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Abstract

This paper presents a fully convolutional scene graph

generation (FCSGG) model that detects objects and re-

lations simultaneously. Most of the scene graph genera-

tion frameworks use a pre-trained two-stage object detector,

like Faster R-CNN, and build scene graphs using bound-

ing box features. Such pipeline usually has a large number

of parameters and low inference speed. Unlike these ap-

proaches, FCSGG is a conceptually elegant and efficient

bottom-up approach that encodes objects as bounding box

center points, and relationships as 2D vector fields which

are named as Relation Affinity Fields (RAFs). RAFs encode

both semantic and spatial features, and explicitly represent

the relationship between a pair of objects by the integral

on a sub-region that points from subject to object. FCSGG

only utilizes visual features and still generates strong results

for scene graph generation. Comprehensive experiments on

the Visual Genome dataset demonstrate the efficacy, effi-

ciency, and generalizability of the proposed method. FC-

SGG achieves highly competitive results on recall and zero-

shot recall with significantly reduced inference time.

1. Introduction

Philosophers, linguists and artists have long wondered

about the semantic content of what the mind perceives in

images and speech [1, 8, 29, 43]. Many have argued that

images carry layers of meaning [2, 45]. Considered as an

engineering problem, semantic content has been modeled

either as latent representations [11, 17, 25, 38], or explicitly

as structured representations [37, 54, 56]. For a computer

vision system to explicitly represent and reason about the

detailed semantics, Johnson [24] et al. adopt and formalize

scene graphs from computer graphics community. A scene

graph serves as a powerful representation that enables many

down-stream high-level reasoning tasks such as image cap-

tioning [59, 62], image retrieval [23, 24], Visual Question

answering [20, 49] and image generation [23, 57].

*Work done in part as an intern at Futurewei Technologies Inc.
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Figure 1: An example of scene graph generation. (a) The

ground-truth scene graph of an image. (b) The ground-truth

bounding boxes and their centers. (c) Our proposed rela-

tionship representation called relation affinity fields. (The

image is 2353896.jpg from Visual Genome [27].)

A scene graph is considered as an explicit structural rep-

resentation for describing the semantics of a visual scene.

The nodes in a scene graph represent the object classes and

the edges represent the relationships between the objects.

Figure 1(a) shows a simple example of a scene graph that

represents the underlying semantics of an image. Each re-

lationship between two objects is denoted as a triplet of

<subject, PREDICATE, object> , i.e., banana
ON
−→

chair and chair
HAS
−−→ wheel in Figure 1(a). Most of

the SGG work [5, 47, 48, 56, 66] is build as a two-stage

pipeline: object detection then scene graph generation. For

the first stage of object detection, existing object detectors,

i.e., Fast/Faster R-CNN [12, 41], are used for object fea-

ture extraction from region proposals. For the second stage

of scene graph generation, various approximation meth-

ods [48, 56, 66] for graph inference have been used. Some

work [5, 63, 64, 65] have also investigated how to utilize ex-

ternal knowledge for improving the results. However, most

previous work suffer from not only the long-tailed distri-

bution of relationships [6, 10, 66], but also the highly bi-

ased prediction conditioned on object labels [15, 21, 26, 47].

Consequently, frequent predicates will prevail over less fre-

quent ones, and unseen relationships can not be identified.

Moreover, the extensibility and inference speed of a SGG

11546



framework is crucial for accelerating down-stream tasks.

Although few researchers have studied the efficiency and

scalability in SGG [13, 31, 58], the high computational

complexity impedes the practicality towards real-world ap-

plications. A natural question that arises is: can we solve

scene graph generation in a per-pixel prediction fashion?

Recently, anchor-free object detectors [28, 50, 61, 68] have

become popular due to their simplicity and low cost. These

methods treat an object as a single or many, pre-defined or

self-learned keypoints. Relating object detection to human

pose estimation, if an object can be modeled as a point (hu-

man “keypoint”), is it possible to represent a binary rela-

tionship as vectors (human “limb”)?

In this paper, we propose a novel fully convolu-

tional scene graph generation model, i.e., FCSGG, with

state-of-the-art object detection results on Visual Genome

dataset [27], as well as compelling SGG results compared

with visual-only methods. We present a bottom-up repre-

sentation of objects and relationships by modeling objects

as points and relationships as vectors. Each relationship

is encoded as a segment in a 2D vector field called rela-

tion affinity field (RAF). Figure 1(c) shows an illustration

of RAFs for predicates ON and HAS. Both objects and rela-

tionships are predicted as dense feature maps without los-

ing spatial information. For the first time, scene graphs can

be generated from a single convolutional neural network

(CNN) with significantly reduced model size and inference

speed. Specifically, we make the following contributions:

• We propose the first fully convolutional scene graph

generation model that is more compact and computa-

tionally efficient compared to previous SGG models.

• We introduce a novel relationship representation called

relation affinity fields that generalizes well on unseen

visual relationships. FCSGG achieves strong results

on zero-shot recall.

• Our proposed model outperforms most of the visual-

only SGG methods, and achieves competitive results

compared to methods boosted by external knowledge.

• We conduct comprehensive experiments and bench-

mark our proposed method together with several pre-

vious work on model efficiency, and FCSGG achieves

near real-time inference.

