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Abstract

Invertible networks have various benefits for image de-

noising since they are lightweight, information-lossless, and

memory-saving during back-propagation. However, apply-

ing invertible models to remove noise is challenging be-

cause the input is noisy, and the reversed output is clean,

following two different distributions. We propose an invert-

ible denoising network, InvDN, to address this challenge.

InvDN transforms the noisy input into a low-resolution

clean image and a latent representation containing noise.

To discard noise and restore the clean image, InvDN re-

places the noisy latent representation with another one sam-

pled from a prior distribution during reversion. The de-

noising performance of InvDN is better than all the existing

competitive models, achieving a new state-of-the-art result

for the SIDD dataset while enjoying less run time. More-

over, the size of InvDN is far smaller, only having 4.2% of

the number of parameters compared to the most recently

proposed DANet. Further, via manipulating the noisy la-

tent representation, InvDN is also able to generate noise

more similar to the original one. Our code is available at:

https://github.com/Yang-Liu1082/InvDN.git.

1. Introduction

Image denoising aims to restore clean images from noisy

observations. Traditional approaches model denoising as a

maximum a posteriori (MAP) optimization problem, with

assumptions on the distribution of noise [38, 57, 12], and

natural image priors [16, 39, 47]. Although these algo-

rithms achieve satisfactory performance on removing syn-

thetic noise, their effectiveness on real-world noise is com-

promised since their assumptions deviate from those in

real-world scenarios. Recently, convolutional neural net-

works (CNNs) have achieved superior denoising perfor-

mance [53, 54]. These CNNs learn the features of images

from a large number of clean and noisy image pairs. How-

ever, since real noise is very complex, to achieve better de-

noising accuracy, CNN denoising models have become in-
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Figure 1: A real noisy image from the SIDD [2] dataset.

Compared with RIDNet [5] and DANet [51], InvDN does

not over-smooth. In addition, in comparison with all the

other methods, InvDN restores more crisp edges and pro-

duces fewer artifacts. The examples are best viewed in color

on a high-resolution display with zooming in.

creasingly large and complicated [50, 51, 52]. Thus, al-

though some methods can achieve very impressive denois-

ing results, they may not be practical in realistic scenarios

such as deploying the model on edge equipment like smart-

phones and motion sensing devices.

Currently, a substantial amount of research has been

devoted to developing neural networks that are invert-

ible [18, 41, 25, 9]. For image denoising, invertible net-

works are advantageous from the following three aspects:

(1) the model is light, as encoding and decoding use the

same parameters; (2) they preserve details of the input data

since invertible networks are information-lossless [36]; (3)

they save memory during back-propagation because they

use a constant amount of memory to compute gradients, re-

gardless of the depth of the network [23]. Hence, invert-

ible models are suitable for small devices like smartphones.

We thus study employing invertible networks to address the

problem of image denoising. However, applying such net-

works to remove noise is non-trivial. The original inputs
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and the reversed results of the traditional invertible models

follow the same distribution [19, 31, 46]. In contrast, for

image denoising, the input is noisy, and the restored im-

age is clean, following two different distributions. There-

fore, invertible denoising networks are required to abandon

the noise in the latent space before the reversion. Due to

this difficulty, noise removal has not previously been stud-

ied and deployed in invertible literature and models.

In this paper, we propose an invertible denoising net-

work, InvDN, to resolve the above difficulties. Unlike pre-

vious invertible models, two different latent variables are

involved; one incorporates noise and high-frequency clean

contents while the other only encodes the clean part. Dur-

ing the forward pass, InvDN transforms the input image to

a downscaled latent representation with an increased num-

ber of channels. We train InvDN to make the first three

channels of the latent representation the same as the low-

resolution clean image. Since invertible networks preserve

all the information of the input [36], noisy signals are in the

rest of the channels. To remove noise completely, we dis-

card all the channels that contain noise. However, as a side-

effect, we also lose some information corresponding to the

high-resolution clean image. To reconstruct such missing

information, we sample a new latent variable from a prior

distribution and combine it with the low-resolution image

to restore the clean image.

Our contributions are as follows:

• We are the first to design invertible networks for real

image denoising to the best of our knowledge.

• The latent variable of traditional invertible networks

follows a single distribution. Instead, InvDN has two

latent variables following two different distributions.

Thus, InvDN can not only restore clean images but also

generate new noisy images.

