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Abstract

The perceptual loss has been widely used as an effective

loss term in image synthesis tasks including image super-

resolution [16], and style transfer [14]. It was believed that

the success lies in the high-level perceptual feature repre-

sentations extracted from CNNs pretrained with a large set

of images. Here we reveal that, what matters is the net-

work structure instead of the trained weights. Without any

learning, the structure of a deep network is sufficient to

capture the dependencies between multiple levels of vari-

able statistics using multiple layers of CNNs. This insight

removes the requirements of pre-training and a particular

network structure (commonly, VGG) that are previously as-

sumed for the perceptual loss, thus enabling a significantly

wider range of applications. To this end, we demonstrate

that a randomly-weighted deep CNN can be used to model

the structured dependencies of outputs. On a few dense per-

pixel prediction tasks such as semantic segmentation, depth

estimation and instance segmentation, we show improved

results of using the extended randomized perceptual loss,

compared to the baselines using pixel-wise loss alone. We

hope that this simple, extended perceptual loss may serve as

a generic structured-output loss that is applicable to most

structured output learning tasks.

1. Introduction

Dense pixel-wise prediction tasks represent the most

important category of computer vision problems, ranging

from low-level image processing such as denoising, super-

resolution, through mid-level tasks such as stereo match-

ing, to high-level understanding such as semantic/instance

segmentation. These tasks are naturally structured output

learning problems since the prediction variables often de-

pend on each other. The pixel-wise loss serves as the unary

term for these tasks. Besides, the perceptual loss [14] was

introduced to capture perceptual information by measuring

discrepancy in high-level convolutional features extracted

from CNNs. It has been successfully used in various low-

*C. Shen is the corresponding author.

level image processing tasks, such as style transfer, and

super-resolution [14].

Previous works assume that the perceptual loss bene-

fits from the high-level perceptual features extracted from

CNNs pretrained with a large set of images (e.g., VGG

[23] pretrained on the ImageNet dataset. Relying on this

assumption, the perceptual loss is limited to a specific net-

work structure (commonly, VGG) with pre-trained weights,

which is not able to take arbitrary signals as the input. In

this work, we reveal that, contrary to this belief, the success

of the perceptual loss is not necessarily dependent on the

ability of a pretrained CNN in extracting high-level percep-

tual features. Instead, without any learning, the structure of

a multi-layered CNN is sufficient to capture a large amount

of interaction statistics for various output forms. We ar-

gue that what matters is the deep network architecture rather

than the pretrained weights.

To verify the statement, we conduct a pilot experiment

on image super-resolution. Apart from using the pretrained

VGG net for perceptual loss, we use a randomly-weighted

network. The results with the randomly-weighted network

are on par with that of the pretrained VGG, which are

both visually improved than using the per-pixel loss alone

(see Figure 1). This indicates that the pretrained weights—

previously assumed for the perceptual loss—is not essential

to the success of the perceptual loss. We may conclude from

this experiment that it is the deep network structure, rather

than learnt weights, plays the core role.

Given a target y or a prediction ŷ as an input, a randomly-

weighted network f(·) can work as a function to explore hi-

erarchical dependencies between variable statistics through

the convolution operations in multiple layers. Thus, a

generic perceptual loss for structured output learning can

be computed by comparing the discrepancy between f j(y)
and f j(ŷ). Here j indexes a particular layer of the network

f(·). Thus, this enables the perceptual loss1 to be applied to

a wider range of structured output learning tasks.

