
Learnable Motion Coherence for Correspondence Pruning

Yuan Liu1 Lingjie Liu2 Cheng Lin1 Zhen Dong3 Wenping Wang1,4∗

1The University of Hong Kong 2MPI Informatics, Saarland Informatics Campus
3Wuhan University 4Texas A&M University

Abstract

Motion coherence is an important clue for distinguish-

ing true correspondences from false ones. Modeling mo-

tion coherence on sparse putative correspondences is chal-

lenging due to their sparsity and uneven distributions. Ex-

isting works on motion coherence are sensitive to parame-

ter settings and have difficulty in dealing with complex mo-

tion patterns. In this paper, we introduce a network called

Laplacian Motion Coherence Network (LMCNet) to learn

motion coherence property for correspondence pruning. We

propose a novel formulation of fitting coherent motions with

a smooth function on a graph of correspondences and show

that this formulation allows a closed-form solution by graph

Laplacian. This closed-form solution enables us to design

a differentiable layer in a learning framework to capture

global motion coherence from putative correspondences.

The global motion coherence is further combined with local

coherence extracted by another local layer to robustly de-

tect inlier correspondences. Experiments demonstrate that

LMCNet has superior performances to the state of the art in

relative camera pose estimation and correspondences prun-

ing of dynamic scenes1.

1. Introduction

Estimating correspondences between two images is a

fundamental problem in computer vision tasks such as

Structure-from-Motion (SfM) [19], visual localization [45],

image stitching [10] and visual SLAM [32]. A standard

pipeline of correspondence estimation relies on local fea-

ture matching to establish a set of putative correspondences,

which contains numerous false correspondences (i.e., out-

liers). To prevent outliers from affecting downstream tasks,

a correspondence pruning algorithm is usually applied to

select a reliable subset consisting of true correspondences

(i.e., inliers). The most prevalent correspondence pruning

methods are RANSAC [18] and its variants [52, 14, 2, 12],

∗Corresponding author
1Code and supplementary material can be found in the project page:

https://liuyuan-pal.github.io/LMCNet/

 LMCNet

 Plausible epipolar geometric models

(a) Putative
correspondences

(d) Global coherence
fitting

(e) Local consistency
extraction

(b) Geometric model (i) (c) Geometric model (ii)

...

(f) Inlier probability

Figure 1. Given a set of putative correspondences (a), multiple

plausible epipolar geometries exist, e.g. (b) and (c). However, true

correspondences (c) are usually motion coherent while false ones

(b) are not. In this paper, we design a network called LMCNet to

explicitly utilize the motion coherence of correspondences via a

global coherence fitting (d) and a local consistency extraction (e).

Hence, LMCNet is able to robustly predict their inlier probabilities

(f), where brighter color means higher inlier probability.

which detect true correspondences by finding the largest

subset conforming to a task-specific geometric model such

as epipolar geometry or homography. However, due to large

outlier ratios of putative correspondences, multiple plausi-

ble geometric models may exist, which makes it difficult for

RANSAC and its variants to identify the correct geometric

model.

Besides the task-specific geometric model, true corre-

spondences also conform to a more general motion model

called motion coherence, which means that neighboring

pixels share similar motions, while false correspondences

are usually randomly scattered, as illustrated in Fig. 1 (a-c).

Motion coherence supplements the task-specific geometric

model and is key to determining true correspondences when

multiple plausible geometric models exist.

To model motion coherence, existing works propose lo-

cal [5, 29] or global handcrafted rules [23, 22] to find coher-

ent correspondences. However, modeling motion coherence

on sparse correspondences generated by local descriptors is

challenging. First, unlike in tasks of dense correspondence

3237

estimation such as optical flow estimation [26, 6, 7], pu-

tative correspondences generated by local descriptors are

discrete and sparse, which makes it much more difficult

to estimate the underlying smooth motion field. Second,

putative correspondences are usually distributed unevenly

over an image because there are often many detected key-

points in textured regions and few keypoints in textureless

regions. This uneven distribution makes it hard to find a uni-

form coherence constraint on the correspondences. Third,

an observed scene may have a complex structure, such as an

abrupt change of depth, so that the underlying motion fields

are only piece-wise smooth, which brings about difficulty

in finding motion boundaries [22]. Due to these challenges,

existing works either need careful parameter tuning for dif-

ferent datasets [22, 23] or may fail when motion patterns

are complex [29, 5].

We address these problems by proposing a neural net-

work to learn the motion coherence property for correspon-

dence pruning. Compared to handcrafted rules of motion

coherence, neural networks have more powerful and flexi-

ble representational ability to learn more complex motion

patterns from data and reliably detect motion boundaries.