• We achieve a new state-of-the-art (SOTA) result on the

SIDD test set, using far fewer parameters and less run

time than the previous SOTA methods.

• InvDN is able to generate new noisy images that are

more similar to the original noisy ones.

2. Related Work

In this section, we summarize and discuss the develop-

ment and recent trends in image denoising. The widely used

denoising methods can be classified into traditional meth-

ods and current data-driven deep learning methods.

Traditional Methods. Model-driven denoising meth-

ods usually construct a MAP optimization problem with

a loss and a regularization term. The assumptions on the

noise distribution are needed for most traditional methods

to build the model. One assumed distribution is the Mixture

of Gaussian, which is used as an approximator for noise on

natural patches or patch groups [58, 13, 49]. The regulariza-

tion term is usually based on the clean image’s prior. Total

variation [43] denoising uses the statistical characteristics

of images to remove noise. Sparsity [37] is enforced in dic-

tionary learning methods [20], to learn over-complete dic-

tionaries from clean images. Non-local similarity [11, 21]

methods employ non-local patches that share similar pat-

terns. Such a strategy is adopted by the notable BM3D [17]

and NLM [11]. However, these models are limited due

to the assumptions on the prior of spatially invariant noise

or clean images, which are often different from real cases,

where the noise is spatially variant.

Data-driven Deep Learning Denoising. Recent years

have seen rapid progress in the deep learning methods,

boosting the denoising performance to a large extent. The

early deep models focus on synthetic noisy image denoising

due to a lack of real data. As some large real noise datasets,

such as DND [40] and SIDD [2], have been presented, cur-

rent research focuses on blind real image denoising. There

are two main streams in real image denoising. One is to

adapt the methods that work well on the synthetic datasets

to the real datasets while considering the gap between these

two domains [54, 24]. The current most competitive method

along this direction is AINDNet [29], which applies transfer

learning from synthetic to real denoising with the Adaptive

Instance Normalization operations.

The other direction is to model real noise with more

complicated distributions and design new network architec-

tures [10, 14]. VDN [50] proposed by Yue et al. assumes

that noise follows an inverse Gamma distribution, and the

clean image we observe is a conjugate Gaussian prior of the

unavailable real clean images. They propose a new training

objective based on these assumptions and use two parallel

branches to learn these two distributions in the same net-

work. Its potential limitation is that the assumptions are

not suitable when the noise distribution becomes compli-

cated. Later, DANet [51] abandons the assumptions for

noise distributions and employs a GAN framework to train

the model. Two parallel branches are also employed in this

architecture: one for denoising and the other for noise gen-

eration. This design concept is that the three kinds of image

pairs (clean and noisy, clean and generated noisy, as well

as denoised and noisy) follow the same distribution, so they

use a discriminator to train the model. The potential limita-

tion is that GAN-based models’ training is unstable and thus

takes longer to converge [8]. Furthermore, both VDN and

DANet employ Unet [42] in the parallel branches, making

their models very large.

To compress the model size, we explore invertible net-

works. To the best of our knowledge, few studies apply

invertible networks in denoising literature. Noise Flow [1]

introduces an invertible architecture to learn real noise dis-

tributions to generate real noise as a way of data augmen-
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tation. Generating noisy images with Noise Flow requires

extra information apart from the sRGB images, including

raw-RGB images, ISO, and camera-specific values. They

do not propose new denoising backbones. So far, no invert-

ible network for real image denoising has been reported.

3. Invertible Denoising Network

In this paper, we present a novel denoising architecture

consisting of invertible modules, i.e., Invertible Denoising

Network (InvDN). For completeness, in this section, we

first provide the background of invertible neural networks

and then present the details of InvDN.

3.1. Invertible Neural Network

Invertible networks are originally designed for unsuper-

vised learning of probabilistic models [19]. These networks

can transform a distribution to another distribution through

a bijective function without losing information [36]. Thus,

it can learn the exact density of observations. Using in-

vertible networks, images following a complex distribution

can be generated through mapping a given latent variable

z, which follows a simple distribution pz(z), to an image

instance x ∼ px(x), i.e., x = f(z), where f is the bijec-

tive function learned by the network. Due to the bijective

mapping and exact density estimation properties, invertible

networks have received increasing attention in recent years

and have been applied successfully in applications such as

image generation [19, 31] and rescaling [46].

