
Goal-Oriented Gaze Estimation for Zero-Shot Learning

Yang Liu∗ 1, Lei Zhou∗ 1, Xiao Bai†,1, Yifei Huang2, Lin Gu3,2, Jun Zhou4, Tatsuya Harada2,3

1School of Computer Science and Engineering, State Key Laboratory of Software Development

Environment, Jiangxi Research Institute, Beihang University, Beijing, China,
2The University of Tokyo, 3RIKEN AIP, Tokyo, Japan, 4Griffith University, Australia

Abstract

Zero-shot learning (ZSL) aims to recognize novel classes

by transferring semantic knowledge from seen classes to

unseen classes. Since semantic knowledge is built on at-

tributes shared between different classes, which are highly

local, strong prior for localization of object attribute is ben-

eficial for visual-semantic embedding. Interestingly, when

recognizing unseen images, human would also automati-

cally gaze at regions with certain semantic clue. There-

fore, we introduce a novel goal-oriented gaze estimation

module (GEM) to improve the discriminative attribute lo-

calization based on the class-level attributes for ZSL. We

aim to predict the actual human gaze location to get the vi-

sual attention regions for recognizing a novel object guided

by attribute description. Specifically, the task-dependent

attention is learned with the goal-oriented GEM, and the

global image features are simultaneously optimized with

the regression of local attribute features. Experiments on

three ZSL benchmarks, i.e., CUB, SUN and AWA2, show

the superiority or competitiveness of our proposed method

against the state-of-the-art ZSL methods. The ablation

analysis on real gaze data CUB-VWSW also validates the

benefits and accuracy of our gaze estimation module. This

work implies the promising benefits of collecting human

gaze dataset and automatic gaze estimation algorithms on

high-level computer vision tasks. The code is available at

https://github.com/osierboy/GEM-ZSL.

1. Introduction

With prior knowledge on seen classes, humans have a re-

markable ability to recognize novel classes using shared and

distinct attributes of both seen and unseen classes. Inspired

by this cognitive competence, zero-shot learning (ZSL) was

proposed as a challenging image classification setting to

mimic the human cognitive process [32]. Given the seman-

*Equal contribution.
†Corresponding author: Xiao Bai (baixiao@buaa.edu.cn).

tic descriptions of both seen and unseen classes but only the

training images of seen classes, ZSL aims to classify test

images of unseen classes.

Based on the classes that a model sees in the test phase,

ZSL can be categorized into conventional or generalized

setting. In conventional ZSL, the test images belong only

to unseen classes. For the more practical and challenging

generalized ZSL (GZSL) setting, the test images may be-

long to both seen and unseen classes. The semantic de-

scriptions (attributes) are shared information between seen

and unseen classes, which ensure the knowledge transfer-

ring. Early works [3, 4, 14, 40, 45] on ZSL build embed-

ding between seen classes and their attributes. Then un-

seen classes are classified by the nearest neighbor search

in the embedding space. These embedding based meth-

ods usually have a large bias towards seen classes under

the GZSL setting, since the embedding is learned only by

seen classes samples. To solve this problem, by leveraging

the generative models [17, 30, 29], many feature generation

approaches [31, 57, 62, 46, 47, 37] have been proposed to

generate unseen classes, than convert ZSL into a conven-

tional classification problem.

Most of the existing embedding or feature generation

based methods extract global features from pre-trained or

end-to-end trainable models. However, only the global im-

age features cannot effectively represent the fine-grained in-

formation between seen and unseen images, which is im-

portant for ZSL. More recently, attention based end-to-end

models [59, 68, 67, 60] have tried to exploit the semantic

vector as guidance to learn more discriminative part fea-

tures. However, they simply learn regions embedding of

different attribute features but neglect the importance of dis-

criminative attribute localization [50, 61].