2. Related Work

We categorize the related work of SGG into the follow-

ing directions: refinement of contextual feature, adaptation

of external knowledge, and others.

Contextual feature refinement. Xu et al. [56] proposed an

iterative message passing mechanism based on Gated Re-

current Units [7], where the hidden states are used for pre-

dictions. Followers [48, 66] studied better recurrent neural

networks [19, 42, 46] for encoding object and edge con-

text. Others trying to incorporate more spatial features into

SGG. Li et al. [32] proposed the MSDN that merges fea-

tures across multiple semantic levels, and later achieved

message passing constrained on visual phrase [30]. Dai et

al. [9] proposed a spatial module by learning from bound-

ing box masks. Woo et al. [53] introduced the geometric

embeddings by directly encoding the bounding box offsets

between objects. Wang et al. [52] further studied the ef-

fects of relative positions between objects for extracting

more discriminating features. Our method is fundamen-

tally different from these methods as the relationships are

grounded semantically and spatially directly into CNN fea-

tures. Without any explicit iterative information exchange

between nodes and edges, our model is able to predict ob-

jects and relationships in a single forward pass.

External knowledge adaptation. Beyond visual features,

linguistic knowledge can serve as additional features for

SGG [14, 37, 40, 63]. By adopting statistical correlations of

objects, Chen et al. [5] utilized graph neural networks [44]

to infer relationships. Gu et al. [16] and Zareian et al.

[64, 65] explored the usefulness of knowledge or com-

monsense graphs for SGG. Tang et al. [47] proposed an

de-biasing method by causal interventions of predictions.

Lin et al. [36] investigated the graph properties and miti-

gated the long-tailed distributions of relationships. Com-

pared with these methods, our proposed model relies only

on visual features but still yields a strong performance.

Very few researchers have investigated alternatives ei-

ther for object feature or relationship feature representa-

tions. Newell [39] and Zhang et al. [67] tried latent-

space embeddings for relationship and achieved improve-

ments. Different from most of the previous work, FCSGG

reformulates and generalizes relationship representations

from only visual-based features in near real-time, which is

much faster than specifically designed SGG models for ef-

ficiency [31, 58].

3. Object Detection as Keypoint Estimation

In this section, we provide the preliminaries of model-

ing object detection as keypoint estimation in a single-scale

dense feature map prediction fashion.

Our model is built upon a one-stage anchor-free de-

tector, namely CenterNet [68]. Different from commonly

used anchor-based R-CNN approaches for generating ob-

ject proposals and features, it predicts three dense features

that represent centers of object bounding boxes, center off-

sets, and object sizes. More specifically, an input image

I ∈ R
3×W×H will go through a backbone CNN generating

feature maps of size w × h = ⌊W
τ
⌋ × ⌊H

τ
⌋ where τ is the

total stride until the last layer, and we set τ = 4 unless spec-

ified otherwise. Then these features will be fed into three

prediction heads, each of which consists of several convo-
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Figure 2: One example of our proposed fully convolutional scene graph generation architecture using four scales of features

for prediction. We refer to the “backbone” as the feature extraction CNN like ResNet [18], and the “neck” as the network

for generating multi-scale features like FPN [33], and the head as several convolutional layers (convs in figure). Shown in

the right part, there are four output features per scale: O, ∆, S for object detection and F for relationship detection. For

single-scale prediction, the backbone features of τ = 4 will be directly fed into the heads.

lutional layers. The three heads are for predicting object

center heatmaps O ∈ R
C×w×h where C is the number of ob-

ject classes in a dataset, object center offsets ∆ ∈ R
2×w×h

for recovering from downsampled coordinates, and object

sizes S ∈ R
2×w×h, respectively (shown in the dashed block

of Figure 2). We define the ground-truth (GT) objects in

an image as B = {bi} where bi = (xi
0, y

i
0, x

i
1, y

i
1, c

i) is

the object i of class ci, (xi
0, y

i
0) and (xi

1, y
i
1) denote the

coordinates of the left-top and right-bottom corners of its

bounding box. The center of the bounding box is defined as

oi = (oi
x,o

i
y) = ((xi

0 + xi
1)/2, (y

i
0 + yi1)/2), and the size

of the object is defined as si = (xi
1 − xi

0, y
i
1 − yi0). To ob-

tain the ground-truth center heatmaps at feature level, we di-

vide coordinates by the stride τ and add Gaussian-smoothed

samples following Law [28] and Zhou et al. [68]. Formally,

the object center oi will be modulated by a bivariate Gaus-

sian distribution along x-axis and y-axis on Oci . The value

around oi is computed as

Oci,x,y = exp
(

9

‖x 9 ⌊oi
x/τ⌋‖

2
2

2σ2
x

9

‖y 9 ⌊oi
y/τ⌋‖

2
2

2σ2
y

)

, (1)

where σx and σy controls the spread of the distribution.

When multiple objects of the same class c contribute to

Oc,x,y , the maximum is taken as the ground truth. The

center heatmaps are then supervised by Gaussian focal

loss [28, 34, 68]. More details are provided in the supple-

mentary file.