Designing differentiable layers to capture the motion co-

herence property is the key to adopting a learning-based ap-

proach. Traditional global motion coherence models [22,

23] usually involve a non-differentiable iterative convex op-

timization solver, which cannot be used for training a net-

work end-to-end. To address this issue, we propose a novel

formulation of the motion coherence property via smooth

function fitting on a graph of correspondences. We call this

formulation Laplacian Motion Fitting (LMF) and further

show that the proposed LMF has a simple closed-form so-

lution by decomposition of graph Laplacian, which enables

us to design a differentiable Coherence Residual Layer,

called CR-Layer for abbreviation, to capture global motion

coherence from putative correspondences.

Besides the global coherence model, true correspon-

dences also have motion-consistent supporting correspon-

dences in their local neighborhoods [5]. Based on this ob-

servation, we design a Local Coherence Layer, called LC-

Layer for abbreviation, to extract local motion coherence

from these neighboring supporting correspondences. By in-

tegrating both the global and local motion coherence layers,

we design a network called Laplacian Motion Coherence

Network (LMCNet), which takes coordinates or other op-

tional features of correspondences as inputs and outputs the

probability of each correspondence being an inlier.

We conducted extensive experiments to demonstrate the

effectiveness of the proposed neural network in two tasks:

relative camera pose estimation, and correspondence prun-

ing of dynamic scenes. On both tasks, LMCNet achieves

superior performance than other baseline methods, demon-

strating its ability to robustly select inliers and potential to

enhance object tracking or video object recognition.

Our contributions are as follows.

1. We proposed a novel formulation of motion coherence

on sparse correspondences which has a simple closed-

form solution by decomposition of graph Laplacian.

2. We proposed differentiable layers, which work to-

gether to robustly capture motion coherence of sparse

putative correspondences.

3. We designed a neural network for correspondence

pruning and demonstrate its effectiveness on the rel-

ative pose estimation problem and correspondence

pruning of dynamic scenes.

2. Related Works

2.1. RANSACrelated correspondence pruning

RANSAC [18] and its variants [38, 52, 43, 1, 37, 2, 3, 14,

51, 12] are the standard methods to select true correspon-

dences from putative correspondences by finding the largest

subset which conforms to a task-specific geometric model.

However, these methods may fail when multiple plausible

geometric models all have a large amount of supporting

correspondences. Some works address this problem by us-

ing techniques like marginalization [2, 3], degeneration de-

tection [14], learning to sample hypotheses [9] or density

estimation [51]. In this paper, we resort to another useful

motion coherence property of inlier correspondences rather

than solely relying on a task-specific geometric model.

2.2. Deep networks for correspondence pruning

With the advance of deep learning methods, pioneer-

ing works such as DSAC [8], PointCN [31] and DFE [39]

demonstrate the feasibility of classifying correspondences

by neural networks with coordinates as inputs. Follow-up

works improve the architecture by inserting global cluster-

ing layer [60], attention mechanism [47, 13] or introducing

new neighborhood definition [61]. These methods mainly

focus on designing a permutation-equivariant operator on

correspondences and treat the learning process as a black-

box. In contrast, we explicitly incorporate the motion co-

herence property in a deep neural network to ensure that

such property is learned during the training process.

2.3. Motion coherence

Motion coherence [59, 33] has been explored for decades

in computer vision. There are many works [26, 6, 7, 11,

54, 34, 41, 42, 20, 33] focusing on applying motion coher-

ence constraints on dense correspondence estimation tasks

such as optical flow. However, fitting a smooth motion

field on sparse correspondences is much harder. BF [23]

and CODE [22] proposed a global motion coherence model

on sparse correspondences. Some other works [29, 5] use

local consistency to find motion-coherent correspondences.

3238

These handcrafted rules or models achieve impressive per-

formances but still have difficulty in handling complex mo-

tion patterns and need careful parameter tuning for different

datasets. In our method, we propose a novel formulation

of motion coherence by fitting a smooth function via graph

Laplacian. We further design both global and local differen-

tiable layers to capture motion coherence, which enable our

network to learn more complex motion patterns from data

than those handcrafted methods.

2.4. Image matching

Previously, works about image matching mainly focus

on learning repetitive detectors [25, 58, 16, 40, 4, 17, 46] or

discriminative descriptors [28, 27, 24, 49, 50, 30, 53, 15].

However, recent works [31] show that the performance bot-

tleneck of image matching may be how to match these de-

scriptors. Several deep learning-based models are proposed

to learn to prune correspondences [31, 39, 60] or to match

descriptors [44, 56]. Our method belongs to the category of

deep learning-based correspondences pruners.

3. Method

We propose a novel architecture LMCNet for correspon-

dence pruning. Given N putative correspondences {ci =
(xi, yi, ui, vi)|i = 1, ..., N} and their optional d0-dim fea-

tures {fi ∈ R
d0}, where (xi, yi) and (ui, vi) are the image

coordinates of two corresponding keypoints, our goal is to

estimate the probability {pi} that a putative correspondence

ci is a true correspondence. In the rest of this section, we

first introduce our new formulation of motion coherence,

called Laplacian Motion Fitting in Sec. 3.1. Then, the key

components of LMCNet, i.e. Coherence Residual Layer

and Local Coherence Layer, are elaborated in Sec. 3.2 and

Sec. 3.3. In the end, we describe the whole architecture in

Sec. 3.4 and some implementation details in Sec. 3.5.