Very interestingly, when facing an unseen object with the

guidance of an attribute description, humans are capable of

paying attention to parts of the object with discriminative

attributes, which is the gaze behavior. Karessli et al. [27]

proved that gaze data is useful in ZSL since they provide

an effective prior that can naturally capture the localized

discriminative attribute. Inspired by the human gaze mech-
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Figure 1. Illustration of the proposed method. Our GEM-ZSL is an end-to-end trainable model with two main parts, a gaze estimation

module and a plain ZSL backbone. For the gaze estimation module, the projected word vector of each attribute by Word Encoder is first

utilized as query to guide the localized attribute learning. The ground truth attributes ϕ(y) of specific seen class are simultaneously used as

supervision in the Attribute Localization module. Then, an Attention Transition module is utilized to calibrate the attention regions by

real gaze data with a designed gaze loss. Finally, the plain ZSL backbone learns the global image feature which is jointly optimized with

the localized attribute, and the backbone accomplishes zero-shot recognition in a Cosine Metric Space.

anism, we propose a novel goal-oriented Gaze Estimation

Method for Zero-Shot Learning (GEM-ZSL). As shown in

Figure 1, we first design an attribute description-oriented

gaze estimation module (GEM) to learn different attribute

regions. The GEM consists of three sub-modules, atten-

tion module (AM), attention transition (AT) module and at-

tribute localization (AL) module. The AM is based on bi-

linear pooling which is widely used in the visual question

answering task [15, 64]. We use the projected word vector

of attributes as query to guide the learning process for the

localization of the discriminative attribute. The ground truth

attributes of specific seen class are simultaneously used as

supervision by the mean squared error (MSE) of the AL

module. Then an AT module is utilized to calibrate the at-

tention regions by real gaze data (if available) with a de-

signed gaze loss. In this way, we can learn the part feature

with localized discriminative attribute that humans subcon-

sciously pay attention to. Finally, the joint global features

learned by an image encoder (IE), the local features and the

class semantic embedding are used to learn a cosine met-

ric space, which helps to reduce the intra-class variance and

improve the recognition of unseen classes when compared

to dot product similarity.

The contribution of this paper can be summarized as fol-

lows: (1) We propose a novel goal-oriented gaze estimation

method to mimic the human cognitive process for recog-

nizing unseen classes. With the guidance of attribute de-

scription, the proposed method can predict the human gaze

that can be transformed to attribute attention for zero-shot

recognition. (2) We demonstrate the effectiveness of our

method for improving the localization of discriminative at-

tributes, which further enhances the discrimination of the

global features for ZSL task. (3) Comprehensive experi-

ments over three ZSL benchmarks, i.e., CUB, AWA2 and

SUN, show that our method can achieve superior or compet-

itive performance compared with the state-of-the-art ZSL

methods. In addition, the quantitative and qualitative re-

sults on gaze estimation experiment also validate the effec-

tiveness of our GEM.

2. Related Works

2.1. Early ZSL

Early ZSL methods [3, 14, 45, 4, 55, 58, 65] focus on

learning a mapping between visual and semantic spaces to

transfer semantic knowledge from seen classes to unseen

classes. However, these methods usually achieve relatively

unsatisfied results, since they adopt global features or ex-

ploit shallow models. In more recent, end-to-end deep mod-

els [40, 35, 48, 36] achieve better performance. These meth-

ods constrain loss on the attributes of seen classes to allow

learning of more discriminative global features. However,

they neglect to focus on the parts of features which are in-

trinsically discriminative for ZSL.

2.2. Partbased ZSL

More relevant to this work is the recently part-based

ZSL methods [24, 59, 68, 60, 61] that utilize attribute de-

scriptions as guidance to learn discriminative part features.

These methods have achieved remarkable improvements on
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ZSL. In order to improve the GZSL, APN [61] applies cal-

ibrated stacking (CS) [9] in test phase to reduce the seen

class scores by a constant factor, which can significantly

improve the GZSL performance. RGEN [60] designs a

balance loss by pursuing the maximum response consis-

tency among seen and unseen outputs in the training phase,

which requires the attributes of unseen classes during train-

ing. Compared with these methods, our GEM-ZSL im-

proves the localization of discriminative attributes by goal-

oriented gaze estimation for the first time. In addition, only

the attributes of seen classes are used in the model training.