In addition to the supervision of center heatmaps, the

center offset regression L∆ and object size regression LS

are used to recover object detections. For mitigating dis-

cretization error due to downsampling, the offset target

is δ
i = oi/τ − ⌊oi/τ⌋, and regressed via L1 loss as

L∆x,y
= ||∆̂x,y − δ

i||1 at center locations. For object size

regression LS, the target is feature-level object size si/τ ,

and the actual size can be recovered by multiplying the out-

put stride. We also use L1 loss as LSx,y
= ||Ŝx,y − si||1 at

center locations. Both object size and offset regressors are

class-agnostic such that there will be only one valid regres-

sion target at a particular location where Oc,x,y = 1. If two

object centers collide onto the same location, we choose the

smaller object for regression. The overall object detection

objective is

Ldet =
1

N

∑

c,x,y

(

LOc,x,y
+ λ∆L∆x,y

+ λsLSx,y

)

, (2)

where N is the total number of objects in the image, λ∆ and

λs are hyper-parameters for weight balancing. We empiri-

cally set λ∆ = 1 and λs = 0.1 for all experiments. Until

here, object centers, offsets, and sizes are all represented

in single-scale feature maps. We will discuss a multi-scale

prediction approach reducing regression ambiguity effec-

tively in section 4.2.

4. Relation Affinity Fields

Newell and Deng [39] model objects as center points,

and ground edges at the midpoint of two vertices then con-

struct the graph via associative embeddings. The midpoint

serves as a confidence measurement of presence of relation-

ships. However, false detections and ambiguities arise when

there are crowded objects in a region, or the associated ob-

jects of a relation are far away from each other. Another

limitation is that it still needs feature extraction and group-

ing that cause low inference speed. Inspired and from a

bottom-up 2D human pose estimation work called Open-

Pose [3], we migrate the concept of part affinity fields into

scene graph generation. Our proposed method grounds re-

lationships onto CNN features pixel by pixel, and mitigates

above mentioned limitations.
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Our model is conceptually simple: in addition to the out-

puts that are produced by the object detection network de-

scribed in Section 3, we add another branch that outputs a

novel feature representation for relationships called relation

affinity fields (RAFs). Specifically, the RAFs are a set of 2D

vector fields F = {Fp} ∈ R
P×2×h×w , where p ∈ R

P

and P is the number of predicate classes in a dataset. Each

2D vector field Fp represents the relationships among all

the object pairs of predicate p. Given our definition of ob-

jects as center points, the ground-truth RAFs are defined

as vectors flow from the center of subject to the center of

object. More formally, we define the binary relationships

among objects B in the input image as R = {ri→j}, where

ri→j = (bi, pi→j , bj) is the relationship triplet from sub-

ject bi to object bj with predicate pi→j . We define a “path”

πi→j
p that “propagates” pi→j from subject center oi to ob-

ject center oj . For a point p = (x, y), its ground-truth rela-

tion affinity field vector Fp,x,y is given as

Fp,x,y =







ei→j =
oj − oi

||oj − oi||2
if p ∈ πi→j

p

0 otherwise,

(3)

and the path πi→j
p is defined on a set of points between ob-

ject centers forming a rectangular region:

πi→j
p = {p | 0 ≤ ei→j · (p− oi) ≤ ǫei→j

and |ei→j
⊥ · (p− oi)| ≤ ǫ

e
i→j

⊥

},
(4)

where ǫei→j = ||oj − oi||2 as the relationship “length”

along the direction ei→j , and ǫ
e
i→j

⊥

= min(ai, bi, aj , bj)

as the relationship “semi-width” along e
i→j
⊥ (orthogonal to

ei→j) being the minimum of object centers’ radii. Since

vectors may overlap at the same point, the ground-truth

RAF Fp averages the fields computed for all the relation-

ship triplets containing that particular predicate p. It is given

as Fp = 1
nc(x,y)

∑

x,y Fp,x,y , where nc(x, y) is the num-

ber of non-zero vectors at point (x, y). With the definition

of ground-truth RAFs, we can train our network to regress

such dense feature maps. The RAF regression lossLraf can

be estimated using a normal regression losses Lreg such as

L1, L2 or smooth L1 [12]. Given the predicted RAFs F̂, the

loss is defined as per-pixel weighted regression loss as

Lraf = W · Lreg(F̂,F), (5)

where W is a pixel-wise weight tensor of the same shape

of F. The weights W are determined and divided into

three cases (Figure 3): a) Wp,x,y = 1 if (x, y) is exactly

on the line segment between objects having the relationship

p, b) Wp,x,y ∈ (0, 1) if the distance between (x, y) and the

line segment is small and the value is negative correlated to

the distance and c) otherwise where Fp,x,y = 0. We pro-

vide ablation study on the choice of losses and the weight

cat table
laying on

Figure 3: An example of GT relation affinity field of predi-

cate LAYING ON based on equations 3 and 4. A non-zero

unit vector is only defined on locations inside πcat→table
LAYING ON .

tensor in Section 5.3. Finally, the complete loss for training

our proposed model can be written as L = Ldet + Lraf .

Our proposed RAFs encode rich information of both spa-

tial and semantic features as dense feature maps, and enable

end-to-end joint training of object detection and relation de-

tection. To extract relationship from predictions, path inte-

gral over RAFs is performed which will be described below.