3.2. Challenges in Denoising with Invertible Models

Applying invertible models in denoising is different from

other applications. The widely used invertible networks em-

ployed in image generation [19, 31] and rescaling [46] con-

sider the input and the reverted image to follow the same

distribution. Such applications are straightforward candi-

dates for invertible models. Image denoising, however,

takes a noisy image as input and reconstructs a clean one,

i.e., the input and the reverted outcome follow two differ-

ent distributions. On the other hand, an invertible trans-

form does not lose any information during the transforma-

tion. However, the lossless property of invertibility is not

desired for image denoising since the noise information re-

mains while we transform an input image into latent vari-

ables. If we can disentangle the noisy and clean signals

during an invertible transformation, we may reconstruct a

clean image without worrying about losing any important

information by abandoning the noisy information. In the

following section, we present one way to obtain a clean sig-

nal through an invertible transformation.

3.3. Concept of Design

We denote the original noisy image as y, its clean ver-

sion as x and the noise as n. We have: p(y) = p(x,n) =

Squeeze
D D

D
H H

H
V V

V
A A

A A

Wavelet

Transform

Figure 2: Invertible Transforms. The Squeeze operation on

the left extracts features according to a checkerboard pat-

tern. The Wavelet Transformation on the right extracts the

average pooling of the image, as well as the vertical, hori-

zontal and diagonal derivatives.

p(x)p(n|x). Using the invertible network, the learned la-

tent representation of observation y contains both noise and

clean information. It should be noted that it is non-trivial to

disentangle them and abandon only the noisy part.

On the other hand, invertible networks utilize differ-

ent feature extraction approaches comparing with existing

deep denoising models. Existing ones usually employ con-

volutional layers with padding to extract features. How-

ever, they are not invertible due to two reasons: Firstly, the

padding makes the network non-invertible; secondly, the

parameter matrices of convolutions may not be full-rank.

Thus, to ensure invertibility, rather than using convolutional

layers, it is necessary to utilize invertible feature extraction

methods, such as the Squeeze layer [31] and Haar Wavelet

Transformation [7], as presented in Fig. 2. The Squeeze

operation reshapes the input into feature maps with more

channels according to a checkerboard pattern. Haar Wavelet

Transformation extracts the average pooling of the original

input as well as the vertical, horizontal, and diagonal deriva-

tives. As a result, the spatial size of the feature maps ex-

tracted by the invertible methods is inevitably downscaled.

Therefore, instead of disentangling the clean and noisy

signals directly, we aim to separate the low-resolution and

high-frequency components of a noisy image. The sam-

pling theory [22] indicates that during the downsampling

process, the high-frequency signals are discarded. Since in-

vertible networks are information-lossless [36], if we make

the first three channels of the transformed latent representa-

tion to be the same as the downsampled clean image, high-

frequency information will be encoded in the remaining

channels. Based on the observation that the high-frequency

information contains noise as well, we abandon all high-

frequency representations before inversion to reconstruct a

clean image from low-resolution components. We formally

describe the process as follows:

p(y) = p(xLR,xHF,n) = p(xLR)p(xHF,n|xLR),

where xLR represents the low-resolution clean image. We

use xHF to represent the high-frequency contents that cannot

be obtained by xLR when reconstructing the original clean

image. Since it is challenging to disentangle xHF and n, we

abandon all the channels representing z ∼ p(xHF,n|xLR) to
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Figure 3: Invertible Denoising Network. InvDN consists of several DownScale Blocks. Each DownScale Block has a Wavelet

Transformation layer to reduce the spatial resolution by 2× and increase the number of channels by 4×, followed by several

Invertible Blocks. In the forward pass, we learn the low-resolution image and a latent variable z from the noisy input. In the

backward procedure, we randomly sample zHF from N (0, I) and combine it with LR to restore the clean image.

remove spatially variant noise completely. Nevertheless, a

side-effect is the loss of xHF. To reconstruct xHF, we sample

zHF ∼ N (0, I) and train our invertible network to transform

zHF, in conjunction with xLR, to restore the clean image

x. In this way, the lost high-frequency clean details xHF is

embedded in the latent variable zHF.