2.3. Gaze Estimation

Since human gaze directly represents attention and thus

the important spatial regions, many works try to estimate

where humans will look given an image. Earlier works [19,

1, 11, 2] try to model saliency in the images that are likely

to attract human attention. These methods typically use

feature integration theory [51] to fuse various bottom-up

cues. More recently researchers begin to use deep learn-

ing models for the estimation of human gaze [26, 41, 53].

However, these models only consider the bottom-up infor-

mation which is not suitable for ZSL since they cannot fo-

cus on the fine-grained discriminative regions. Some newly

proposed methods [22, 21] leverage top-down task-specific

cues for estimating human gaze. However these methods

are typically designed for some specific tasks and need large

amount of training data. In this work, to solve the ZSL task,

we exploit the attribute description as guidance to design a

novel goal-oriented gaze estimation module.

3. The Proposed Method

In this section, we first define the problem setting, no-

tations and then present the details of each module of our

method.

3.1. Problem Setting and Notations

ZSL aims to recognize novel classes by transferring se-

mantic knowledge from seen classes (YS) to unseen classes

(YU ). The image spaces of seen and unseen classes can

be defined as X = XS ∪ XU . S = {(x, y, ϕ(y))|x ∈
XS , y ∈ YS , ϕ(y) ∈ φS} denotes the training set, where

x is an image in XS , y is its class label which is avail-

able during training, and ϕ(y) ∈ R
K is the class seman-

tic embedding, i.e., a class-level attribute vector annotated

with K different visual attributes. The unseen testing set

is U = {(xu, u, ϕ(u))|xu ∈ XU , u ∈ YU , ϕ(u) ∈ φU},

where u denote unseen class labels. The seen classes and

unseen classes are disjoint, i.e., YS ∩ YU = ∅. Here,

φ = φS ∪ φU is used to transfer information between seen

and unseen classes. In the conventional ZSL, the task is

to predict the label of images from unseen classes , i.e.,

XU → YU . However, in more realistic and challenging

setup of GZSL, the aim is to predict images from both seen

and unseen classes, i.e., X → YU ∪ YS .

As shown in Figure 1, our end-to-end trained model con-

sists of two parts, Gaze Estimation Module (GEM) and a

plain ZSL backbone. Specifically, GEM consists of Word

Encoder (WE) module, Attention Module (AM), Attribute

Localization (AL) module and Attention Transition (AT)

module. The plain ZSL backbone is an Image Encoder (IE)

with a Cosine Metric Space for the nearest neighbor search.

Firstly , IE is used to extract the global feature of the image.

Then, GEM learns the part feature with localized discrim-

inative attribute that humans subconsciously pay attention

to. Finally, the joint global and local feature and the class

semantic embedding are used to learn a cosine metric space.

3.2. Cosine Metric Learning

Visual feature extraction. We leverage the Image En-

coder (IE) implemented by a convolutional neural network

to map the seen class image x into a feature representation

f(x) ∈ R
H×W×C, where H, W and C are the height, width

and channel of the feature, respectively. Then, global aver-

age pooling is applied over the H and W to learn a global

discriminative feature h(x) ∈ R
C.

Cosine similarity for classification. We use a linear

layer V ∈ R
C×K to map the visual feature h(x) into the se-

mantic space. Different from previous work that [61] uses

dot product to compute class logits of the projected visual

feature and every class embedding, we consider the cosine

similarity [16, 38] that can bound and reduce the variance

of the neurons and thus result in models with better gener-

alization capability [33]. The output of the cosine metric is

scaled similarity score of the projected visual feature h(x)
and y-th class semantic embedding ϕ(y). Then we define

our classification score function as

p(y|x) =
exp(σ cos(h(x)TV, ϕ(y)))

∑

ŷ∈YS exp(σ cos(h(x)TV, ϕ(ŷ)))
(1)

where σ is the scaling factor. The classification loss LCLS

is defined as

LCLS = − log
exp(σ cos(h(x)TV, ϕ(y)))

∑

ŷ∈YS exp(σ cos(h(x)TV, ϕ(ŷ)))
(2)

We find empirically that using the image feature and

class semantic embedding normalization in the cosine sim-

ilarity helps to reduce the intra-class variance and improve

the accuracy of unseen classes when compared to dot prod-

uct similarity.