Structured information is important in dense per-pixel

prediction problems, such as semantic segmentation [17],

1Here we still use the notion of ‘perceptual’ as it was firstly intro-

duced in [14] even though broadly this loss is more about capturing inter-

dependencies in variables, instead of extracting perceptual features.
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(a) Ground Truth (b) Bicubic (c) Pixel-wise Loss

alone [16]

(d) w. Pretrained VGG [16] (e) w. Random VGG

Figure 1 – Super-resolution results of the pilot experiments (super-resoled from 4× down-scaled images). (a) Ground truth high-

resolution images. (b) Bi-cubic up-sampling. (c) SRResNet [16] trained with the per-pixel loss. (d) SRResNe trained with the per-pixel

loss and perceptual loss with a pretrained VGGNet. (e) SRResNet trained with the per-pixel loss and perceptual loss with a randomly-

weighted VGGNet. We can see that the perceptual loss improves image quality. Besides, formulating the perceptual loss with a

pre-trained network and a randomly-weighted network produces on par results.

depth estimation and instance segmentation [18]. For ex-

ample, the pairwise term in Markov Random Filed is com-

plementary to the unary term, which defines pairwise com-

patibility and in general improves prediction accuracy espe-

cially when the unary term alone is not sufficient. The pro-

posed generic perceptual loss can be easily applied to these

dense prediction tasks, with no computation overhead dur-

ing inference. Also, as now pre-training with labelled data

is not required, it is straightforward to explore the effective-

ness of using various network structures—not necessary the

VGG—to model the dependency between output variables.

Experimental results on various structured output learn-

ing tasks with different network structures show that the

generic perceptual loss benefits the training, and consis-

tently achieves improved performance compared to the

baselines using pixel-wise loss term alone. We also pro-

vide detailed comparisons and analysis on the impact of ini-

tialization schemes and architectures of the perceptual loss

network.

In summary, our main contributions are as follows.

• We reveal that the success of the perceptual loss is

not dependent on the pretrained CNN weights. With-

out any learning, the structure of a deep network is

sufficient to capture the dependencies between multi-

ple levels of variable statistics using multiple layers of

CNNs.

• We apply the generic perceptual loss to a few struc-

tured output learning tasks, including semantic seg-

mentation, depth estimation and instance segmenta-

tion. We consistently improve the performance of

baseline models.

• We investigate how the initialization and the network

structures may affect the performance of the proposed

perceptual loss. A reliable initialization approach is

designed based on the analysis.

• This proposed simple perceptual loss may serve as

a generic structured-output loss that is applicable to

most structured output learning tasks in computer vi-

sion.

2. Related Work

Perceptual loss. Early works [16, 14] generate high-quality

images using perceptual loss functions, which consider the

discrepancy between deep features, not only the pixels.

Gatys et al. [8] found that a pretrained VGG architecture

can be used to as a loss function for style transfer. They

attribute the success to the ability of the trained filters in

learning certain features which are coincident to human per-

ception. Johnson et al. [14] further formulate the percep-

tual loss as an extra loss term for the deep neural network.

There, the context/perceptual loss is the Euclidean distance

between feature representations. Inclusion of the percep-
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tual loss achieves visually improved results on style trans-

fer and super-resolution. While doing other image synthesis

tasks, such as super-resolution, colorizing, and other image

generation tasks [13], the perpetual loss often refers to this

context loss as shown in Eq. (1),

ℓφ,jfeat(ŷ, y) =
1

CjHjWj

‖φj(ŷ)− φj(y)‖
2
2, (1)

where y and ŷ are the targeted images and synthesis images.

φj represents the perceptual function which outputs the ac-

tivation of the jth layer in the perceptual loss network. Cj ,

Hj , Wj are the dimensions of the tensor feature map.

Recently, a perceptual loss was also introduced to depth

estimation task [31]. The authors argue that the embedding

spaces should be designed for particular relevant tasks, i.e.,

depth-based scene classification and depth reconstruction.

Thus, they have pretrained the perceptual loss network on

RGBD datasets and failed to realize that pretraining is not

compulsory, as we show here.

Representations with random weights. A few methods

have discussed the untrained, randomly-weighted CNNs.

Researchers found that networks with random weights can

extract useful features as the classification accuracy with

these features is higher than random guesses. He et al. [9]

use generative models with the constraints from untrained,

randomly-weighted network for deep visualization tasks.