3.1. Laplacian Motion Fitting

Motion coherence means that true correspondences have

similar motions to each other, while false correspondences

scatter randomly. Most commonly-used models [22, 21, 59]

utilize this property by first recovering the underlying con-

tinuous smooth motion field from putative correspondences.

Then, true and false correspondences can be distinguished

according to their deviations from the recovered motion

field. However, in order to recover the underlying motion

field, such formulations usually involve an iterative convex

optimization solver which is non-differentiable. To address

this, we propose a novel formulation of motion coherence

by estimating a set of smooth discrete motions on a graph

that encodes the adjacency of the putative correspondences.

We show that this formulation allows a simple closed-form

solution via decomposition of graph Laplacian, which can

be used for constructing a differentiable layer in a network.

We construct a graph G = {V,E} where the nodes in

V represent all the putative correspondences, and E in-

cludes the edges from every correspondence to its k-nearest

neighbors according to their coordinate distance di,j =
‖ci − cj‖2. We compute the associated weights on the

edges by wi,j = exp(−d2i,j/σ
2), where σ is a predefined

constant, and wi,i = 0 for all nodes. Then, we define

the adjacency matrix as A = [wi,j], the degree matrix as

D = diag([di =
∑

j wi,j]) and the Laplacian matrix as

L = D − A. Here, we define a matrix or a vector v by

v = [vi,j] whose components are vi,j and use diag(v) to

denote a diagonal matrix whose diagonal elements are the

components of v.

For every correspondence, we compute its motion by

{mi = (mx,i,my,i) = (ui − xi, vi − yi)}. Our goal is to

estimate a set of smooth motions {si = (sx,i, sy,i)} which

are as consistent with the input motions {mi} as possible.

We formulate the problem as follows,

minimize
{si|i=1,...,N}

N∑

i

‖si−mi‖
2
2+

1

2
η
∑

i,j

wi,j‖si−sj‖
2
2, (1)

where ‖si −mi‖
2
2 penalizes the deviation of the estimated

motion si from the input motion mi, η is a predefined con-

stant, and wi,j‖si − sj‖
2
2 is a smoothness cost which pe-

nalizes the motion variation between two neighboring cor-

respondences si and sj according to the weight wi,j .

By aggregating si and mi into a matrix form s = [si] ∈
R

N×2 and m = [mi] ∈ R
N×2, we can rewrite Problem (1)

as follows,

minimize
s

Tr((s−m)⊺(s−m)) + ηTr(s⊺Ls), (2)

where s⊺Ls is used as a regularization term because it mea-

sures the smoothness of the graph signal s [35]. Problem (2)

has a closed-form solution as stated in the following propo-

sition; we leave the proof and its connection to the previous

motion coherence theories [59, 33, 22] in the supplementary

material.

Proposition 1. Let the eigenvalue decomposition of the

Laplacian matrix L be L = UΛU⊺, where Λ = diag([λi])
is a diagonal matrix of eigenvalues λi and columns of U

are the associated eigenvectors. Then the solution to Prob-

lem (2) is s = Udiag([1/(1 + ηλi)])U
⊺m.

Denote R(η) ≡ Udiag([1/(1 + ηλi)])U
⊺. Then, the

residuals between the smoothed motions and the input mo-

tions are computed by R(η)m − m. Since only true cor-

respondences can be well fitted by the smooth motions

R(η)m while false correspondences cannot, the residuals

of true correspondences will be significantly smaller than

those of false correspondences. Hence, the true correspon-

dences can be distinguished from the false ones by thresh-

olding on the L2-norms of the residual motions. The whole

3239

(a) Input correspondences (b) Output of LMF (c) Histogram of residuals
Figure 2. (a) 2000 putative correspondences. Green correspondences are true while red ones are false. (b) Output correspondences of LMF.

(c) Distribution of motion residual norms of inliers (green) and outliers (red). Histograms are normalized with 1 as the max values.

process, called Laplacian Motion Fitting (LMF), is summa-

rized in Algorithm 1, and an example is shown in Fig. 2.

Algorithm 1: Laplacian Motion Fitting

Data: Input correspondences {ci = (xi, yi, ui, vi)},

smooth strength η and inlier threshold ǫ
Result: Probability of being inliers {pi}

1 Compute Laplacian matrix L on {ci};

2 Eigen decomposition of L = UΛU⊺;

3 Compute motions m = [mi] = [(ui − xi, vi − yi)];
4 Compute smoothed motions s = [si] = R(η)m;

5 Find inliers {pi = 1 if ‖si −mi‖2 ≤ ǫ else 0};

Computational complexity. For a graph Laplacian ma-

trix, its eigenvalues λi are non-negative. As λi increases,

the 1/(1 + ηλi) becomes sufficiently small and so neg-

ligible. In light of this, we can just use the ke smallest

eigenvalues and their associated eigenvectors for the com-

putation of R(η), which means changing U ∈ R
N×N to

R
N×ke . This simplification essentially lowers the compu-

tational complexity of R(η) from O(n2) to O(n).
Graph construction. In our implementation, the graph

is constructed by connecting every correspondence with its

k-nearest neighbors in the coordinate space ci ∈ R
4, which

is the “bilateral space” proposed in CODE [22]. This bilat-

eral space allows finding a piece-wise smooth motion field

rather than a global smooth motion field. Meanwhile, the

graph construction can be quite flexible. We can also adopt

the affine compatibility proposed in [61] for graph construc-

tion to utilize detected affine transformations.