3.3. Gaze Estimation Module

Although cosine similarity shows better performance

than the dot product similarity, the global features learned

from cosine-based image encoder may still be biased to seen
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Figure 2. The structure of attention module and attention transi-

tion module. It is based on the bilinear pooling mechanism. The

feature map (key) and word vector (query) are shown as the shape

of their tensor, i.e. H × W × C for key and K × C for query. ⊗ de-

notes matrix multiplication. The softmax operation is performed

on each row.

classes and weaken the discriminative attributes informa-

tion. We propose a gaze estimation module (GEM) to learn

the part feature with localized discriminative attribute that

humans subconsciously pay attention to.

Word encoder. To learn local features, the attribute se-

mantic vectors e = {ek}
K
k=1

are utilized to guide the learn-

ing of the localized discriminative attribute, where ek de-

notes the average GloVe [43] representations of words in

the k-th attribute, e.g., “brown eye” and “plain head”. Then,

a single hidden layer MLP is used to convert the attribute

word vector e into visual attribute feature E(e) ∈ R
K×C.

Attention module. To acquire part features with lo-

calized discriminative attribute, we design an attribute

descriptions-oriented attention module to learn the differ-

ent attribute regions. As shown in Figure 2, AM is based on

bilinear pooling mechanism which is widely used in the vi-

sual question answering task [15, 64]. We use the projected

word vector of attributes E(e) as a query to guide learn-

ing localized discriminative attribute. The inputs of AM are

query E(e) ∈ R
K×C and key f(x) ∈ R

H×W×C. Firstly, AM

reshapes the dimension of key into HW × C and transposes

it into C × HW. Then, AM performs matrix multiplication

and softmax operation on query and key. The k-th attribute

query captures related attribute part of image and produces

A(x)k that contains the k-th localized attribute information.

After transposing and reshaping the feature, the attribute

feature map A(x) ∈ R
H×W×K is acquired. The localized

discriminative attribute is expected to concentrate to a peak

region rather than disperses on other locations. We use Dis-
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Figure 3. The predicted gaze map g(x) and human gaze G(x)
matching method. We utilize the Hungarian algorithm which cal-

culates the l1 distance between g(x) and G(x), and matches them

one-to-one.

tance loss [66] on each attention map A(x)k to constrain

the discriminative attribute localization, such that

LDis =

K
∑

k=1

H
∑

i=1

W
∑

j=1

A(x)ki,j(
∥

∥i− ĩ
∥

∥

2

+
∥

∥j − j̃
∥

∥

2

) (3)

where (̃i, j̃) = argmaxi,j A(x)
k denotes the coordinate for

the maximum value in A(x)k. We can learn a more concen-

trated attention map by this objective function.

Attribute localization. We predict the location of the

attributes response value a(x) by global max pooling over

the H and W on A(x). Then a(x) is optimized by the Mean

Square Error (MSE) with the supervision of the ground truth

attributes ϕ(y)

LMSE = ‖a(x)− ϕ(y)‖2
2

(4)

where y is the ground truth class. We make the local fea-

tures correspond to discriminative attributes by minimizing

the MSE loss, which improves the discriminative attribute

localization.

