D, we directly

employ the one proposed in PatchGAN [11]. All the inputs

and outputs of G and the inputs of D are 3-channel images

in LAB colour space.

The objective functions to train the shadow generator G
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and the discriminator D are defined as:

LGen(G) =
1

2
ERn∼p(Rn)

[

(D(G(Rn))− 1)2
]

, (2)

LDis(D) =
1

2
ERn∼p(Rn)

[

(D(G(Rn)))
2
]

+
1

2
ERs∼p(Rs)

[

(D(Rs)− 1)2
]

.

(3)

The combined loss function for the adversarial training is:

LGAN =LGen(G) + LDis(D). (4)

In addition, to ensure that the shadow generation sub-

net produces high quality synthetic shadows, real shadow

Rs is also fed to G, and we apply the identical loss [28] to

encourage G to generate the same shadow as the input Rs,

which is defined as:

Liden(G) = ERs∼p(Rs)

[

‖G(Rs), Rs‖1
]

, (5)

where ‖, ‖1 represents L1 loss.

3.2. Shadow removal sub­net

We use the pairs of Rps and Rn as the inputs of our

shadow removal sub-net for learning to remove the pseudo

shadows that are generated by the generator G. Specifically,

the shadow removal sub-net I has the same structure as the

generator G, and it takes the output of G, i.e., Rps, as the in-

put to produce a shadow-free result Rf that shares the same

content as Rps. The loss function to train I is defined as:

Lrem(G, I) =ERps∼p(Rps)

[

‖I(Rps), Rn‖1
]

=ERn∼p(Rn)

[

‖I(G(Rn)), Rn‖1
]

.
(6)

Note that the gradient computed by this loss will be prop-

agated back to the shadow generator G through Rps and

therefore, it can be regarded as a cycle loss [42] for training

both G and I.

3.3. Refinement sub­net

The output Rf from the shadow removal sub-net is then

embedded into the input image S to obtain Re which is for-

mulated as:

Re = 〈Rf + S −Rn,M〉 , (7)

where 〈·, ·〉 denotes the concatenation operation, and M is

the shadow mask used in previous parts which covers the

region to be processed. The obtained Re is a 4-channel ten-

sor including 3 channels for the image and 1 channel for the

mask. However, the colour of Rf might not be fully consis-

tent with that of the other regions of image S. To address

this problem, we further develop a refinement sub-net R to

refine Re by exploiting context information of the shadow

region over the original whole shadow image.

Specifically, our refinement network R takes inRe as in-

put and outputs a refined image Rr. The network R shares

the same structure as both I and G except for the number of

the input channels. A per-pixel loss between the refined im-

age Rr and the input S is computed to train the refinement

network, which is defined as:

Lfull(G, I,R)

=ERf∼p(Rf )

[

‖R(Re), S‖1
]

.
(8)

This loss function is calculated according to the context in-

formation of the shadow region across the whole shadow

image and the computed gradient will be propagated back

to G and I.

To further emphasise the content of the output in the

same region asRn to be the same as that part in S, we apply

the following loss function:

Larea(G, I,R)

=ERf∼p(Rf )

[

∑

n

ψ(M)|R(Re)− S|
]

, (9)

where n is the number of pixels in the input image S. ψ
denotes the image dilation function with a kernel size of τ ,

which produces a dilated mask to guide the model to pay

more attention to the adjacent area of Rn.

3.4. Loss function

By combining all the loss functions proposed for the

above three sub-nets, the total loss L for training the shadow

generator G, the shadow removal sub-net I and the refine-

ment sub-net R is defined as

L =ω1LGAN + ω2Liden

+ ω3Lrem + ω4Lfull + ω5Larea,
(10)

where ω1, ω2, ω3, ω4, and ω5 are the weights to balance

different loss terms and are set to 1.0, 5.0, 1.0, 1.0, and 1.0,

respectively in our experiments.

4. Experiments

4.1. Datasets and evaluation metrics

ISTD [32, 16] The ISTD dataset is proposed for both

shadow detection and shadow removal and the data are col-

lected under various illumination conditions with different

shadow shapes. In total, it contains 1,870 triplets of shadow,

shadow mask and shadow-free images with a resolution of

480× 640, where 1,330 triplets for training the rest 540 for

testing. Following [16], we apply the adjusted testing set

with reduced illumination difference between the shadow

and shadow-free images in the original dataset. In train-

ing, our model uses the shadow images and the correspond-

ing ground-truth shadow masks. In testing, we employ the
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shadow detector proposed by Zhu et al. [43] to obtain the

shadow mask of the shadow images in the test set. The

shadow detector is trained on both the training set of ISTD

and the SBU [31] datasets, and it achieves 2.4 Balance Er-

ror Rate on the testing set of ISTD when evaluated using the

ground-truth shadow masks provided by ISTD.