4.1. Inference

We compute path integrals over RAFs along the line seg-

ments connecting pairs of detected object centers as the

scores of relationships. Specifically, for two candidate ob-

ject centers ôi and ôj with predicted class scores ĥi and

ĥj , we gather the predicted RAFs F̂ along the path between

ôi and ôj , and compute the mean of their projections onto

êi→j = (ôj − ôi)/||ôj − ôi||2. The path integral scores

Ei→j are identified as the confidences of existence of rela-

tionships:

Ei→j =
ĥi · ĥj

mi→j

∑

p∈RP

∑

(x,y)∈πi→j

Fp,x,y · ê
i→j , (6)

where mi→j = |πi→j | is the number of points in πi→j .

Since our RAFs are object-class-agnostic, we multiply the

class scores of the objects and the path integral score as

the overall classification score for the relationship predicate.

The integral will be performed spatially for each predicate

channel, so Ei→j represents the confidences of predicted

relationship triplet r̂i→j for all predicates. Note that the in-

tegral could be negative that indicates an opposite relation-

ship of the object pairs, and those negative integral values

can be simply negated as Ej→i = −Ei→j . Finally, both

scores of Ei→j and Ej→i will be used for ranking the pre-

dicted relationships. We also experiment with a simple re-

weighting step known as frequency bias [66] by multiplying

Ei→j with 1.0001nc(r̂
i→j), where nc(r̂

i→j) counts the oc-

currence of triplet ri→j in training set. The path integral
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Algorithm 1 Path Integral over Relation Affinity Fields

Input: Object centers {ôi}, Relation Affinity Fields F̂

Output: Relations R̂ = {r̂i→j = (i,Ei→j , j)|i 6= j}

1: R̂← {}
2: for each center pair (ôi, ôj)|i 6= j do

3: πi→j ← LINSPACE(ôi, ôj) ∈ R
mi→j×2

4: F̂πi→j ← INDEX(F̂, πi→j) ∈ R
P×mi→j×2

5: Ei→j , Ej→i ∈ R
P ← Equation 6

6: R̂← R̂
⋃

{r̂i→j = (i,Ei→j , j)}
7:

⋃

{r̂j→i = (j,Ej→i, i)}
8: end for

9: return SORTED(R̂)

procedure is presented in Algorithm 1. In practice, the op-

erations are performed using matrix multiplication in stead

of FOR LOOP for fast inference.

4.2. Multi­scale Prediction

Since object centers are downsampled to feature level,

their centers could collide onto the same pixel location. Re-

gression ambiguity may rise due to single-scale feature rep-

resentations. In this subsection, we address this problem by

utilizing multi-scale prediction and shared detection heads.

Though Zhou et al. [68] argued that only a very small

fraction (<0.1% in COCO [35] dataset) of objects have cen-

ter collision problem at stride of 4, the size and offset re-

gression targets need better assignment strategy since there

is only one valid target per pixel. We follow the work of

FPN [33], RetinaNet [34] and FCOS [50], and assign the

ground-truth bounding boxes to different levels based on

scales. Building upon the backbone features, we construct

multi-level feature maps {Pk} where Pk is of stride 2k. We

refer the network component of generating multi-scale fea-

tures as the “neck” (the green box in Figure 2), such as

FPN [33]. We define a valid range [lk, uk] ⊂ [0,Lmax] for

objects in each scale, where Lmax is the maximum size of

longer edge allowed for training and testing. Only bound-

ing boxes of area within [l2k, u
2
k] are qualified for the k-th

scale training. We experiment different number of scale lev-

els and input image size. For smaller input image of Lmax

= 512, we build 4-scale features [33] {P2, P3, P4, P5} (as

shown in Figure 2) with valid ranges {[0, 322], [322, 642],

[642, 1282], [1282, 5122]}; for larger input image of Lmax

= 1024 (shorter edge is at least Lmin = 640), we use 5-

scale features [34, 50] {P3, P4, P5, P6, P7} with area ranges

{[0, 642], [642, 1282], [1282, 2562], [2562, 5122], [5122,

10242]}. If there is still more than one target at the same lo-

cation, we simply choose the smallest object for regression.

In terms of the multi-scale RAFs training, the GT as-

signment is based on the distances between object centers.

For high-level semantic features like P5, the feature map

can capture large objects, as well as relationships among

distant objects. We select the relationships of “length”

ǫei→j ∈ [lk, uk] as valid samples for training the k-th scale.

The exact ranges for 4-scale or 5-scale RAFs are the same

as the settings for bounding boxes. Finally, the weights of

detection heads are shared across different feature scales for

efficiencies and performance improvements. During infer-

ence, we gather outputs from each scale based on the corre-

sponding valid range, then merge and rank all relationship

triplets. Figure 2 illustrates the details of our proposed ar-

chitecture using a four-scale feature setup as an example

with shared detection heads. Our experiments (Section 5)

show that the multi-scale GT and scale-aware training re-

solve the aforementioned ambiguity problem thus improve

the results over single-scale prediction.

5. Experiments

Dataset. We use the Visual Genome (VG) [27] dataset

to train and evaluate our models. We followed the widely-

used preprocessed subset of VG-150 [56] which contains

the most frequent 150 object categories (C = 150) and 50

predicate categories (P = 50). The dataset contains approx-

imately 108k images, with 70% for training and 30% for

testing. Different from previous works [4, 48, 66], we do

not filter non-overlapping triplets for evaluation.