Attention transition. To acquire the part feature with

discriminative attribute of human gaze, we propose an AT

module to convert attribute feature map A(x) ∈ R
H×W×K

to gaze map g(x) ∈ R
H×W×D, where D represents the num-

ber of gaze heatmaps. We have true human gaze G(x) ∈
R

H×W×D of image x to enable supervised learning. The

AT is implemented by a learnable 1× 1 convolution opera-

tion and a sigmoid function, which fuses different attributes

information and converts them into a region of human at-

tention. To optimize the gaze map that incorporates the dis-

criminative attribute regions, we propose a new gaze loss.
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Firstly, we use the Hungarian algorithm (Figure 3) to match

G(x) and g(x), where the matched gaze map and its ground

truth are termed g̃(x) and G̃(x), respectively. Then we use

a binary cross-entropy loss across all the pixels as

LGaze = −
1

D × H × W

D
∑

d=1

H
∑

i=1

W
∑

j=1

{G̃(x)di,j log(g̃(x)
d
i,j)

+(1− G̃(x)di,j) log(1− g̃(x)di,j)}

(5)

Our full model optimizes the CNN backbone and the

overall loss of the proposed model is defined as

L = LCLS + λ1LDis + λ2LMSE + λ3LGaze (6)

where λ1, λ2 and λ3 are hyper-parameters for Distance loss,

Mean Square Error loss and Gaze loss, respectively. Partic-

ularly, λ3 = 0 when gaze ground truth is not available. The

joint training improves the representation of the discrimina-

tive attribute that is critical for zero-shot generalization.

3.4. ZeroShot Recognition

After training of the full model, we use the learned co-

sine metric space for zero-shot recognition. The test im-

age x is embedded to the cosine metric space by the visual-

semantic embedding layer, and then the classifier searches

for the class embedding ϕ(û) with the highest compatibility

via

û = argmax
u∈YU

cos(h(x)TV, ϕ(u)) (7)

For the GZSL setting, the test images may belong to both

seen and unseen classes. Since there are only seen classes

during training phase, the predicted results of GZSL will

have a large bias towards seen classes [9]. To mitigate this

problem, we apply calibrated stacking (CS) [9] to reduce

the seen class scores by a calibration factor γ. Specifically,

the GZSL classifier is defined as

ŷ = argmax
ỹ∈YU∪YS

(σ cos(h(x)TV, ϕ(ỹ))− γI[ỹ ∈ YS ]) (8)

where I = 1 if ỹ is a seen class and 0 otherwise.

3.5. Implementation Details

The proposed GEM-ZSL is an end-to-end trainable

model. The Image Encoder is ResNet101 [20] pretrained

on ImageNet [12]. The SGD [7] optimizer is adopted in the

model training. The momentum is set to 0.9, and the weight

decay is 10−5. The learning rate is 10−3. We set λ1 to 0.2
and λ2 to 1.0. When we have gaze attention, λ3 is set to 0.1.

The factor γ is set to 3.5 for AWA2 and 0.7 for CUB and

SUN. We use an episode-based training method to sample

M categories and N images for each category in a mini-

batch, we iterate 300 batches for each epoch, and train the

model 20 epochs. We set M = 16 and N = 2 for all three

datasets.

4. Experiments

We evaluated our framework on three widely used zero-

shot learning benchmark datasets, including CUB-200-

2011 (CUB) [54], SUN attribute (SUN) [42] and Animals

with Attributes 2 (AWA2) [56]. The pre-defined attributes

on each dataset were used as the semantic descriptors.

Moreover, we adopted the Proposed Split (PS) [56] to divide

all classes into seen and unseen classes on each dataset.

The performance of ZSL is evaluated by average per-

class Top-1 (T1) accuracy. In GZSL, since the test set is

composed of seen and unseen images, the Top-1 accuracy

evaluated respectively on seen classes, denoted as S, and

unseen classes, denoted as U. Their harmonic mean, defined

as H = (2× S × U)/(S + U) [56], are used to evaluate the

performance of GZSL.

4.1. Comparison with the StateoftheArt

We selected recent state-of-the-art ZSL methods

for comparison, which include methods without end-

to-end training such as PSR [5], RN [49], SP-

AEN [10], IIR [8], TCN [25], E-PGN [63], DA-

ZLE [23], f-CLSWGAN [57], cycle-CLSWGAN [13],

CADA-VAE [46], OCD-CVAE [28], RFF-GZSL [18],

IZF [47], and LsrGAN [52], where the last seven methods

are feature generation based models, and end-to-end meth-

ods QFSL [48], LDF [34], SGMA [68], AREN [59], LF-

GAA [36], DVBE [39], RGEN [60], and APN [61].