Video Shadow Removal Dataset [17] The Video

Shadow Removal dataset contains 8 videos whose contents

are static scenes without moving objects. This dataset also

provides a corresponding Vmax image for each video and

a moving-shadow mask for each frame. The Vmax im-

age is obtained by taking the maximum intensity value at

each pixel location across the whole video, which is re-

garded as the shadow-free ground truth of the video. The

moving-shadow mask covers the pixels appearing in both

the shadow and shadow-free regions of the video, which

represents the region for evaluation. We follow the setting

in the official code of [17] using a threshold of 80 to ob-

tain the moving-shadow mask. For this data, we apply the

shadow detector [43] that is trained only on the SBU dataset

to generate the shadow masks for our experiments.

Evaluation metrics For all experiments, we use the Root-

Mean-Square Error (RMSE), Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity (SSIM) as the evaluation

metrics. Following [32, 10, 16, 22, 17], we compute the

RMSE between the produced shadow-free image and the

ground-truth images in the LAB colour space. While some

recent work [17] computes RMSE at each pixel and then

averages the score over all the pixels, we compute RMSE

on each image and then average the score over all im-

ages/frames for both the ISTD dataset and the video dataset.

Our computed RMSE emphasise more the quality of each

image on shadow and non-shadow regions and is more con-

sistent with other metrics such as PSNR and SSIM. We also

compute PSNR and SSIM scores in the RGB colour space

to evaluate our method. For RMSE, the lower the better

while for PSNR and SSIM, the higher the better.

4.2. Experimental settings

We implement our proposed G2R-ShadowNet using Py-

Torch with a single NVIDIA GeForce GTX 2080ti GPU.

We initialise our model using a Gaussian distribution with a

mean of 0 and a standard deviation of 0.02. We employ the

Adam optimiser to train our network with the first and the

second momentum setting to 0.5 and 0.999, respectively.

We train the whole model for 100 epochs and the base learn-

ing rate is set to 2 × 10−4 for the first 50 epochs and then

we apply a linear decay strategy to decrease it to 0 for the

rest epochs. The batch size is set to 1 for all experiments.

The size of the dilated kernel τ in Eq. (9) is experimentally

set to 50 based on our ablation study on various values. For

the data augmentation, we apply the random cropping and

random flipping to avoid the over-fitting problem. The ran-

dom cropping is implemented by first scaling each image to

448× 448 and then randomly cropping a 400× 400 region

from the scaled image.

The network training involves all three sub-nets, and they

impact each other through a forward or backward signal

flow, e.g., the gradient from R can be propagated back to

I and G. While in the testing stage, given the shadow im-

age and its shadow mask, only the shadow removal and re-

finement network are employed to produce the final shadow

removal result with a resolution of 256 × 256 for evalua-

tion. It approximately takes 16 hours to train the proposed

G2R-ShadowNet on the ISTD dataset and 0.06 seconds to

perform shadow removal for a test image.

4.3. Ablation study

To demonstrate the effectiveness of each key component

of the proposed G2R-ShadowNet, we train and test several

model variants on ISTD.

We first conduct an experiment to study each design of

the refinement sub-net R by comparing it with the other two

variants. One is obtained by removing R and the loss func-

tions that are related to R. The other one is obtained with-

out using the shadow mask M as the input which means the

region that is going to be refined is not known. The quan-

titative results are reported in Table 1. The results indicate

that the sub-net R plays quite an important role in our whole

framework, which significantly improves the quality of the

shadow removal result in terms of all three metrics. Includ-

ing the shadow masks as the input is effective and brings

improvements to all the metrics as well.

Table 1. Ablation study to verify the effectiveness of the refine-

ment sub-net of our proposed G2R-ShadowNet on the test set of

ISTD using all three evaluation metrics. Hereafter, ‘Shadow Re-

gion’ represents that the metric is computed only on the shadow

region of the image, and ‘All’ represents that the metric is com-

puted on the whole image. The best and the second best results

are highlighted with bold font and underline, respectively.