They found that during optimization for a style transfer

task, the perceptual loss with a proper weight scale can

work well with untrained, randomly-weighted networks,

and generate competitive results as prior work [8] with pre-

trained weights. Mongia et al. [19] prove why one-layer

CNNs with random weights can successfully generate tex-

tures. The randomly-weighted networks are also employed

in unsupervised learning [29] and reinforcement learning

[7]. Another relevant work is deep image prior [28] where

a randomly-initialized neural network is used as a “hand-

crafted prior” with excellent results in image reconstruction

tasks such as denoising, super-resolution, and inpainting.

These works provide a way to study network architectures

without any learning, and also exploit the randomness as a

useful feature.

Here, we explore the ability of the randomly-weighted

network in investigating hierarchical dependencies between

variable statistics. The perceptual loss with a randomly-

weighted network works as a useful loss term on various

structured output learning tasks.

Dense prediction. Dense prediction is a family of funda-

mental problems in computer vision, which learns a per-

pixel mapping from input images to output structures, in-

cluding semantic segmentation [37], depth estimation [35,

33, 36], object detection [27], etc. As extensively studied

in the literature, taking the inter-dependency between out-

put variables into account during training and/or inference

often improves the accuracy. Thus structured information is

important for these tasks.

In this work, we demonstrate that a randomly-weighted

network can implicitly capture the structural information

with its natural architecture and internal convolution opera-

tions. The performance of these dense prediction tasks can

be enhanced by simply enforcing a perceptual loss from a

randomly-weighed network. This is achieved without any

learning on the perceptual loss network, and no further

computation cost for inference is required.

3. Our Method

The observations from the pilot experiments in Figure 1

suggest that the network structure, instead of the pretrained

weights, contributed to the success of the perceptual loss.

More details can be found in the supplementary materi-

als. In this section, we first extend the perceptual loss

with randomly-weighted networks to some structured out-

put learning tasks. Then, we analyze the devils in the weight

initialization and design an appropriate way for an effective

initialization.

3.1. Perception Loss for Structured Output Predic­
tion

If the randomly-weighted network has the ability in cap-

turing structured information, it should also be able to help

dense prediction problems. In addition, as the pretrained

weights learnt with a large number of samples are not re-

quired, it is easier to apply this regularization on any task

and to compare the performance with different perceptual

loss networks. We start with the commonly used VGGNet-

like structure as the perceptual loss network . We denote

the number of convolutional layers between max pooling

downsample operations with N1, N2, . . . , Nk, where k is

the number of blocks.

Semantic segmentation. Semantic segmentation is a typi-

cal dense prediction problem, where a semantic label is as-

signed to each pixel in an input image. A segmentation net-

work as S takes an input image I ∈ R
W×H×3 and predicts

a segmentation map ŷ = S(I) ∈ R
W×H×C . The output

channel of the segmentation network C equals to the num-

ber of the pre-define object classes. Conventional methods

usually employ a per-pixel cross-entropy loss. The correla-

tions among pixels are neglected in the cross-entropy loss.

Therefore, the perceptual loss can work as a complemen-

tary to the per-pixel loss for capturing the structured infor-

mation.

To extend the perceptual loss to semantic segmentation,

we use the estimated segmentation map or the ground-truth

one as the input to the perceptual loss network, and get the

embedded structured feature after several CNN layers. The

mean square error is used to minimize the distance between

the structured features of prediction and the learning target.
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The softmax output ŷ has a domain gap with the one-hot

ground truth y, which make the perceptual loss hard to con-

verge. To solve this problem, we follow recently knowledge

distillation methods [18] to generate soft labels yt by a large

teacher net as the learning targets. The total loss is then de-

fined as:

ℓseg = ℓce(ŷ, y) + λ · ℓφr

r (ŷ, yt), (2)

where φr represents the perceptual loss network initialized

with random weights and we set λ as 0.1 in all experiments.