Table 1 shows the results of different methods on three

datasets. Our GEM-ZSL achieves competitive performance

compared with the state-of-the-art methods. On CUB

dataset, GEM-ZSL outperforms all the compared methods

with a large margin for both ZSL and GZSL. Since CUB is

a more challenging fine-grained dataset which requires lo-

cal discriminative attributes, the results prove the effective-

ness of our localized attribute learning model. For AWA2

dataset, our GEM-ZSL can also achieve competitive result

which is only slightly lower than RGEN. However, the bal-

ance loss of RGEN requires the attributes of unseen classes

during training which is not used in our GEM-ZSL. Without

the balance loss, the harmonic mean for RGEN on AWA2

will dramatically decrease to 14.7%. On SUN dataset, the

feature generation based model significantly outperforms

the other methods. As SUN dataset contains more than

700 categories, the generative model can bring more fea-

tures for generalization to unseen classes. Compared with

the other non-generation based methods, the performance

of our GEM-ZSL is competitive.

4.2. Ablation Study

Component analysis. We conducted ablation exper-

iments to verify the effectiveness of the proposed mod-

ules. Table 2 shows the influence of each model compo-
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Table 1. Results (%) of the state-of-the-art ZSL and GZSL. The first part is non end-to-end methods, the second part is feature generation

methods and the third part is end-to-end methods. The best and the second best results are marked in red and blue, respectively.

Methods

CUB SUN AWA2

ZSL GZSL ZSL GZSL ZSL GZSL

T1 U S H T1 U S H T1 U S H

PSR(CVPR’18) [5] 56.0 24.6 54.3 33.9 61.4 20.8 37.2 26.7 63.8 20.7 73.8 32.3

RN(CVPR’18) [49] 55.6 38.1 61.1 47.0 - - - - 64.2 30.0 93.4 45.3

SP-AEN(CVPR’18) [10] 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3 - - - -