Method
Shadow Region All

RMSE PSNR SSIM RMSE PSNR SSIM

Ours w/oR 12.3 29.20 0.975 4.6 26.04 0.913

Ours w/o M 12.5 29.68 0.977 4.3 27.49 0.940

Ours 8.9 33.58 0.979 3.9 30.52 0.944

Next, we perform an ablation study to verify the effec-

tiveness of the joint training strategy of the three sub-nets in

our method. Basically, the shadow generation, shadow re-

moval, and the refinement of our proposed G2R-ShadowNet

can impact the learning of each other through the backward

signal flow. Therefore, we try to detach the result of each

sub-net individually and train each variants one-by-one to

see how one impacts the others. For instance, when the

refinement result is detached, the back-propagated signal

from the refinement sub-net R is not passed to G and I.
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Input w/o LGAN w/o Liden w/o Lrem w/o Lfull w/o Larea Ours Ground truth

Figure 3. Visual comparisons for ablation study on the use of each loss term.

The quantitative results are reported in Table 2, from

which the effectiveness of our designs are well justified.

Particularly, we observe that the joint training of the three

sub-nets (the last row) can boost the performance and

achieve the highest score on both PSNR and SSIM com-

pared with other variants. Especially, when results of all

three sub-nets are detached, the performance drops in the

shadow region on all the metrics. By connecting only two

of them for training, we can achieve certain performance

gains. By comparing the second and third model variants,

we find that the connection of G and I contributes more to

the performance than the connection of I and R.

Table 2. Ablation study to verify the effectiveness of the joint train-

ing strategy of the three sub-nets of our proposed G2R-ShadowNet

on ISTD. ‘←’ and ‘8’ in the first column denote the connection

and detachment during back-propagation, respectively.

Method
Shadow Region All

RMSE PSNR SSIM RMSE PSNR SSIM

Input image 37.0 20.84 0.927 8.5 20.45 0.893

G 8 I 8 R 9.3 33.43 0.977 3.9 30.24 0.941

G 8 I ← R 9.0 33.27 0.977 3.8 30.36 0.943

G ← I 8 R 8.8 33.46 0.979 3.8 30.48 0.944

G ← I ← R 8.9 33.58 0.979 3.9 30.52 0.944

We also conduct another ablation study to justify the

effectiveness of each loss function by training our model

without a specific loss term for each time. We report the

quantitative results in Table 3. From rows 1-2, we ob-

serve that the RMSE performance drops a lot without using

LGAN and Liden. The shadow removal loss Lrem is also

important and brings performance improvement in terms of

all the metrics. When Lrem is removed from the total loss,

the shadow removal sub-net and the refinement sub-net are

trained as a whole, which lacks individual constraints. Be-

sides, removing Lfull leads to performance drop, which

verifies the benefit of using the whole image as a con-

straint to train our G2R-ShadowNet. Finally, when Larea

is not calculated, the performance also slightly drops in the

shadow region. As shown in Fig. 3, the qualitative results

are largely consistent with the above quantitative results in

justifying the effectiveness of each loss term. Compared

with the model training by combining all the loss terms, the

other variants that are trained based on a subset of loss terms

may cause obvious artefacts on the results, e.g., a white area

in the shadow edge as shown in Fig. 3 (column 6).

We also carry out a set of experiments to explore the im-

Table 3. Ablation study on the choices of the loss functions for the

proposed G2R-ShadowNet.

Method
Shadow Region All

RMSE PSNR SSIM RMSE PSNR SSIM

Ours w/o LGAN 42.1 19.62 0.911 9.3 19.27 0.878

Ours w/o Liden 43.1 21.57 0.878 9.8 20.70 0.825

Ours w/o Lrem 9.8 32.71 0.977 4.1 29.91 0.942

Ours w/o Lfull 12.3 29.78 0.966 4.3 27.66 0.923

Ours w/o Larea 9.3 33.22 0.979 3.8 30.40 0.943

Ours 8.9 33.58 0.979 3.9 30.52 0.944

pact of choosing different dilated kernel size τ in Larea.

Specifically, we set τ to 0, 5, 15, 50, and 100 and train our

model, respectively. Quantitative results are reported in Ta-

ble 4, which shows that 50 is the optimal dilated kernel size

that help achieve the best performance.

Table 4. Influence of the dilation kernel τ in Larea to the perfor-

mance of the proposed G2R-ShadowNet.