3.2. Coherence Residual Layer

So far, we have presented the LMF algorithm on motions

for correspondences pruning. However, due to the sparsity

and uneven distributions of putative correspondences, ex-

pert knowledge is needed for carefully tuning the threshold

ǫ and the smoothness strength η in order to achieve a better

performance. To avoid this, we incorporate the LMF within

a learning framework so that we can utilize the powerful

representational ability of neural networks to automatically

learn complex motion patterns from training data.

Instead of directly thresholding on residual motions, we

apply the LMF on the features fl ∈ R
N×d of correspon-

dences, which are extracted by a neural network, to find a

set of smoothed features f ′
l ∈ R

N×d. Then, discriminative

features can be extracted from the residuals fl − f ′
l for the

classification of correspondences. We consider the problem

of estimating smooth features by,

minimize
f ′

l

Tr((f ′
l −fl)

⊺(f ′
l −fl))+ηTr(f ′⊺

l Lf ′
l), (3)

which is similar to Problem (2) by replacing the input mo-

tions m with the features fl. However, the features fl are

extracted by the neural network via multiple layers of ab-

stractions and thus Problem (3) is much more generalized

than fitting a single smooth motion field in Problem (2).

These features can simply be motions if necessary or any

other more complex coherent attributes like local affine

transformations [23, 21], which are implicitly learned by

the neural network during training.

The solution to Problem (3) is also given by f ′
l =

R(η)fl according to Proposition 1. Based on this, we for-

mulate a new layer called Coherence Residual Layer (CR-

Layer) by,

fl+1 = ContextNorm(fl −R(η)fl), (4)

where the fl+1 are output features and ContextNorm [31]

contains a fully-connected operator and an instance normal-

ization operator for feature extraction. The forward pass

of CR-Layer implicitly solves Problem (3) by R(η)fl and

extracts features from the residuals fl − R(η)fl. Since

the whole process only involves matrix multiplication, CR-

Layer is differentiable and therefore can be incorporated

in a network. Meanwhile, we also learn the smoothness

strength η from data by making it a trainable parameter.

3.3. Local Coherence Layer

Besides fitting a global smooth function on correspon-

dences, another important observation of motion coherence

3240

Figure 3. True correspondences (green) have motion-consistent

supporting neighbors while neighbors of false correspondences

(red) scatter randomly.

is that true correspondences tend to have motion-consistent

supporting correspondences in their neighborhoods, while

false correspondences do not have such supporting corre-

spondences. A typical example is shown in Fig. 3. Based

on this observation, we introduce a new layer called Local

Coherence Layer (LC-Layer).

Specifically, given the feature fl,i of the i-th correspon-

dence, we first compute the feature differences between the

correspondence and its neighbors (i, j) ∈ E by fl,i − fl,j .

The feature differences measure the local consistency in the

neighborhood of the i-th correspondence. Then, the LC-

Layer is defined by,

fl+1,i = MaxPool
(i,j)∈E

({MLP(fl,i − fl,j)}) , (5)

where MLP is a multi-layer perceptron, MaxPool is a max-

pooling operator which pools on all neighboring features to

get a single feature vector, and fl+1,i is the output feature of

this correspondence which contains information about the

local coherence in its neighborhood.

3.4. Architecture

Overview. The architecture of our network is illustrated

in Fig. 4. Given the input correspondences, the Geome-

try Embedding is a ContextNorm layer which processes the

input coordinates c ∈ R
N×4 to produce d-dimensional fea-

tures f1 ∈ R
N×d. If there are optional features associ-

ated with correspondences, we process these features with

another ContextNorm layer (Feature Embedding), and we

add it back to the output of Geometry Embedding. Then,

the features are processed by 4 blocks called LMCBlocks,

which are the main feature extraction module of LMCNet.

Finally, the output features of LMCBlocks fout ∈ R
N×d

are processed by a probability predictor, which simply con-

sists of a fully connected layer and a sigmoid function, to

produce the inlier probability p = [pi] ∈ R
N .

LMCBlock. The structure of a LMCBlock is illustrated

in Fig. 5. The LC-Layer is placed on the top to extract

some useful information from the neighborhoods of corre-

spondences and the CR-Layer is placed after several other

layers so that its inputs are at a higher level of abstraction

thus more flexible. Except for the proposed LC-Layers and

CR-Layers, a LMCBlock also includes two ContextNorm

layers and a clustering layer, which are used for extracting

other information such as the underlying epipolar geometry.