Depth estimation. Monocular depth prediction [35, 6] is a

regression problem, which predicts the per-pixel real-world

distance from the camera imaging plane to the object cap-

tured by each pixel in a still image I. We use VNL proposed

by Yin et al. [35] as a baseline model. The pixel-level depth

prediction loss and the virtual normal loss are used to su-

pervise the network. The network outputs a predicted depth

map d̂ ∈ R
W×H×1. Therefore, the input channel of the per-

ceptual loss net equals to 1. As the ground-truth depth map

follows the same statistical distribution as the estimations,

the target and the estimation can be directly used as inputs to

the perceptual loss network. The network with virtual nor-

mal loss, as a strong baseline, minimizes the difference of

a manually defined geometry information between the pre-

diction and the ground truth, i.e., the direction of the normal

recovered with three samples. The perceptual loss can still

capture extra structured information when combined with

ℓvn.

Instance segmentation. Instance segmentation is one of

the most challenging computer vision tasks, as it requires

the precise per-pixel object detection and semantic segmen-

tation simultaneously. Recently, one stage methods achieve

promising performance [26, 2, 34], making the pipeline

more elegant and easier to implement. The mask and clas-

sification logits are predicted for each pixel in the feature

space.

We follow CondInst [26], a state-of-the-art one-stage

method, as a strong baseline. In the training procedure,

CondInst consists of a bounding box detection head and a

mask head. The detection head also includes a controller,

which is dynamically applied to the mask head for differ-

ent instances. In this way, it will produce single channel

segmentation masks for each instance in the training batch

with the shape of 1/4W × 1/4H . If there are n predicted in-

stances in the training batch, the input of the perceptual loss

network is then n × 1 × 1/4W × 1/4H . Similar to seman-

tic segmentation, the soft targets are generated by a teacher

network.

3.2. Devils in the Initialization

The initialization of the randomly-weighted network af-

fects the performance of the generic perceptual loss. As we

employ the structured predictions as the input to the per-

ceptual loss network and produce an embedding, an inap-

propriate initialization may lead to an unstable results. It

is important to guarantee that each layer is bounded by a

Lipschitz constant close to 1, so that the gradient generated

by the random network will not explode or vanish. Here

we investigate the gradient scales in the random network

and derive a robust initialization method by following [10].

For a dense prediction task, we have the prediction results

(e.g., segmentation map) Y′, and also its ground-truth or

soft targets Y. Our random-weight perceptual loss network

transforms Y′ and Y into two embeddings E′ and E. The

generic perceptual loss is computed as the discrepancy be-

tween E′ and E,

ℓr = ‖E′ −E‖22. (3)

Suppose that el is the response activation values related to

the corresponding k× k pixels in the convolution operation

with kernel size k. We have:

el = Wlyl + bl. (4)

Here, l is the index of a layer. yl is the input vector with

nl = k2cl elements, where cl is the input channel of this

layer. Wl is a dl-by-nl matrix, where d is the number of

random initialized filters in this layer. With a deep convo-

lutional network, we have yl = f(el−1), where f(·) is the

ReLU activation function. We also have cl = dl−l. If we

initialize wl with a symmetric distribution around zero and

bl = 0, then el has zero mean and has a symmetric distribu-

tion around zero. Following [10], we compute the variance

of the output embedding after L layers:

Var[eL] = Var[e1]

(

L
∏

l=2

1

2
nlVar[wl]

)

. (5)

The variance of the discrepancy is upper bounded by the

same factor:

Var[(e′L − eL)]

= Var[e′L] + Var[eL]− 2Cov[e′L, eL]

≤ Var[el] + Var[e′l])(

L
∏

l=2

1

2
nlVar[wl].

(6)

When L becomes extremely large, the product
∏L

l=2
1
2
nlVar[wl] vanishes or explodes if 1

2
nlVar[wl] 6= 1.

Therefore we initialize each layer using a zero-mean Gaus-

sian distribution with a standard deviation (std) of
√

2/nl

as in [10]. Before the optimization of the task network, the

correlation between Y and Y ′ is very small. Therefore,

the scale of the θ is small. In the training process, the

weights of the random network (W) are fixed, but Y ′

becomes closer to Y as the task network is optimized. Then

the covariance becomes close to the variance of the two

embeddings and this bound tends to zero.

5427



4. Experiments

In this section, we first investigate some interesting ques-

tions about the perceptual loss network, and then employ an

efficient and effective structure as the perceptual loss net-

work to show its ability in boosting performance in a few

dense prediction tasks, including semantic segmentation,

depth estimation and instance segmentation.