General settings. We experiment on two settings, one for

small input size (Lmax = 512) and one for larger size (Lmax

= 1024). The model is trained end-to-end using SGD op-

timizer with the batch size of 16 for 120k iterations. The

initial learning rate is set to 0.02 and decayed by the factor

of 10 at 80kth and 100kth iteration. We adopt standard im-

age augmentations of horizontal flip and random crop with

multi-scale training. During testing, we keep the top 100

detected objects for path integral.

Metrics. We conduct comprehensive analysis follow-

ing three standard evaluation tasks: Predicate Classifica-

tion (PredCls), Scene Graph Classification (SGCls), and

Scene Graph Detection (SGDet). We report results of re-

call@K (R@K) [37], no-graph constraint recall@K (ng-

R@K) [39, 66], mean recall@K (mR@K) [5, 48], no-

graph constraint mean recall@K (ng-mR@K), zero-shot re-

call@K (zsR@K) [37] and no-graph constraint zero-shot

recall@K (ng-zsR@K) [47] for all three evaluation tasks.

We do not train separate models for different tasks.

5.1. Implementation Details

We conduct experiments on different backbone and neck

networks. Each of the detection heads consists of four 3×3
convolutions followed by batch normalization and ReLU,

and one 1×1 convolution with the desired number of output

channels in all our experiments unless specified otherwise.

For convenience, our models are named as BACKBONE - #

OF OUTPUT SCALES - NECK - OTHER OPTIONS.
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Recall @K /
AP50

Predicate Classification Scene Graph Classification Scene Graph Detection

No-graph Constraint Recall @K R@20/50 /100 ng-R@20/50/100 R@20/50/100 ng-R@20/50/100 R@20/50/100 ng-R@20/50/100

E
x
te

rn
al

K
n
o
w

le
d
g
e VCTree [48] - 60.1/ 66.4/ 68.1 - 35.2/ 38.1/ 38.8 - 22.0/ 27.9/ 31.3 -

KERN [5] - - / 65.8/ 67.6 - / 81.9/ 88.9 - / 36.7/ 37.4 - / 45.9/ 49.0 - / 27.1/ 29.8 - / 30.9/ 35.8

GPS-Net [36] - 67.6/ 69.7/ 69.7 - 41.8/ 42.3/ 42.3 - 22.3/ 28.9/ 33.2 -

MOTIFS-TDE [47, 66] 28.1 33.6/ 46.2/ 51.4 - 21.7/ 27.7/ 29.9 - 12.4/ 16.9/ 20.3 -

GB-NET-β [64] - - / 66.6/ 68.2 - / 83.5/ 90.3 - / 37.3/ 38.0 - / 46.9/ 50.3 - / 26.3/ 29.9 - / 29.3/ 35.0

V
is

u
al

O
n
ly

VTransE⋆ [67] - - - - - - / 5.5/ 6.0 -

FactorizableNet⋆ [31] - - - - - - / 13.1/ 16.5 -

IMP† [56, 66] 20.0 58.5/ 65.2/ 67.1 - 31.7/ 34.6/ 35.4 - 14.6/ 20.7/ 24.5 -

Pixels2Graphs [39] - - - / 68.0/ 75.2 - - / 26.5/ 30.0 - - / 9.7/ 11.3

Graph R-CNN [58] 23.0 - / 54.2/ 59.1 - - / 29.6/ 31.6 - - / 11.4/ 13.7 -

VRF [10] - - / 56.7/ 57.2 - - / 23.7/ 24.7 - - / 13.2/ 13.5 -

CISC [52] - 42.1/ 53.2/ 57.9 - 23.3/ 27.8/ 29.5 - 7.7/ 11.4/ 13.9 -

F
C

S
G

G

(O
u

rs
)

HRNetW32-1S 21.6 27.6/ 34.9/ 38.5 32.2/ 46.3/ 56.6 12.3/ 15.5/ 17.2 13.5/ 19.3/ 23.6 11.0/ 15.1/ 18.1 12.4/ 18.2/ 23.0

HRNetW48-1S 25.0 24.2/ 31.0/ 34.6 28.1/ 40.3/ 50.0 13.6/ 17.1/ 18.8 14.2/ 19.6/ 24.0 11.5/ 15.5/ 18.4 12.7/ 18.3/ 23.0

ResNet50-4S-FPN×2 23.0 28.0/ 35.8/ 40.2 31.6/ 44.7/ 54.8 13.9/ 17.7/ 19.6 14.8/ 20.6/ 25.0 11.4/ 15.7/ 19.0 12.2/ 18.0/ 22.8

HRNetW48-5S-FPN×2 28.5 28.9/ 37.1/ 41.3 34.0/ 48.1/ 58.4 16.9/ 21.4/ 23.6 18.6/ 26.1/ 31.6 13.5/ 18.4/ 22.0 15.4/ 22.5/ 28.3

HRNetW48-5S-FPN×2-f 28.5 33.4/ 41.0/ 45.0 37.2/ 50.0/ 59.2 19.0/ 23.5/ 25.7 19.6/ 26.8/ 32.1 16.1/ 21.3/ 25.1 16.7/ 23.5/ 29.2

Table 1: Recall and no-graph constraint recall @K evaluation results on VG-150. ⋆ denotes the methods evaluated on other

datasets, such that VTransE is evaluated on VG-200 [67] and FactorizableNet on a smaller set following [32]. † denotes the

methods with updated re-implementation results. - denotes the results that are not reported in the corresponding work.