IIR(ICCV’19) [8] 63.8 55.8 52.3 53.0 63.5 47.9 30.4 36.8 67.9 48.5 83.2 61.3

TCN(ICCV’19) [25] 59.5 52.6 52.0 52.3 61.5 31.2 37.3 34.0 71.2 61.2 65.8 63.4

E-PGN(CVPR’20) [63] 72.4 52.0 61.1 56.2 - - - - 73.4 52.6 83.5 64.6

DAZLE(CVPR’20) [23] 65.9 56.7 59.6 58.1 - 52.3 24.3 33.2 - 60.3 75.7 67.1

f-CLSWGAN(CVPR’18) [57] 57.3 43.7 57.7 49.7 60.8 42.6 36.6 39.4 - - - -

cycle-CLSWGAN(ECCV’18) [13] 58.4 45.7 61.0 52.3 60.0 49.4 33.6 40.0 - - - -

CADA-VAE(CVPR’19) [46] - 51.6 53.5 52.4 - 47.2 35.7 40.6 - 55.8 75.0 63.9

OCD-CVAE(CVPR’20) [28] 60.3 44.8 59.9 51.3 63.5 44.8 42.9 43.8 71.3 59.5 73.4 65.7

RFF-GZSL(1-NN)(CVPR’20) [18] - 50.6 79.1 61.7 - 56.6 42.8 48.7 - - - -

IZF(ECCV’20) [47] 67.1 52.7 68.0 59.4 68.4 52.7 57.0 54.8 74.5 60.6 77.5 68.0

LsrGAN(ECCV’20) [52] 60.3 48.1 59.1 53.0 62.5 44.8 37.7 40.9 - - - -

QFSL(CVPR’18) [48] 58.8 33.3 48.1 39.4 56.2 30.9 18.5 23.1 63.5 52.1 72.8 60.7

LDF(CVPR’18) [34] 67.5 26.4 81.6 39.9 - - - - - - - -

SGMA(NeurIPS’19) [68] 71.0 36.7 71.3 48.5 - - - - - - - -

AREN(CVPR’19) [59] 71.8 63.2 69.0 66.0 60.6 40.3 32.3 35.9 67.9 54.7 79.1 64.7

LFGAA(ICCV’19) [36] 67.6 36.2 80.9 50.0 61.5 18.5 40.0 25.3 68.1 27.0 93.4 41.9

DVBE(CVPR’20) [39] - 64.4 73.2 68.5 - 44.1 41.6 42.8 - 62.7 77.5 69.4

RGEN(ECCV’20) [60] 76.1 60.0 73.5 66.1 63.8 44.0 31.7 36.8 73.6 67.1 76.5 71.5

APN(NeurIPS’20) [61] 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 56.5 78.0 65.5

GEM-ZSL(Ours) 77.8 64.8 77.1 70.4 62.8 38.1 35.7 36.9 67.3 64.8 77.5 70.6

Table 2. Results (%) of ZSL and GZSL ablation study on CUB,

SUN and AWA2. The baseline is the Image Encoder and dot prod-

uct distance with cross-entropy loss. We analyzed the performance

of each module of our model.

Methods
CUB SUN AWA2

T1 H T1 H T1 H

Baseline 67.8 61.5 54.7 30.9 63.5 62.7

+LMSE 69.9 63.1 56.1 31.5 64.3 64.9

+LDis 70.5 64.9 56.9 31.7 64.6 65.2

+cos 77.8 70.4 62.8 36.9 67.3 70.6

nent. Firstly, we train a baseline model that contains Im-

age Encoder with cross-entropy loss. We use the dot prod-

uct to compute class logits of the projected visual feature

and every class embedding. Then, we add gaze estima-

tion module, mean square error loss and distance loss func-

tions gradually. Finally, the cosine similarity is added to

the model. We can see that our proposed GEM improves

the Top-1 accuracy (T1) of ZSL over the baseline consis-

tently by 10.0% (CUB), 8.1% (SUN), 3.8% (AWA2), and

the harmonic mean accuracy (H) of GZSL over the baseline

Table 3. Results (%) of ZSL ablation study for attention transition

with gaze loss.

Methods Set 1 Set 2 Set 3 Set 4 Avg.

GEM w/o LGaze 43.5 45.5 42.1 40.7 42.9

GEM w LGaze 44.9 45.2 43.6 41.2 43.7

by 8.9% (CUB), 6.0% (SUN), 7.9% (AWA2) respectively.

Remarkably, when cosine distance is used to measure the

similarity of the projected visual feature and class semantic

embedding, the performance of our model can be greatly

improved. Since the cosine metric can bound and reduce

the variance of the neurons and thus result in models with

better generalization capability [33].

To verify the influence of attention transition, we used

CUB-VWSW gaze dataset with captured gaze points [27].

We performed Gaussian blur on the gaze points to obtain

the gaze heatmap as gaze ground truth. Then we randomly

selected two categories for each bird family as unseen cat-

egories. The other categories were used as seen categories.

All seen categories were used to train the model with gaze
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Figure 5. The influence of learnable σ on ZSL (T1) and GZSL

(H) results (%). σ is set to 20. During the model training, the

performance increases with a slight fluctuation of σ.

loss, and the unseen categories were used as a test set to ver-

ify model performance. We repeated the above operation

for four times and took the average value of T1 to ensure

robustness. Table 3 shows the influence of AT with gaze

loss, and we can see that AT improves the ZSL accuracy.

Effect of scaling factor σ. Figure 4 shows the results of

H and T1 when varying σ over {10, 15, 20, 25, 30} under

GZSL/ZSL for our model. Our method achieves the best

performance on CUB and AWA2 when σ is 20. The best

results are reached for SUN when σ is 25. We further ex-

plore the performance of the model when σ is a learnable

parameter. Figure 5 shows the relationship between model

performance and σ during the model training. We initialize

σ to 20, and it changes slightly with the iteration of training.