4.1. Discussions

We share some observations in exploring the capacity

of the random weight perceptual loss networks. We ask a

few questions including: Will the trained filters help the

perceptual loss in dense prediciton problems? How does

the depth/receptive field/multi-scale losses affect the per-

formance? How does the initialization affect the perfor-

mance? Discussions are base on semantic segmentation

task with Cityscapes [4] as the training set. PSPNet [38]

with Resent18 [11] as the backbone is used as a baseline

model, which is trained with the per-pixel cross-entropy

loss. The soft targets are generated by the PSPNet with

Resent101 [11] as the backbone. The training settings fol-

low the details in Section 4.2.1. The performance is eval-

uated on the validation set of Cityscapes with the mean of

Intersection over Union (mIoU) as the metric.

P Net R: mIoU (%) T: mIoU (%)

Non-VGG families

GoogleNet [25] 68.91 68.90
AlexNet [15] 69.80 69.87

MobileNetV2 [22] 69.98 70.01
ResNet18 [11] 70.16 70.14

VGG families

VGG16 [23] 70.68 70.71
VGG19 [23] 71.25 71.19

Table 1 – Results of the perceptual loss for semantic segmen-

tation with a few different networks. ‘R’ indicates that we ran-

domly weight the loss network. ‘T’ means that we assign the

network with the pretrained kernels from ImageNet classifica-

tion. The baseline model achieves 69.60% of mIoU.

4.1.1 Training Weights vs. Architecture

The pretrained filters were considered the key to the success

of the perceptual loss. Apart from the visualization results

on image super-resolution in the previous pilot experiment,

we show quantitative analysis on structured output learning

tasks in this section.

Taking the semantic segmentation task as an example,

we use the same semantic segmentation network and train-

ing settings in our experiments, and only change the percep-

tual loss networks. We assign the weights of the perceptual

Percep. network Structure R: mIoU (%) T: mIoU (%)

N/A 1, 1, 1, 1, 1 70.88± 0.03 N/A

VGG11 1, 1, 2, 2, 2 70.18± 0.11 70.21± 0.10

VGG13 2, 2, 2, 2, 2 70.64± 0.14 70.62± 0.12

VGG16 2, 2, 3, 3, 3 70.68± 0.03 70.71± 0.02

VGG19 2, 2, 4, 4, 4 71.25± 0.04 71.19± 0.07

N/A 3, 3, 4, 4, 4 70.89± 0.23 N/A

Table 2 – The perceptual loss with variants of VGG as the per-

ceptual loss network (kernel size: 3). We vary the number of

convolutional layers in each block. ‘R’ means random initial-

ization. ‘T’ means initialization with pre-trained weights

loss network with pretrained kernels to see if the trained fil-

ters can help improve the performance. Also, we choose

different network structures as the perceptual loss network,

including VGG families [23], ResNet18 [11], GoogleNet

[25], AlexNet [15] and MobileNetV2 [22]. The results are

shown in Table 1. ‘R’ means that the weighs of the percep-

tual loss network are randomly initialized following Sec-

tion 3.2. ‘T’ means that we employ the per-trained weights

on the ImageNet to initialize the perceptual loss network,

and the dense prediction output is transferred from C chan-

nels to 3 using a 1 × 1 convolutional layer to fit the pre-

trained network structure.

From the table, we can see that training with random

weights and the pre-trained weights show almost no differ-

ence on improvements (difference around 0.02% to 0.06%

), but different network structures lead to a larger perfor-

mance gap (varies from 68.90% to 71.25%).

This indicates that , in this structured output learning

task, the trained filters for ImageNet is not the key to the

success of perceptual loss. Meanwhile, the network archi-

tecture of the perceptual loss network affects the ability of

capturing the structured information.