3.4. Network Architecture

We first employ a supervised approach to guide the net-

work to separate high-frequency and low-resolution com-

ponents during transformation. After some invertible trans-

formation g, the noisy image y is transformed into its cor-

responding low-resolution clean image and high-frequency

encoding z, i.e. g(y) = [g(y)LR; z]. We minimize the fol-

lowing forward objective

Lforw(y,xLR) =
1

M

M
∑

i=1

‖g(y)LR − xLR‖m , (1)

where g(y)LR is the low-frequency components learned by

the network, corresponding to three channels of the output

representation in the forward pass. M is the number of

pixels. || · ||m is the m-norm and m can be either 1 or 2.

To obtain the ground truth low-resolution image xLR, we

down-sample the clean image x via bicubic transformation.

To restore the clean image with g(y)LR, we use in-

verse transform g−1([g(y)LR; zHF]) with random variable

zHF sampled from normal distribution N (0, I). The back-

ward objective is written as

Lback(g(y)LR,x) =
1

N

N
∑

i=1

∥

∥g−1([g(y)LR; zHF])− x
∥

∥

m
,

where x is the clean image. N is the number of pixels.

We train the invertible transformation g by simultaneously

utilizing both forward and backward objectives.

Inspired by [46, 7, 19], the invertible transform g we

present is of a multi-scale architecture, consisting of sev-

eral down-scale blocks. Each down-scale block consists of

an invertible wavelet transformation followed by a series

of invertible blocks. The overall architecture of the InvDN

model is demonstrated in Fig. 3.

Invertible Wavelet Transformation. Since we aim to

learn the low-resolution clean image in the forward pass, we

apply invertible discrete wavelet transformations (DWTs),

specifically Haar wavelet transformation, to increase fea-

ture channels and to down-sample feature maps. After the

wavelet transformation, the input image or an intermedi-

ate feature map with the size of (H,W,C) is transformed

into a new feature map of size (H/2,W/2, 4C). Haar

wavelets decompose an input image into one low-frequency

representation and three high-frequency representations in

the vertical, horizontal, and diagonal direction [32]. Other

DWTs can also be exploited, such as Haar, Daubechies, and

Coiflet wavelets [46, 7].

Invertible Block. The wavelet transformation layer in

each down-scale block splits the representation into low-

and high-frequency signals, which are further processed by

a series of invertible blocks. The invertible block we follow

in this work is the coupling layer [19]. Suppose the block’s

input is ui, and output is ui+1. This block’s operations in

the forward and backward pass are listed in Table 1.

Split(·) operation divides input feature map ui, which

has the size of (H/2,W/2, 4C), into ui
a

and ui

b
, corre-

sponding to the low-frequency image representations of size

(H/2,W/2, C) and the high-frequency features (such as

texture and noise) of size (H/2,W/2, 3C), respectively.

In R2 and R3 of Table 1, during the backward pass, only

the Plus (+) and Multiply (⊙) operations are inverted to Mi-

nus (−) and Divide (/) while the operations performed by

φ1, φ2, φ3 and φ4 are not required to be invertible. Thus,

φ1, φ2, φ3 and φ4 can be any networks, including convo-
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Table 1: The invertible block operations in the down-scale block. In the forward pass, the input and output to each block are

denoted as ui and ui+1. During the backward pass, only Plus (+) and Multiply (⊙) needs to be inverted. φ1, φ2, φ3 and φ4

do not need to be inverted. Thus, they can be any neural networks.

# Forward Operation Backward Operation Specification

R1 ui
a
, ui

b
= Split(ui) ui+1

a
, ui+1

b
= Split(ui+1) Split(·) is splitting channel-wise.

R2 ui+1
a

= ui
a
⊙ exp(φ1(u

i

b
)) + φ2(u

i

b
) ui

b
= (ui+1

b
− φ4(u

i+1
a

))/ exp(φ3(u
i+1
a

)) φ1, φ2, φ3 and φ4 can be any neural networks.

⊙ is the multiply operation.
R3 ui+1

b
= ui

b
⊙ exp(φ3(u

i+1
a

)) + φ4(u
i+1
a

) ui
a
= (ui+1

a
− φ2(u

i

b
))/ exp(φ1(u

i

b
))

R4 ui+1 = Concat(ui+1
a

,ui+1

b
) ui = Concat(ui

a
, ui

b
) Concat(·) is concating channel-wise.

lutional layers with paddings. Since the skip connection is

shown to be crucial for deep denoising networks [50, 51],

we simplify the forward operation in R2 as

ui+1
a

= ui

a
+ φ2(u

i

b
). (2)

The low-frequency features can be passed to deep layers

with this approach. We use the residual block as operations

φ2, φ3 and φ4.