Mean Recall @K / Predicate Classification Scene Graph Classification Scene Graph Detection

Ng Mean Recall @K mR@20/50/100 ng-mR@20/50/100 mR@20/50/100 ng-mR@20/50/100 mR@20/50/100 ng-mR@20/50/100

VCTree [48] 14.0 / 17.9 / 19.4 - 8.2 / 10.1 / 11.8 - 5.2 / 6.9 / 8.0 -

KERN [5] - / 17.7 / 19.4 - - / 9.4 / 10.0 - - / 6.4 / 7.3 -

GPS-Net [36] - / - / 22.8 - - / - / 12.6 - - / - / 9.8 -

MOTIFS-TDE [47, 66] 18.5 / 25.5 / 29.1 - 9.8 / 13.1 / 14.9 - 5.8 / 8.2 / 9.8 -

GB-NET-β [64] - / 22.1 / 24.0 - - / 12.7 / 13.4 - - / 7.1 / 8.5 -

HRNetW32-1S 4.0 / 5.5 / 6.3 5.4 / 9.7 / 13.6 1.9 / 2.5 / 2.8 2.7 / 4.4 / 6.2 1.7 / 2.4 / 2.9 2.2 / 3.6 / 4.9

HRNetW48-1S 3.7 / 5.2 / 6.1 5.2 / 9.5 / 14.7 2.2 / 2.9 / 3.4 3.5 / 6.3 / 9.4 1.8 / 2.6 / 3.1 2.7 / 4.7 / 6.9

ResNet50-4S-FPN×2 4.2 / 5.7 / 6.7 6.5 / 11.3 / 16.6 2.2 / 2.9 / 3.3 3.6 / 6.0 / 8.3 1.9 / 2.7 / 3.3 3.0 / 4.9 / 6.8

HRNetW48-5S-FPN×2 4.3 / 5.8 / 6.7 6.1 / 10.3 / 14.2 2.6 / 3.4 / 3.8 4.1 / 6.4 / 8.4 2.3 / 3.2 / 3.8 3.7 / 5.7 / 7.4

HRNetW48-5S-FPN×2-f 4.9 / 6.3 / 7.1 6.6 / 10.5 / 14.3 2.9 / 3.7 / 4.1 4.2 / 6.5 / 8.6 2.7 / 3.6 / 4.2 3.8 / 5.7 / 7.5

Table 2: The SGG results on mean recall@K and no-graph constraint mean recall@K.

ResNet [18, 33]. We start by using ResNet-50 as our

backbone and build a 4-scale FPN for multi-scale predic-

tion. Since the tasks of object detection and RAFs predic-

tion are jointly trained, the losses from the two tasks could

compete with each other. We implement a neck named

“FPN×2” with two parallel FPNs, such that one FPN is used

for constructing features for object detection heads (center,

size and offset), and the other is for producing features for

RAFs. We name this model as ResNet50-4S-FPN×2.

HRNet [51]. We then experiment on a recent proposed

backbone network called HRNet that consists of paral-

lel convolution branches with information exchange across

different scales. For single-scale experiments, we use

HRNetV2-W32 and HRNetV2-W48; and for multi-scale

prediction, we adopt its pyramid version called HRNetV2p.

We omit their version number for the rest of the paper. We

test several models: HRNetW32-1S, HRNetW48-1S and

HRNetW48-5S-FPN×2. We also experiment on adding fre-

quency bias for inference as discussed in Section 4.1, and

the model used is called HRNetW48-5S-FPN×2-f.

5.2. Quantitative Results

We first compare results of R@K and ng-R@K with var-

ious of state-of-the-art (SOTA) models, and divide them

into two categories: 1) models that only use visual fea-

tures derived from the input image like our proposed model

and 2) models that not only use visual features, but also

use features like language embeddings, dataset statistics or

counterfactual causality, etc. The results are shown in Ta-

ble 1. Our best model achieves 28.5 average precision at

IoU = 0.5 (AP50) for object detection. Though our SGG re-

sults do not outperform the SOTA approaches, we achieve

the best scene graph detection results among visual-only

models. Specifically, Pixels2Graphs [39] and our models

are the only models without using Faster R-CNN [41] as

object detector, and we achieves 13.8 / 17.9 gain on SGDet

ng-R@50 / 100 compared with their results using RPN [41].