The clustering layer used here is proposed in [60], which is

implemented by differentiable pooling to kc clusters (Diff-

Pool), order-aware filtering among clusters (OAFilter) and

unpooling to original correspondences (DiffUnpool). All

layers in the LMCBlock take d-dimensional features as in-

puts and also output d-dimensional features. Thus, a skip

connection is applied to add the inputs to the output features

on all layers. These skip connections are important because

both the CR-Layer and the LC-Layer only retain relative

information between correspondences while such skip con-

nections preserve the absolute information. We also use a

bottleneck structure in LC-Layers, which encodes the input

features into a lower dimension dl, then extracts the local

consistency features on the low-dimensional features, and

finally lift the dimension back to d.

3.5. Implementation Details

In our implementation, coordinates of correspondences

are normalized by camera intrinsic matrices if available, or

are normalized to the range [−1, 1] using the input image

size. For the construction of the adjacency matrix, we use

k = 8 neighbors and σ = 0.1. We use the normalized

graph Laplacian matrix L̂ = D−1/2LD−1/2 to compute

R(η) and only the smallest ke = 32 eigenvalues and the

associated eigenvectors are selected. In all the CR-Layers,

η is initialized to 10.0. Both the feature dimension d and the

cluster number nc in LMCBlock are 128, and the bottleneck

feature dimension dl used in LC-Layers is 8. A correspon-

dence is determined as an inlier if its predicted inlier proba-

bility is larger than 0.95. More details about the architecture

and the training process can be found in the supplementary

material. When implementing the LMF algorithm, we use

ke = 128 eigenvalues, the smoothness strength η = 10.0
and the threshold ǫ = 0.025.

Loss. For image pairs of dynamic scenes, we use the

binary cross entropy loss ℓcls for training. For image pairs

in relative pose estimation, we use an additional geometric

loss ℓgeom [60, 39, 19], in which we estimate the essential

matrix by the weighted 8 points algorithm [19] and compute

distances from ground-truth correspondences to estimated

epipolar lines as loss.

4. Experiments

4.1. Evaluation protocols

To demonstrate the effectiveness of our methods, we

evaluate three models, which are the LMF algorithm, the

LMCNet with only coordinates as input and the LMC-

Net with both coordinates and local descriptors as inputs

(LMCNet-F). We report performance on relative pose esti-

mation and correspondence pruning of dynamic scenes.

3241

LMCBlock X4

Geometry
Embedding

Feature
Embedding

Prob
Predictor

LMCNet

(a) Input Correspondences (b) Architecture (c) Probability

Figure 4. (a) Input correspondences. Red represents false correspondences while green represents true ones. (b) Architecture of LMCNet.

The feature embedding is optional. (c) Output probability of being inliers. Brighter color means higher probability.

L
C
-L
a
y
e
r

C
o
n
te
x
tN
o
rm

C
R
-L
a
y
e
r

C
lu
s
te
rL
a
y
e
r

L
C
-L
a
y
e
r

C
o
n
te
x
tN
o
rm

C
R
-L
a
y
e
r

LMCBlock

Figure 5. A LMCBlock consists of 7 layers.

Relative pose datasets. The outdoor YFCC100M [48]

dataset and the indoor SUN3D [57] dataset are used for rela-

tive pose estimation. We use the same train-test split as [60].

Input putative correspondences are generated from nearest

neighborhood matching of 2000 SIFT [25] descriptors on

every image. We regard correspondences with small dis-

tances (≤ 0.01 in normalized image coordinates) to their

ground-truth epipolar lines as true correspondences. For a

image pair, an essential matrix is estimated by RANSAC on

the predicted true correspondences and is then decomposed

to a rotation and a translation.

Dynamic scene datasets. The dynamic scene dataset

contains images with dynamic objects. We use the DE-

TRAC dataset [55] for evaluation. The DETRAC dataset

contains images in traffic monitoring, so the background is

fixed and the main dynamic objects are cars. We extract

2048 SuperPoint [16] features on every image and extract

putative correspondences by nearest neighborhood match-

ing. Since there are only annotated bounding boxes of dif-

ferent car instances in the dataset, we regard a correspon-

dence as a true correspondence if it connects two bound-

ing boxes of the same instance while a correspondence is

false if it connects different instances or it connects an in-

stance with background, as shown in Fig. 7. We use the

provided train-test split with 60 sequences (sample 30k im-

age pairs) for training and 40 sequences (sample 4k image

pairs) for testing. We also include some qualitative results

on the DAVIS [36] dataset in the supplementary material.