Interestingly, we observe that the VGG families perform

better than other structures. VGG families have been shown

unique in a few previous works. Researchers find that

in style transfer, the VGG structure can work better than

ResNet [12, 20], and explain the reason as the VGGNet is

more robust than the ResNet. Su et al. [24] observe that

VGG families exhibit high adversarial transfer-ability than

other structures. However, the theoretical explanation of

why VGG structures show a better performance is still not

fully investigated in literature.

An independent recent work [31] for depth estimation

also shows interesting results by employing a convolutional

network to map the structured output into an embedding

space. They argue that if the perceptual loss network are

trained with some highly related tasks, the performance is

improved. So they require additional annotations and try to

design an efficient network structure as the perceptual loss

network. Different from their work, we focus on a more

general discussion on the perceptual loss, and verify that

the network architecture plays a more important role than
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pretrained weights. Although training the perceptual loss

network on highly relative tasks with additional informa-

tion may further improve the performance, it is not generic

to be applied to various tasks and requires extra annotation

effort.

4.1.2 Design of the Perceptual Loss Network

In the previous section, we have shown that the network ar-

chitecture plays a more important role in the perceptual loss.

As our method does not require pre-training, it is convenient

to investigate the performance with various network struc-

tures. Here we explore different designs for the randomized

perceptual loss network. All the experiments are conducted

for three times with random initialization, and we report the

mean and derivation for each setting.

Impact of depth. Conventional VGG families have vari-

ants with different numbers of layers, such as the most pop-

ular VGG16 and VGG19. These VGG families contains

five convolutional blocks, and a max pooling layer at the

end of each block. For each block, the feature dimension is

64, 128, 256, 512, 512. We change the number of convolu-

tions in each block, as shown in the ‘Structure’ in Table 2.

For the typical structures in original VGG families, we also

report the results with pretrained weight on ImageNet as

in Section 4.1.1. All the convolutions’ kernerl size is 3 as

in VGGNet. From Table 2, we can find a consistent con-

clusion that pretrained kernels do not help to improve the

performance, while the network structures exhibit a larger

impact. With the kernel size of 3, VGG19 is the most ef-

fective perceptual loss network. Besides, the structure of

‘1, 1, 1, 1, 1’ (only 1 conv. layer for each block) also show

good performance. As the training memory and the training

time may increase as the perceptual loss network becomes

deeper, the structure of ‘1, 1, 1, 1, 1’ among these settings

is the best choice considering both effectiveness and effi-

ciency.

Impact of the receptive field. The randomly-weighted

network can capture the structured correlation among lo-

cal features, as the convolution operation has the ability

to exploit the information at multiple scales of receptive

fields. We conduct experiments to see if a larger receptive

field can help the randomly weighted network to better cap-

ture the structured information. We employ the structure of

‘1, 1, 1, 1, 1’ as the basic perceptual loss network and adjust

the kernel size in each convolutional layer to change the re-

ceptive field. The results are shown in Table 3. We can see

that a larger kernel size might lead to slightly better perfor-

mance on average (from 70.71% to 71.16%). Note that the

derivation of the results increases (from 0.02% to 0.12%).

We plot the pixel accuracy and mIoU on the validation

dataset w.r.t. the training iterations in Figure 2. Clearly

the perception loss helps the training and almost during the

Training steps
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Figure 2 – Pixel accuracy and mIoU on the validation set dur-

ing training on the Pascal VOC dataset. ‘Base’ means a se-

mantic segmentation network of PSPRes18 without a percep-

tual loss. ‘Ours’ represents the baseline network trained with a

randomized perceptual loss.

Kernel size mIoU (%)

1 70.71± 0.020
3 70.88± 0.025
5 70.93± 0.191
7 71.16± 0.122

Table 3 – The perceptual loss with different kernel sizes in

the perceptual loss network with five layers. With a larger re-

ceptive field, the perceptual loss works slightly better, with in-

creased computation in training.

entire training course, we observe improved performance

when the perception loss is used.