We then report mean recall and no-graph constraint mean

recall results shown in Table 2. We still obtain competitive

results, especially on ng-mR. By comparing (m) R@K and

ng-(m) R@K directly, we observe more gain on our results
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Zero-shot Recall @K PredCls SGCls SGDet

Method zsR@50/100 zsR@50/100 zsR@ 50/100

MOTIFS-TDE [47] 14.4 / 18.2 3.4 / 4.5 2.3 / 2.9

VTransE-TDE [47] 13.3 / 17.6 2.9 / 3.8 2.0 / 2.7

VCTree-TDE [47] 14.3 / 17.6 3.2 / 4.0 2.6 / 3.2

Knyazev et al. [26] - / 21.5 - / 4.2 - / -

FCSGG (Ours)
zsR ng-zsR zsR ng-zsR zsR ng-zsR

@50/100 @50/100 @50/100 @50/100 @50/100 @50/100

HRNetW32-1S 8.3 / 10.7 12.9 / 19.2 1.0 / 1.2 2.3 / 3.5 0.6 / 1.0 1.2 / 1.6

HRNetW48-1S 8.6 / 10.9 12.8 / 19.6 1.7 / 2.1 2.9 / 4.4 1.0 / 1.4 1.8 / 2.7

ResNet50-4S-FPN×2 8.2 / 10.6 11.7 / 18.1 1.3 / 1.7 2.4 / 3.8 0.8 / 1.1 1.0 / 1.7

HRNetW48-5S-FPN×2 7.9 / 10.1 11.5 / 17.7 1.7 / 2.1 2.8 / 4.8 0.9 / 1.4 1.4 / 2.4

HRNetW48-5S-FPN×2-f 7.8 / 10.0 11.4 / 17.6 1.6 / 2.0 2.8 / 4.8 0.8 / 1.4 1.4 / 2.3

Table 3: Comparisons of SGG results on zero-shot Recall@K, and our results

on no-graph constraint zero-shot Recall@K.

Figure 4: FCSGG per-predicate Pred-

Cls@100 results for selected predicates us-

ing HRNetW48-5S-FPN×2-f.

than other methods’.

Zero-shot recall (zsR) [15, 21, 26, 37, 40, 47, 60] is

a proper metric for evaluating the model’s robustness and

generalizability for generating scene graphs. It computes

recall on those subject-predicate-object triplets that do not

present during training. There are in total of 5971 unique

zero-shot triplets from the testing set of VG-150. The re-

sults and comparisons are listed in Table 3. We also com-

pute the per-predicate recall@100 for predicate classifica-

tion task using HRNetW48-5S-FPN×2-f, and show the com-

parisons in Figure 4. We observe similar behavior with

our results on recall, such that the results on no-graph con-

straint zero-shot recall are significantly better than zero-

shot recall. Even for unseen triplets, purely based on vi-

sual features, FCSGG is still capable of predicting mean-

ingful RAFs which proves its generalization capability. In

other words, when constructing scene graphs from RAFs,

our approach does not highly depend on the object classes

but only focuses on the context features between the ob-

jects. When comparing with other reported results on zsR,

we achieve slightly lower results than those much larger

models. For example of PredCls task, ResNet50-4S-FPN×2

achieves 10.6 zsR@100 with only 36 million (M) number of

parameters and inference time of 40 milliseconds (ms) per

image, while VCTree-TDE [47] achieves 17.6 zsR@100

with 360.8M number of parameters and inference time of

1.69 s per image. For comparison, ResNet50-4S-FPN×2 is

10 times smaller and 42 times faster than VCTree-TDE.

Limitations. It should be noticed that FCSGG also

has some “disadvantages” over Faster R-CNN-based meth-

ods on easier tasks such as PredCls and SGCls. During

evaluations with given GT bounding boxes or classes, our

RAFs features will not change, while R-CNN extracted

object/union-box features will change which leads to bet-

ter results. When using visual-only representation of re-

lationships, it is hard for the network to distinguish pred-

icates between WEARS / WEARING (by comparing R and

ng-R in Figure 4) or LAYING ON / LYING ON, which is

common in VG dataset. In this sense, incorporating exter-

nal knowledge gives FCSGG a large potential in improving

results. Comparing the model HRNetW48-5S-FPN×2 and

its frequency-biased counterpart HRNetW48-5S-FPN×2-f,

we find noticeable improvement by using training set statis-

tics. This simple cost-free operation can improve R@20

by 2.6, and we expect better results from fine-tuning hyper-

parameters. However, the focus of this work is not perfectly

fitting on a dataset, but improving generalization of relation-

ship based on visual features. More sophisticated ensemble

methods or extensions are beyond the scope of this paper.

5.3. Ablation Study

5.3.1 RAF regression Loss

We experience the same difficulty of training from sparsely

annotated scene graphs as discussed by Newell et al. [39].

The network has the potential of generating reasonable

triplets not covered in the ground-truth, and our results on

zero-shot recall prove the argument. To reduce the penalty

on these detections, we investigate the design methodology

of RAF regression loss Lraf (Equation 5).

We refer the loss applied at locations having GT RAFs

defined as positive loss L+
raf , and we test different regres-

sion losses. As for locations where Fp,x,y = 0, we apply

so called negative loss L−
raf using L1 for regression. L−

raf

L+
raf β AP50 R@50 zR@50 mR@50

L1 0 21.57 6.22 0.40 2.28

L1 1 21.52 9.80 0.56 2.33

L1 10 21.56 15.05 0.60 2.36

Smooth L1 0 20.15 5.00 0.30 2.51

Smooth L1 1 19.65 7.46 0.57 2.45

Smooth L1 10 20.63 11.82 0.61 2.83

L2 0 19.62 4.82 0.26 2.34

L2 1 21.60 10.76 0.68 2.57

L2 10 21.62 2.89 0.57 2.50

Table 4: Ablations on losses used for positive samples and

regularization factor on negative samples of RAFs. AP50

and SGDet results are reported using HRNetW32-1S.
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will be multiplied by a factor β for adjusting the penalty.