Concat(·) is the inverse operation of Split(·), which

concatenates the feature maps along channels and passes

them into the next module.

4. Experiment

In this section, we present some empirical performances

of InvDN on real denoising tasks.

4.1. Dataset

We evaluate InvDN on three real-world denoising bench-

marks, i.e., SIDD [2], DND [40], and RNI [33].

SIDD [2] is taken by five smartphone cameras with small

apertures and sensor sizes. We use the medium version of

SIDD as the training set, containing 320 clean-noisy pairs

for training and 1280 cropped patches from the other 40

pairs for validation. In each iteration of training, we crop

the input image into multiple 144×144 patches to feed into

the network. The reported test results are obtained via an

online submission system.

DND [40] is captured by four consumer-grade cameras

of differing sensor sizes. It contains 50 pairs of real-world

noisy and approximately noise-free images. These images

are cropped into 1000 patches of size 512× 512. Similarly

to SIDD, the performance is evaluated by submitting the

outputs of the methods to the online system.

RNI15 [33] is composed of 15 real-world noisy images

without ground-truths. Therefore, we only provide visual

comparisons on this dataset.

4.2. Training Details.

Our InvDN has two down-scale blocks, each of which

is composed of eight invertible blocks. All the models are

trained with Adam [30] as the optimizer, with momentum

of β1 = 0.9, β2 = 0.999. The batch size is set as 14, and

the initial learning rate is fixed at 2 × 10−4, which decays

by half every 50k iterations. PyTorch is used as the imple-

mentation framework, and training is performed on a single

2080-Ti GPU. We augment the data with horizontal and ver-

tical flipping, as well as random rotations of 90 × θ where

θ = 0, 1, 2, 3.

4.3. Experimental Results

We evaluate the methods by commonly used metrics

such as Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Measure (SSIM), which are also available

on the real-noisy DND and SIDD websites.

Quantitative Measure. As mentioned before, we train

InvDN using the SIDD medium training set. DND does

not provide the training set; therefore, we use the model

trained on SIDD. For a fair comparison, the PSNR of other

competitive models on the test set is directly taken from

the official DND and SIDD leaderboards and verified from

the respective articles. Table 2 reports the test results of

different denoising models. We can observe that the number

of model parameters is directly positively correlated to the

model’s performance. From RIDNet [5] to DANet [51], the

number of model parameters increases from 1.49 million

(M) to 63.01M with a slight improvement in PSNR.

Nevertheless, InvDN reverses the trend, having only

2.64M parameters. Compared with the most recently pro-

posed SOTA DANet, InvDN only uses less than 4.2% of the

number of parameters of DANet. Although InvDN has far

fewer parameters, the denoising performance on the test set

is better than all the recently proposed denoising models,

achieving a new SOTA result for the SIDD dataset1. The

performance of InvDN is also comparable with that of the

recent competitive models on DND, indicating the general-

ization ability of our lightweight denoising model.

Qualitative Measure. To further illustrate the better per-

formance of InvDN against other methods, in Fig. 4, we

1We only compare with the published methods trained on the bench-

mark SIDD training set.
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Noisy CBDNet [24] RIDNet [5] VDN [50] DANet [51] InvDN (Ours)

(a) SIDD [2] visualization examples. InvDN produces fewer artifacts and more clear patterns, even in dark environments.

(b) DND [40] visualization examples. InvDN can reconstruct the subtle edges very clearly

(c) RNI visualization examples. InvDN produces fewer stains and more accurate edges without artifacts.

Figure 4: Visualization results of InvDN compared against other competitive models. Boxed regions are zoomed results.

Best viewed in color on a high-resolution display.

show denoised visual results on images from three differ-

ent datasets, SIDD, DND and RNI15. The first row of

the figure illustrates that InvDN restores well-shaped pat-

terns, while other competing techniques induce blurry tex-

tures and artifacts. Furthermore, the second row depicts that

InvDN recovers the subtle edges very clearly, whereas other

models bring artifacts and over-smoothness. Finally, from

the third row, we observe that InvDN reconstructs accurate

edges compared to other models that introduce blockiness,

fuzziness, and random dots, particularly along the edges.