Metrics. On the task of relative pose estimation, we

compute the Area Under the Curve (AUC) of the pose accu-

racy curve at thresholds 5◦, 10◦ and 20◦, the same as used

Method AUC@5◦ AUC10◦ AUC20◦

Ratio test 24.09 40.71 58.14

MAGSAC [2] 28.24 44.86 61.53

LPM [29] 10.48 18.91 29.26

GMS [5] 19.05 32.35 46.79

CODE [22] 16.99 30.23 43.85

LMF 16.91 29.49 43.44

PointCN [31] 27.39 44.61 61.22

AttenCN [47] 29.08 48.13 65.49

OANet [60] 29.12 48.28 65.37

SuperGlue [44] 30.49 51.29 69.72

LMCNet 34.62 53.86 70.53

LMCNet-F 35.91 55.68 72.35

Table 1. Pose AUCs on the YFCC100M dataset. All methods use

the putative correspondences generated by nearest neighborhood

matching of SIFT descriptors.

Method AUC@5◦ AUC10◦ AUC20◦

Ratio test 4.51 11.62 23.02

LPM [29] 2.81 7.40 15.36

GMS [5] 4.36 11.08 21.68

CODE [22] 3.52 8.91 18.32

LMF 3.34 8.85 18.04

PointCN [31] 5.64 14.88 29.32

AttenCN [47] 5.97 15.69 30.98

OANet [60] 5.94 15.79 31.03

LMCNet 6.77 17.14 32.55

LMCNet-F 8.86 19.64 34.96

Table 2. Pose AUCs of LMCNet and other baseline methods on

the indoor SUN3D dataset.

in [44]. On the task of correspondence pruning on dynamic

image pairs, we report the precision, recall and F1 scores.

4.2. Results on relative pose estimation

Baselines. We consider both the traditional handcrafted

pruners, including LPM [29], GMS [5] and CODE [22],

and learning-based pruners, including PointCN [31], At-

tenCN [47] and OANet [60] as baseline methods. We

also include the results of SIFT+SuperGlue [44] on the

3242

Inputs

PointCN

OANet

LMCNet

Figure 6. Input correspondences (Row 1), output of PointCN [31] (Row 2), OANet [60] (Row 3) and LMCNet (Row 4). Green correspon-

dences are correct (small distances to true epipolar lines) while red correspondences are incorrect.

YFCC100M dataset. For implementation, we directly use

the released code of GMS [5] and LPM [29], and we re-

implement CODE [22] which takes only coordinates of cor-

respondences as inputs. For learning-based methods, we di-

rectly use the released code and these methods are trained

on the same training set with the same learning rates, except

for SuperGlue [44], of which we directly use the results re-

ported in their supplementary material [44].

Results. The quantitative results are reported in Table 1

and Table 2. Some qualitative results are provided in Fig. 6.

The results show that LMCNet outperforms all the baseline

methods on all pose metrics. Further adding descriptors as

inputs (LMCNet-F) leads to about 1.5%-2% improvements

on both datasets. Among the handcrafting methods, the re-

sults of LMF are similar to the global method CODE [22]

but are inferior to the local method GMS [5]. This is due

to the unevenly-distributed correspondences which make

it hard for global methods to determine a uniform global

threshold for pruning. However, learning the motion coher-

ence via CR-Layers enables the network to handle complex

motion patterns and thus achieves a better performance.

4.3. Results on dynamic scenes

On the DETRAC dataset, we compare LMCNet with the

same baseline methods as used for relative pose estima-

tion. The quantitative results in Table 3 show that LMC-

Net outperforms all the baseline methods in all the metrics.

From qualitative results in Fig. 7, we can see that LMCNet

is able to robustly find motion-coherent correspondences

while baseline methods may include some false correspon-

dences or neglect some sparse true correspondences. Note

the displacement of motion is up to several hundreds pix-

els and we are unable to produce reasonable results using a

optical-flow based method for this task.

Method Precision Recall F1-Score

LPM [29] 85.12 52.27 63.47

GMS [5] 84.89 76.92 80.01

CODE [22] 83.63 77.86 79.95

LMF 82.84 78.66 79.35

PointCN [31] 84.27 89.34 86.26

AttenCN [47] 85.34 88.53 86.89

OANet [60] 82.70 87.66 84.53

LMCNet 87.23 91.16 88.79

Table 3. Precision, recall and F1 score of LMCNet and other base-

line models on the DETRAC dataset.

#Block #CR- #LC- ke AUC@ AUC@ AUC@

Layer Layer 5◦ 10◦ 20◦

3 0 0 32 29.38 48.00 64.86

3 2 0 32 32.72 51.66 69.49

3 2 2 32 34.62 53.86 70.53

3 1 1 32 31.49 50.73 67.65

1 2 2 32 33.18 52.32 68.92

5 2 2 32 34.31 54.22 71.07

3 2 2 16 32.58 51.72 69.51

3 2 2 32 34.62 53.86 70.53

3 2 2 64 34.71 53.79 70.63

Table 4. Ablation studies of LMCNet on the YFCC100M dataset.

“#Block” means the number of LMCBlock used in the model.

“#CR-Layer” and “#LC-Layer” means the number of these two

layers used in every LMCBlock.