Method
Shadow Region All

RMSE PSNR SSIM RMSE PSNR SSIM

τ = 0 9.5 33.01 0.977 3.9 30.11 0.939

τ = 5 9.5 32.70 0.976 4.0 29.89 0.939

τ = 15 9.1 33.54 0.980 3.9 30.40 0.944

τ = 50 8.9 33.58 0.979 3.9 30.52 0.944

τ = 100 9.4 33.08 0.978 3.9 30.16 0.943

It is worth to mention that the performance of shadow

removal is highly affected by the predicted shadow mask

obtained via [43]. We show some failure cases caused by

the false detected shadow masks in Fig. 4. If a shadow is

not detected, it cannot be removed, as shown in the top of

Fig. 4. If a non-shadow region is mis-detected as shadow,

it may become brighter after shadow removal, as shown in

the bottom of Fig. 4. If we use the ground-truth shadow

masks as input for testing, the performance of our model

can be further improved. We conduct this experiment and

find that RMSE, PSNR and SSIM of the predicted results

from our proposed method can reach 8.6, 34.01, and 0.979,

respectively, when evaluated on the shadow region of ISTD.

4.4. Comparison with the state­of­the­arts

In this subsection, we compare our proposed weakly-

supervised method with several state-of-the-art methods

on ISTD. In addition, we train our method on paired
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Table 5. Quantitative comparison results of the proposed G2R-ShadowNet with the state-of-the-art methods. ‘Non-Shadow Region’ indi-

cates that RMSE is computed on the non-shadow region of the testing images. ‘RMSE*’ indicates that RMSE is calculated by averaging

the RMSE of all pixels in the shadow regions over the whole testing set. The results of these methods are either obtained from their original

publications or produced by us using their official codes (marked with ‘⋆’).

Method Training Data
Shadow Region Non-Shadow Region All

RMSE* RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM

Yang et al. [37] - 24.7 23.2 21.57 0.878 14.2 22.25 0.782 15.9 20.26 0.706

Gong and Cosker [5] - 13.3 13.0 30.53 0.972 2.6 36.63 0.982 4.3 28.96 0.943

Guo et al. [8] Shd.Free+Shd.Mask 22.0 20.1 26.89 0.960 3.1 35.48 0.975 6.1 25.51 0.924

ST-CGAN [32] Shd.Free+Shd.Mask 13.4 12.0 31.70 0.979 7.9 26.39 0.956 8.6 24.75 0.927

SP+M-Net [16] Shd.Free+Shd.Mask 7.9 8.1 35.08 0.984 2.8 36.38 0.979 3.6 31.89 0.953

G2R-ShadowNet Sup. Shd.Free+Shd.Mask 7.3 7.9 36.12 0.988 2.9 35.21 0.977 3.6 31.93 0.957

Mask-ShadowGAN⋆ [32] Shd.Free (Unpaired) 9.9 10.8 32.19 0.984 3.8 33.44 0.974 4.8 28.81 0.946

LG-ShadowNet [22] Shd.Free (Unpaired) 9.7 9.9 32.44 0.982 3.4 33.68 0.971 4.4 29.20 0.945

Le and Samaras [17] Shd.Mask 9.7 10.4 33.09 0.983 2.9 35.26 0.977 4.0 30.12 0.950

G2R-ShadowNet Shd.Mask 8.8 8.9 33.58 0.979 2.9 35.52 0.976 3.9 30.52 0.944

Input Ground truth Detected mask Ours

Figure 4. Failure cases on the ISTD dataset. The detected masks

are generated by the shadow detector [43].

data by skipping the generation and training directly with

shadow/non-shadow images from ISTD, and denote this

model as G2R-ShadowNet Sup..

The methods that we are compared with include Gong

and Cosker [5], Guo et al. [8], Yang et al. [37], ST-

CGAN [32], Mask-ShadowGAN [10], SP+M-Net [16],

LG-ShadowNet [22], and Le and Samaras [17] on ISTD.

Among them, Guo et al. [8], Yang et al. [37], and Gong and

Cosker [5] use the pre-calculated image priors for shadow

removal. ST-CGAN [32] and SP+M-Net [16] leverage

paired shadow and shadow-free images, as well as shadow

masks to train their models. Mask-ShadowGAN [10] and

LG-ShadowNet [22] require unpaired shadow and shadow-

free images for training. Le and Samaras [17] needs shadow

images and shadow masks to train their network and our

method use the same type of data as Le and Samaras [17].