Impact of multi-level losses. A few previous works pay

attention to aggregate multi-level losses for the perceptual

loss. We also conduct experiments to see if combining

multi-level losses is helpful in our method. We employ

the same baseline which achieves 69.60% of mIoU in se-

mantic segmentation on Cityscapes and uses structure of

‘1, 1, 1, 1, 1’ as the perceptual loss network. Adding the per-

ceptual loss at the final layer of the random network alone

can achieve 70.88% of mIoU. If we add five perceptual
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loss from the output of each convolutional block with equal

loss weight, it slightly harms the performance and achieve

70.73% of mIoU.

If we adjust the weights on the losses following [32] (i.e.,

using scales of ‘1/16, 1/8, 1/4, 1/2, 1’ respectively), the result

is improved slightly and achieves 70.93% of mIoU.

Combining multi-level of the losses may lead to slightly

better accuracy with more hyper-parameters. Therefore,

we only use the final layer as the generic perceptual loss in

other tasks.

4.1.3 Initialization

In this section, we show the importance of initialization that

we propose in Section 3.2. We initialize the perceptual loss

network with the Gaussian distributions, the uniform dis-

tributions, the Xavier-normal initializer and our developed

initialization methods in Section 3.2, and compare their re-

sults in . Table 4. We can see that experimental results are

consistent with theoretical analysis.

4.2. Dense Prediction Results

We show that the generic perceptual loss can work well

in different tasks by taking the structured information into

account during training. The perceptual loss network in this

section refer to the VGG structure with 16 convolutional

layers and 5 pooling layers, and the number of the input

channel equals to the number of the task output channel.

In semantic segmentation, the output channel equals to the

number of class. In depth estimation and instance segmen-

tation, the output channel is 1. The weight of the perceptual

loss is set to 0.1.

4.2.1 Semantic Segmentation

Experiment settings. Experiments are conducted on

three benchmarks, Cityscapes [4], Pascal VOC [5] and

ADE20K [39]. On Cityscapes/Pascal VOC/ADE20K, the

segmentation networks are trained by stochastic gradient

descent (SGD) for 40K/20K/80K epochs with 8/16/16 train-

ing samples in the mini-batch, respectively. The learn-

ing rate is initialized as 0.01 and is multiplied by (1 −
iter

maxiter
)0.9. We randomly crop the images into 769 × 769,

512×512, 512×512 on these three datasets. Random scal-

ing and random flipping are applied during training.

Experimental results. We employ three popular segmen-

tation models with different model sizes, including a PSP-

Net [38] with ResNet18 as backbone (PSPRes18), a light-

weight HRnet [30] with 18 layers (HRNetw18s) and the

DeepLabV3+ [3] model with ResNet50 as the backbone.

The corresponding soft targets are generated by the same

architecture, but the backbone is replaced with ResNet101

or HRNet with 48 layers. The baseline models are trained

Init. scheme mIoU (%)

N(0, 1) −

N(0, 0.1) 45.6
N(0, 0.01) 68.5
U[−1, 1] −

U[−0.1, 0.1] 51.7
U[−0.01, 0.01] 69.2
Xavier-normal 69.8

Ours 71.3

Table 4 – Results with a few different initialization schemes.

N(µ, σ) represents the Gaussian distributions with mean of µ

and a stander deviation of σ. U[a, b] represent a uniform dis-

tribution. − means that the network fails to converge.

with the cross-entropy loss, and we further add the percep-

tual loss initialized with random weights.

Table 6 reports the results. We can see that inclusion

of the randomized perceptual loss can improve the perfor-

mance over different datasets from 0.21% to 1.6%, and it

also works with different architectures. If the unary term

(pixel-wise loss) works sufficiently well, then additional

pair-wise or other high-order loss becomes less useful.

4.2.2 Depth Estimation

Depth estimation is a typical per-pixel regression problem.

We employ a plain ResNet50 as the backbone for depth es-

timation. The experiments are conducted on the NYUDV2

dataset [21]. The input images are cropped into the resolu-

tion of 385 × 385. The base learning rate is set to 0.0001.

We train our model using SGD with a mini-batch size of

8 for 30 epochs. We employ a pixel-wise weighted cross-

entropy [1] and the vitural normal loss [35].