4.4. Analysis

Ablation studies. To demonstrate the effectiveness of

LC-Layers and CR-Layers, we perform ablation studies on

the YFCC100M dataset and report the results in Table 4.

3243

Inputs

PointCN

OANet

LMCNet

Figure 7. Input correspondences (Row 1), output correspondences of PointCN [31] (Row 2), OANet [60] (Row 3) and LMCNet (Row 4)

on the DETRAC dataset. Yellow means that correspondences are in the background, Green means correct, Red means false positive and

blue color means false negative. Note the inputs include both foreground and background correspondences. For clear visualization, we

randomly draw 512 correspondences on all image pairs and neglect the background correspondences in Row 2, 3 and 4.

The baseline model replaces all CR-Layers and LC-Layers

with ContextNorm layers with almost equivalent computa-

tional complexity and parameter numbers. The results show

that adding CR-Layers brings about 2-5% improvements to

all pose AUCs, and further adding LC-Layers results in 1-

2% improvements. We also show how the number of block

and number of layers used in every block affect the per-

formance of LMCNet. Adding more blocks results in slight

improvements while reducing the number of CR-Layers and

LC-Layers degrades the performance significantly.

Different numbers of eigenvectors in CR-Layers. As

mentioned in Sec. 3.1, we can use ke smallest eigenvalues

and their associated eigenvectors in the computation of CR-

Layers. To show how the number of eigenvectors ke af-

fects performance, we train LMCNet with different ke and

report the results in Table 4. The results show that using

only 16 eigenvectors decreases the performance remarkably

compared to using 32 eigenvectors. However, increasing

the number from 32 to 64 does not bring about a signifi-

cant performance improvement. In light of this, we use 32

eigenvectors in LMCNet for computational efficiency.

Compatibility with learning-based descriptors and

matchers. In Table 5, we report performance with or with-

out LMCNet on the SUN3D dataset and the ScanNet dataset

using SuperPoint [16] as the local descriptor and Super-

Glue [44] as the matcher. In this experiment, SuperGlue

and SuperPoint only uses 1024 keypoints but still achieve

a better performance than using 2000 SIFT features. On

the ScanNet dataset, we use exactly the same experimental

setting as used in SuperGlue [44] and finetune the LMC-

Net model with 20k image pairs from the ScanNet training

set. Results show that applying LMCNet as a pruner can

further improve the accuracy of estimated poses in all cases

Dataset Desc Matcher Pruner
AUC@ AUC@ AUC@

5◦ 10◦ 20◦

SUN3D

SP NN / 4.66 12.49 25.39

SP NN LMCNet 6.76 17.25 32.90

SP SG / 7.09 17.82 33.26

SP SG LMCNet 8.13 20.36 37.55

ScanNet

SP NN / 9.43 21.53 36.40

SP NN LMCNet 12.32 28.15 47.13

SP SG / 16.16 33.81 51.84

SP SG LMCNet 16.41 35.33 54.98

Table 5. Pose AUCs of LMCNet on the indoor SUN3D dataset

with the SuperPoint (SP) [16] descriptor and the SuperGlue

(SG) [44] matcher. NN means the nearest neighbor matcher.

on both datasets. Qualitative results and details about this

experiment can be found in the supplementary material.

5. Conclusion

In this paper, we designed a novel architecture LMC-

Net to learn the motion coherence property for correspon-

dence pruning. We proposed a novel formulation LMF of

the motion coherence by fitting a smooth function via de-

composition of graph Laplacian, which enables us to de-

sign a differentiable CR-Layer to capture the global motion

coherence in a neural network. Furthermore, we also de-

signed a LC-Layer to extract local coherence information

from neighborhoods of correspondences. Integrating these

two coherence layers, the proposed LMCNet achieves su-

perior performances on relative pose estimation and corre-

spondence pruning of dynamic scenes.

Acknowledgement. This work was supported by the

General Research Fund (GRF) of the Research Grant Coun-

cil of Hong Kong (17210718).

3244

References

[1] Daniel Barath and Jiřı́ Matas. Graph-cut ransac. In CVPR,

2018.

[2] Daniel Barath, Jiri Matas, and Jana Noskova. Magsac:

Marginalizing sample consensus. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 10197–10205, 2019.

[3] Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri

Matas. Magsac++, a fast, reliable and accurate robust esti-

mator. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 1304–1312,

2020.

[4] Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krys-

tian Mikolajczyk. Key.net: Keypoint detection by hand-

crafted and learned cnn filters. In Proceedings of the IEEE

International Conference on Computer Vision, pages 5836–

5844, 2019.

[5] JiaWang Bian, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit

Yeung, Tan-Dat Nguyen, and Ming-Ming Cheng. Gms:

Grid-based motion statistics for fast, ultra-robust feature cor-

respondence. In CVPR, 2017.

[6] Michael J Black and Padmanabhan Anandan. A framework

for the robust estimation of optical flow. In ICCV, 1993.