Quantitative results are shown in Table 5. From the first

block, we observe that our method outperforms the methods

using the pre-calculated image priors except for the non-

shadow region. Note that Gong and Cosker [5] use an in-

teractive method, which requires user input, to define the

shadow and non-shadow regions in testing, while we only

use the one automatically generated by [43]. The methods

in the second block share the same type of training data,

including both shadow-free images and the shadow masks.

Our weakly-supervised method achieves competitive per-

formance with these methods but using less training data:

we do not use shadow-free images. We also observe that our

method trained on paired data, i.e., G2R-ShadowNet Sup.,

outperforms all the methods in the shadow region and the

whole image. In the third block, both Mask-ShadowGAN

and LG-ShadowNet train their shadow removal models us-

ing unpaired shadow and shadow-free images. We can see

that our method outperforms these two methods.

The comparison to Le and Samaras [17] is more fair

since it is the only previous work that trains the model with-

out using shadow-free images, which is also main goal of

our method. From the last block, we can see that our method

outperforms [17] on most metrics except that two of the

SSIM values are slightly below [17].

Figure 5 shows the qualitative results of our method and

the other state-of-the-art methods on four challenging sam-

ples drawn from the testing set of ISTD. Compared with

other methods, our method can produce results with less

artefacts. Moreover, the colour in the shadow region is more

consistent with the surrounding area using our method,

while the patch-based method [17] tends to produce over-

lightened colour in the non-shadow region (column 5), mak-

ing them easy to distinguish even after the shadow removal.

4.5. Generalisation ability

Finally, we show the generalisation ability of the

proposed G2R-ShadowNet by comparing it with Mask-

ShadowGAN [10], SP+M-Net [16], LG-ShadowNet [22],

and Le and Samaras [17]. Here all methods are trained

on ISTD and tested on the video dataset without additional

training or fine-tuning. The quantitative results are reported

in Table 6.

We observe that our method outperforms Mask-
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Input frame Gong and Cosker [5] LG-ShadowNet [22] SP+M-Net [16] Le and Samaras [17] Ours Ground truth

Figure 5. Visualisation comparisons on four challenging samples from the testing set of the ISTD dataset.

Table 6. Quantitative comparison of the generalisation ability of

the proposed G2R-ShadowNet and the state-of-the-art methods on

the video shadow removal dataset. Note that we compute the met-

rics only in the moving-shadow region. ‘RMSE†’ is the RMSE

computed by using the moving-shadow mask with a threshold of

40, while other metrics are computed using a threshold of 80. ‘-’

in the first two rows means the results are not publicly available.

Method RMSE RMSE† PSNR SSIM

SP+M-Net [16] - 22.2 - -

Le and Samaras [17] - 20.9 - -

Mask-ShadowGAN⋆ [10] 22.7 19.6 20.38 0.887

LG-ShadowNet⋆ [22] 22.0 18.3 20.68 0.880

G2R-ShadowNet (Ours) 21.8 18.8 21.07 0.882

ShadowGAN [10] and LG-ShadowNet [22] significantly on

RMSE and PSNR metrics, indicating that our method has

better generalisation ability on other unseen environments.

We also fine-tune our model on each testing video for ad-

ditional 1 epoch and it further improves the performance

gains on RMSE by about 14% (from 21.8 to 18.7).

We also show visualisation comparison results with

Mask-ShadowGAN [10] and LG-ShadowNet [22] on two

samples from the video dataset in Fig. 6. The shadow re-

gions in our results look lighter with less artefacts than oth-

ers for images of either close (top) or distant shots (bottom).

5. Conclusion

To conclude, we proposed a novel G2R-ShadowNet for

weakly-supervised shadow removal which is trained with-

out using shadow-free images. The training of the net-

work consists of shadow generation, shadow removal and

Input frame Mask-ShadowGAN LG-ShadowNet Ours

Figure 6. Visualisation comparisons on two sample images

from the Video Shadow Removal dataset [17] with the Mask-

ShadowGAN [10] and LG-ShadowNet [22].

refinement, which correspond to three sub-nets in G2R-

ShadowNet, respectively, and they are jointly trained in an

end-to-end fashion. Shadow generation is a prerequisite

which stylises non-shadow regions to be shadow ones and

constructs paired training set for shadow removal. Exten-

sive experiments showed the effectiveness of our proposed

G2R-ShadowNet and verified that our method outperforms

the best weakly-supervised method on the adjusted ISTD

dataset and the Video Shadow Removal dataset. It also

achieved competitive performances against the other state-

of-the-arts that use more training data, such as paired or

unpaired shadow-free images, than our method.
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