Predictions are evaluated by the relative error. The re-

sults are shown in Table 7. Although the VNL have already

considered the geometry information to some extent, the

randomized perceptual loss network can still show further

improvement.

4.2.3 Instance Segmentation

For instance segmentation, we apply the generic percep-

tual loss based on the open source framework AdelaiDet2.

We employ the state-of-the-art method CondInst [26] as a

strong baseline. ResNet50 is used as the backbone net-

work for CondInst, and experiments are conducted on the

MS COCO dataset.

Following [26], models are trained with SGD on 4 V100

GPUs for 90K iterations with the initial learning rate being

0.01 and a mini-batch of 8 images. Other training details

the same as [26]. The learning rate is reduced by a factor

of 10 at iteration 60K and 80K, respectively. Weight decay

2https://git.io/AdelaiDet
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Method Percep.
Box Mask

AP AP50 AP75 AP AP50 AP75

CondInst [26] 36.91 55.29 39.94 33.42 53.00 35.56

CondInst [26] X 37.44 55.69 40.51 33.69 53.33 35.82

Table 5 – Results of the generic perceptual loss for instance segmentation. Both the detection results (Box AP (%)) and the segmentation

results (Mask AP (%)) are improved by applying the generic perceptual loss.

Network Param. Percep. mIoU

Cityscapes

PSPRes18 [38] 22.9M 69.6%

PSPRes18 [38] 22.9M X 71.2% ( ↑1.6%)

HRNetw18s [32] 3.76M 73.61%

HRNetw18s [32] 3.76M X 74.17% ( ↑0.56%)

DeepLabV3+ [3] 39.3M 80.09 %

DeepLabV3+ [3] 39.3M X 80.70% ( ↑0.61%)

ADE20K

PSPRes18 [38] 23.0M 33.8%

PSPRes18 [38] 23.0M X 34.2% ( ↑0.4%)

HRNetw18s [32] 3.79M 31.38%

HRNetw18s [32] 3.79M X 32.26% ( ↑0.88%)

DeepLabV3+ [3] 39.4M 42.72%

DeepLabV3+ [3] 39.4M X 42.95% ( ↑0.23%)

PascalVOC

PSPRes18 [38] 22.9M 49.1%

PSPRes18 [38] 22.9M X 50.31% ( ↑1.21%)

HRNetw18s [32] 3.76M 65.20%

HRNetw18s [32] 3.76M X 65.41% ( ↑0.21%)

DeepLabV3+ [3] 39.3M 75.93%

DeepLabV3+ [3] 39.3M X 76.79% ( ↑0.86%)

Table 6 – Results of semantic segmentation on three datasets.

Xmeans that we employ the perceptual loss during training.

The perceptual loss consistently improves the baseline across

different datasets with different network structures.

Methods WCE [1] VNL [35] Percep. Rel. (%)

a X 14.5

b X X 14.0

c X X 13.6

d X X X 13.2

Table 7 – Depth estimation results. The generic perceptual loss

complements the previous virtual normal loss [35].

and momentum are set to 0.0001 and 0.9, respectively. The

experiment results are reported in Table 5. As bounding box

detection is naturally a byproduct of CondInst, we compare

results on both detection and instance segmentation tasks.

With the generic perceptual loss, the performance of both

tasks are improved on all metrics. This experiment again

demonstrates that the proposed loss can benefit the object

detection task, when a mask branch as in CondInst is added

to an one-stage object detection method.

5. Conclusion

In this work, we have extended the widely used per-

ceptual loss in image synthesis tasks to structured output

learning tasks, and shows its usefulness. We argue that the

randomly-weighted network can capture vital information

among different spatial locations of the structural predic-

tions. On a few image understanding tasks, including se-

mantic segmentation, monocular depth estimation and in-

stance segmentation, we demonstrate that the inclusion of

this simple perceptual loss consistently improves accuracy.

The proposed loss can be effortlessly applied to many dense

prediction tasks in computer vision. The only cost is the

extra computation overhead during training and inference

complexity remains the same. Considering its simplicity

and promising performance gain, we wish to see a wide ap-

plication of this generic perceptual loss in computer vision.
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