4.4. Ablation Study

Squeeze vs Wavelet Transform. We compare the differ-

ence of employing the squeeze [31] and Haar wavelet trans-

form in down-scale blocks. We report PSNR on the valida-

tion set of the same iteration during training in Fig. 5a. The

remaining network components and the parameter settings

are the same. We observe that using Haar wavelet converges

faster and is more stable than the squeeze operation.

Residual Block vs. Dense Block. Next, we provide

comparison between different blocks (φi) in our network

in Fig. 5b. The architecture with residual block achieves

higher denoising accuracy than dense block used by [46].

(a) Transformation (b) φ
i

Figure 5: Comparisons on training with different network

components. (a) illustrates the difference between using

Haar wavelet and squeeze as the transformation layer. (b)

shows training curves employing residual block and dense

block as φ2, φ3 and φ4 separately.

Moreover, the network with residual block has far fewer pa-

rameters (2.6M) than that using the dense block (4.3M).

Number of Down-Scale and Invertible Blocks. Now,

we study the denoising performance of InvDN with differ-

ent numbers of down-scale and invertible blocks. We report
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Table 2: Comparison of InvDN against other competitive algorithms. All the results are obtained without MC-ensemble for

fair comparison. “Infer time” presents the inference time of one 256×256 image in gigaFLOPs. A tick represents containing

the corresponding functionality. The best results are emphasized with red.

DND SIDD
Method

Blind

Denoising
MultiScale

Noise

Generation
Invertible

Num of

Parameters

Infer

Time PSNR SSIM PSNR SSIM

DnCNN [53] X 0.56 – 32.43 0.7900 23.66 0.583

EPLL [59] – – 33.51 0.8244 27.11 0.870

TNRD [15] – – 33.65 0.8306 24.73 0.643

FFDNet [54] 0.48 – 34.40 0.8474 – –

BM3D [17] – – 34.51 0.8507 25.65 0.685

NI [3] X – – 35.11 0.8778 – –

NC [34] X – – 35.43 0.8841 – –

KSVD [4] – – 36.49 0.8978 26.88 0.842

TWSC [48] – – 37.96 0.9416 – –

CBDNet [24] X X 4.34 80.76 38.06 0.9421 33.28 0.868

IERD [6] – – 39.20 0.9524 – –

RIDNet [5] X 1.49 196.52 39.26 0.9528 – –

PRIDNet [56] X X – – 39.42 0.9528 – –

DRDN [44] X – – 39.43 0.9531 – –

GradNet [35] X 1.60 – 39.44 0.9543 38.34 0.946

AINDNet [29] X 13.76 – 39.53 0.9561 39.08 0.953

DPDN [26] X – – 39.83 0.9537 – –

MIRNet [52] X X 31.78 1569.88 39.88 0.9563 – –

VDN [50] X 7.81 99.00 39.38 0.9518 39.26 0.955

DANet [51] X X 63.01 65.62 39.58 0.9545 39.25 0.955

Ours X X X X 2.64 47.80 39.57 0.9522 39.28 0.955

Table 3: Comparisons on the denoising accuracy of differ-

ent numbers of down-scale blocks and invertible blocks.

Scale DownScale Blocks Invertible Blocks PSNR

X2 1 8 38.00

X4 2 8 38.40

X8 3 8 37.69

X2 1 16 38.30

X4 2 16 38.61

X8 3 16 38.15

the PSNR results on the validation set from the same itera-

tion. We discover that increasing the number of invertible

blocks boosts denoising accuracy consistently, regardless of

the number of down-scale blocks. Moreover, when fixing

the number of invertible blocks, we observe that using two

down-scale blocks leads to the best denoising effect.

Investigation of Loss Functions. InvDN requires apply-

ing loss functions during training for both the low and high-

resolution images to minimize the difference between de-

noised and clean images. As described in Subsec. 3.4, both

ℓ1- and ℓ2- norms are applicable. We investigate InvDN’s

performance via different combinations of loss functions for

producing low and high-resolution images. We compare

the PSNR results on the SIDD validation set at the same

iteration and report the results in Table 4. We observe that

(a) Ground-

Truth

(b) Before MC

Self-Ensemble

(c) After MC

Self-Ensemble

Figure 6: Visualization of denoising performance before

and after MC self-ensemble. (b) and (c) reflect the dif-

ference between the denoised image and the ground-truth.