Therefore, we fixed σ to 20 for CUB and AWA2 and 25 for

SUN in our experiments.

Training method analysis. An episode-based training

method is used in our experiments to make the model gain

better generalization ability. For each mini-batch, we sam-

ple M categories and N images for each category. We

Table 4. Influence of training method on GZSL results (%). R

represents random sampling training method with mini-batch of

64, E represents episode-based training method.

Training Method M -way N -shot CUB SUN AWA2

R - - 62.3 34.9 66.4

E

8 2 60.6 27.0 46.9

8 3 64.2 27.8 61.8

8 4 58.5 27.2 62.3

12 2 62.5 33.1 68.2

12 3 68.7 35.8 65.1

12 4 65.5 34.5 67.4

16 2 70.4 36.9 70.6

16 3 68.3 36.7 68.3

16 4 69.1 34.8 69.3

vary the value of M with {8, 12, 16} and the value of N
with {2, 3, 4}, and observe the H under these values. To

further analyze the performance of the episode-based train-

ing method, we compare its performance with the random

sampling training method with a mini-batch of 64. Table 4

shows that the episode-based training method has better per-

formance than the random sampling training method. The

model can be generalized to the recognition of all categories

only by learning the seen categories. When M = 16 and

N = 2, the model can get the highest accuracy.

4.3. GEM Evaluation

Quantitative results. We use two standard evalua-

tion metrics for gaze estimation: Area Under the Curve

(AUC) [6] and Normalized Scanpath Saliency (NSS) [44].

AUC is the area under a curve of true positive rate ver-

sus false positive rate for different thresholds on the esti-

mated gaze map. NSS is a simple correspondence mea-

sure between saliency maps and ground truth, computed as

the average normalized saliency at fixated locations. We
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Figure 6. Visualization of predicted gaze maps of randomly selected unseen images on CUB-VWSW from different gaze estimation

methods.

Table 5. Results of different methods for gaze estimation on un-

seen images of CUB-VWSW dataset.

Methods AUC NSS

GBVS [19] 0.793 1.003

GP [22] 0.836 1.430

GEM (Ours) 0.914 2.244

compared our GEM with two gaze estimation baselines in-

clude: bottom-up saliency prediction method Graph Based

Visual Saliency (GBVS) [19] and top-down task-specific

Gaze Prediction (GP) [22]. Table 5 shows the results of dif-

ferent methods for gaze estimation on the unseen images of

CUB-VWSW dataset. We can see that our GEM achieves

better gaze estimation results.

Qualitative analysis. Figure 6 shows the qualitative

results of different gaze estimation methods on randomly

selected unseen images from CUB-VWSW dataset. Our

GEM can detect more accurate attribute regions that hu-

mans pay more attention to compared with both the bottom-

up method GBVS and top-down method GP. These regions

are helpful to distinguish different categories. Because our

model is zero-shot learning targeted, GEM can learn more

refined category attribute areas. In the visualization results,

the predicted gaze maps are more concentrated than ground

truth maps. In general, these results demonstrate that the

GEM plays an important role in improving the accuracy of

attribute parts prediction.

5. Conclusion

In this paper, a novel goal-oriented gaze estimation

method has been introduced to improve ZSL tasks. To

mimic human cognitive process with unseen classes, the

GEM learns the discriminative attributes with semantic

query-guided attention and real human gaze (if available)

supervision. Finally, the localized discriminative attributes

improve the global image feature representation for ZSL.

Our GEM-ZSL achieves superior or competitive perfor-

mance on three ZSL benchmarks which demonstrates the

effectiveness of the discriminative attributes learned by the

GEM. Our work shows the promising benefits of collect-

ing human gaze dataset and automatic gaze estimation al-

gorithms on computer vision tasks. For the future work,

further investigation on the discriminative attribute local-

ization for ZSL is an intrinsic and important direction.
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