Spatially, Lraf can be re-written as Lraf = L+
raf +βL−

raf .

Table 4 shows the effects of different losses and penalty fac-

tor on the performance. We observe better performance us-

ing L1 and β = 10. However, when only supervise on L+
raf

loss, the model has comparable mean recall results and it

can detect more semantic and rare relationships. On the

other hand, adding L−
raf loss will push the model more bi-

ased to dominating predicates like ON and HAS.

5.3.2 Architecture Choices

Neck Norm AP50 R@50 zR@50 mR@50

FPN GN 22.75 11.29 0.71 2.95

FPN MS-BN 22.10 13.23 0.75 2.67

FPN×2 GN 22.74 11.96 0.78 3.00

FPN×2 MS-BN 22.60 12.01 0.80 2.88

Table 5: Comparisons of FPN vs. FPN×2, and Multi-scale

batch normalization vs. group normalization. AP50 and

SGDet results are reported using ResNet50-4S.

By comparing our results between single-scale and

multi-scale models, we see substantial performance gain on

both object detection and scene graph generation from Ta-

ble 1 2 3. We also observe HRNet has better results over

ResNet due to its multi-scale feature fusions. For investigat-

ing the entanglement of object features and contextual fea-

tures producing RAFs, we compare the results of FPN and

FPN×2 using ResNet-50 as backbone shown in Table 5. As

observed in [50], the regression range differs across differ-

ent levels. Therefore, to improve the performance of shared

fully-convolutional heads, we replace each batch normal-

ization (BN) [22] layer in the head with a set of BN layers,

each of which is only applied for the corresponding scale.

We name this modified BN as multi-scale batch normaliza-

tion (MS-BN). We also experiment on group normalization

(GN) [55] which stabilizes the training as well. We show the

comparisons of MS-BN and GN (Section 4.2) in the same

table. We observe better mR by using FPN×2 and better re-

call and zsR by using MS-BN. We expect more performance

improvement if using larger batch size with MS-BN.

5.3.3 Model Size and Speed

We also conduct experiments on the model size and in-

ference speed. Few work benchmarked on efficiency of

scene graph generation previously [31, 64]. Though scene

graphs are powerful, it is almost not possible to perform

SGG and down-stream tasks in real-time due to signif-

icantly increased model complexity. FCSGG alleviates

the computational complexity effectively. Our experiments

are performed on a same NVIDIA GeForce GTX 1080 Ti

GPU with inference batch size of 1. For comparisons,

Method #Params (M) Input Size s / image

Pixels2Graphs [67] 94.8 512× 512 3.55

VCTree-TDE [47] 360.8 600× 1000 1.69

MOTIFS-TDE [47] 369.5 600× 1000 0.87

KERN [5] 405.2 592× 592 0.79

MOTIFS [47] 367.2 600× 1000 0.66

FactorizableNet [31] 40.4 600× 1000 0.59

VTransE-TDE [47] 311.6 600× 1000 0.55

GB-NET-β [64] 444.6 592× 592 0.52

Graph R-CNN [58] 80.2 800× 1024 0.19

FCSGG (Ours)

HRNetW32-1S 47.3 512× 512 0.07

HRNetW48-1S 86.1 512× 512 0.08

ResNet50-4S-FPN×2 36.0 512× 512 0.04

HRNetW48-5S-FPN×2 87.1 640× 1024 0.12

HRNetW48-5S-FPN×2-f 87.1 640× 1024 0.12

Table 6: Model size and speed comparisons for SGDet.

we include several previous work by running correspond-

ing open-source codes under the same settings. The results

are shown in Table 6. Both the number of parameters and

inference time are considerably lower for FCSGG models.

It is worth noting that the computation overhead is from

the backbone network. The path integral (Algorithm. 1) is

performed pair-wisely for all 100 kept objects across five

scales, which results in
(

100
2

)

× 2 × 5 = 49500 maximum

number of candidate relationships for an image. The infer-

ence time for path integral is almost invariant over the num-

ber of instances as analyzed by Cao et al. [3]. We believe

that object relationships exist universally, especially geo-

metric ones. By grounding the full graph in RAFs as inter-

mediate features, richer semantics can be retained for down-

stream tasks. More importantly, convolution is hardware-

friendly, and the model size is kept small for deployment on

edge devices. We anticipate that real-time mobile SGG can

be performed in the near future.

6. Conclusions

Scene graph generation is a critical pillar for building

machines to visually understand scenes and perform high-

level vision and language tasks. In this paper, we introduce

a fully convolutional scene graph generation framework that

is simple yet effective with fast inference speed. The pro-

posed relation affinity fields serve as a novel representation

for visual relationship and produce strong generalizability

for unseen relationships. By only using visual features, our

exploratory method achieves competitive results over object

detection and SGG metrics on the VG dataset. We expect

that FCSGG can serve as a general and strong baseline for

SGG task, as well as a vital building block extending to

down-stream tasks.
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