Darker means more difference, indicating poorer denoising.

employing ℓ2 for low-resolution images and ℓ1 for high-

resolution images achieves the highest performance. Apart

from ℓ1 and ℓ2, we also explore other loss function candi-

dates to further improve the denoising effects. We apply the

gradient loss [35] and the SSIM loss [55] to minimize the

difference between two images from the perspectives of im-

age derivative and structures. However, neither the gradient

nor the SSIM loss improves the denoising performance.

4.5. Monte Carlo Self Ensemble

To further improve InvDN’s denoising effect without us-

ing extra data and training, we introduce Monte Carlo (MC)
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Table 4: Comparisons on different combinations of losses on the SIDD validation set.

Losses Forw Back Forw Back Forw Back Forw Back Forw Back Forw Back Forw Back

L1 X X X X X X X

L2 X X X X X X X

Gradient Loss X X

SSIM Loss X X

PSNR 38.67 38.29 38.88 38.73 38.74 38.80 38.78

Table 5: AKLD of generated noisy images by different

models. Lower is better. The lowest AKLD is in red.

CBDNet ULRD GRDN Noise Flow DANet InvDN

[24] [10] [28] [1] [51] (Ours)

0.728 0.545 0.443 0.312 0.212 0.059

self-ensemble. We sample the latent variable zHF multi-

ple times, resulting in a set of latent variables {ziHF}
N

i=1,

where for each ziHF, a corresponding denoised image x̂i is

obtained. The final output is the average of {x̂i}
N

i=1. By

the law of large numbers [45], the averaged image is closer

to the ground-truth than any individual x̂i. In Fig. 6, we

visualize the denoising results before and after using MC

self-ensembling by setting the MC size to 16. The con-

trast between the residual images before and after MC self-

ensemble indicates that it further reduces the noise in the

denoised image. Quantitatively, 83.35% images witness a

performance boost on the SIDD validation set.

4.6. Analysis of Distributions of z

For InvDN, there are two types of latent variables: one

corresponds to the original high-frequency signal z contain-

ing noise, and the other sampled zHF from N (0, I) repre-

senting clean details. To analyze, we obtain 500 pairs of z

and zHF from the SIDD validation set. We vectorize each la-

tent variable and plot them in a 3D space with PCA [27]. As

Fig. 7a shows, z and zHF follow two different distributions.

For the sake of fair comparison, we only train InvDN on

the benchmark SIDD training set. However, InvDN also

supports generating more noisy images for data augmen-

tation. To generate augmented data, we first conduct sam-

pling z. We introduce a tiny disturbance to z as z′ = z+ǫ·v,

where v ∼ N (0, I) and ǫ is set as 2× 10−4. We expect the

reverted image of z′ to have the same background clean im-

age, yet with a different noise. We visualize the reverted

images of z and z′ in Fig. 7b and 7c, exhibiting visually

different noise corresponding to z and z′.

To quantitatively evaluate the quality of our gener-

ated noisy images, we follow the average KL divergence

(AKLD) metric introduced by DANet [51] to measure the

similarity between the original and the generated noise,

(a) Distributions (b) Original (c) Generated

Figure 7: (a) PCA visualization results of the two distri-

butions corresponding to the noisy latent representations z

(pink) and the clean samples zHF (blue). (b) Original noisy

image from the SIDD validation set. (c) The generated

noisy image by InvDN corresponding to (b).

as shown in Table 5. It should be noted here that Noise

Flow [1] requires raw-RGB images, ISO, and CAM infor-

mation to generate noisy images; in other words, it needs

the training images as inputs. The AKLD results in Table 5

demonstrate that our generated noisy images are closer to

the original noisy images by a large margin.

5. Conclusion

This paper is the first to study real image denoising with

invertible networks. In previous invertible models, the in-

put and the reversed output follow the same distribution.

However, for image denoising, the input is noisy, and the

restored outcome is clean, following two different distri-

butions. To address this issue, our proposed InvDN trans-

forms the noisy input into a low-resolution clean image as

well as a latent representation containing noise. As a re-

sult, InvDN can both remove and generate noise. For noise

removal, we replace the noisy representation with a new

one sampled from a prior distribution to restore clean im-

ages; for noise generation, we alter the noisy latent vec-

tor to reconstruct new noisy images. Extensive experiments

on three real-noise datasets demonstrate the effectiveness of

our proposed model in both removing and generating noise.
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