[7] Michael J Black and Paul Anandan. The robust estimation

of multiple motions: Parametric and piecewise-smooth flow

fields. Computer vision and image understanding, 63(1):75–

104, 1996.

[8] Eric Brachmann, Alexander Krull, Sebastian Nowozin,

Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Rother. Dsac-differentiable ransac for camera localization.

In CVPR, 2017.

[9] Eric Brachmann and Carsten Rother. Neural- Guided

RANSAC: Learning where to sample model hypotheses. In

ICCV, 2019.

[10] Matthew Brown and David G Lowe. Automatic panoramic

image stitching using invariant features. International jour-

nal of computer vision, 74(1):59–73, 2007.

[11] Thomas Brox and Jitendra Malik. Large displacement opti-

cal flow: descriptor matching in variational motion estima-

tion. Transactions on pattern analysis and machine intelli-

gence, 33(3):500–513, 2010.

[12] Luca Cavalli, Viktor Larsson, Martin Ralf Oswald, Torsten

Sattler, and Marc Pollefeys. Adalam: Revisiting handcrafted

outlier detection. arXiv preprint arXiv:2006.04250, 2020.

[13] Zhi Chen, Fan Yang, and Wenbing Tao. Gla-net: An atten-

tion network with guided loss for mismatch removal. ArXiv,

2019.

[14] Ondrej Chum, Tomas Werner, and Jiri Matas. Two-view ge-

ometry estimation unaffected by a dominant plane. In CVPR,

2005.

[15] François Darmon, Mathieu Aubry, and Pascal Monasse.

Learning to guide local feature matches. arXiv preprint

arXiv:2010.10959, 2020.

[16] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Superpoint: Self-supervised interest point detection

and description. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages

224–236, 2018.

[17] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-

feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-net:

A trainable cnn for joint detection and description of local

features. arXiv preprint arXiv:1905.03561, 2019.

[18] Martin A Fischler and Robert C Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[19] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003.

[20] Xinghui Li, Kai Han, Shuda Li, and Victor Adrian Prisacariu.

Dual-resolution correspondence networks. arXiv preprint

arXiv:2006.08844, 2020.

[21] Wen-Yan Lin, Siying Liu, Yasuyuki Matsushita, Tian-Tsong

Ng, and Loong-Fah Cheong. Smoothly varying affine stitch-

ing. In CVPR 2011, pages 345–352. IEEE, 2011.

[22] Wen-Yan Lin, Fan Wang, Ming-Ming Cheng, Sai-Kit Yeung,

Philip HS Torr, Minh N Do, and Jiangbo Lu. Code: Coher-

ence based decision boundaries for feature correspondence.

Transactions on pattern analysis and machine intelligence,

40(1):34–47, 2017.

[23] Wen-Yan Daniel Lin, Ming-Ming Cheng, Jiangbo Lu, Hong-

sheng Yang, Minh N Do, and Philip Torr. Bilateral functions

for global motion modeling. In ECCV, 2014.

[24] Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao,

and Xiaowei Zhou. Gift: Learning transformation-invariant

dense visual descriptors via group cnns. In Advances in

Neural Information Processing Systems, pages 6992–7003,

2019.

[25] David G Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vi-

sion, 60(2):91—110, 2004.

[26] Bruce D Lucas and Takeo Kanade. An iterative image reg-

istration technique with an application to stereo vision. Pro-

ceedings DARPA image Understanding, page 121430, 1981.

[27] Zixin Luo, Tianwei Shen, Lei Zhou, Jiahui Zhang, Yao Yao,

Shiwei Li, Tian Fang, and Long Quan. Contextdesc: Lo-

cal descriptor augmentation with cross-modality context. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2527–2536, 2019.

[28] Zixin Luo, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang,

Yao Yao, Tian Fang, and Long Quan. Geodesc: Learn-

ing local descriptors by integrating geometry constraints. In

Proceedings of the European conference on computer vision

(ECCV), pages 168–183, 2018.

[29] Jiayi Ma, Ji Zhao, Junjun Jiang, Huabing Zhou, and Xiaojie

Guo. Locality preserving matching. International Journal of

Computer Vision, 127(5):512–531, 2019.

[30] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic,

and Jiri Matas. Working hard to know your neighbor’s mar-

gins: Local descriptor learning loss. In Advances in Neural

Information Processing Systems, pages 4826–4837, 2017.

[31] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,

Mathieu Salzmann, and Pascal Fua. Learning to find good

correspondences. In CVPR, 2018.

3245

[32] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D

Tardos. Orb-slam: a versatile and accurate monocular slam

system. Transactions on robotics, 31(5):1147–1163, 2015.

[33] Andriy Myronenko, Xubo Song, and Miguel A Carreira-

Perpinán. Non-rigid point set registration: Coherent point

drift. In NeurIPS, 2007.

[34] Manjunath Narayana, Allen Hanson, and Erik Learned-

Miller. Coherent motion segmentation in moving camera

videos using optical flow orientations. In CVPR, 2013.

[35] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF

Moura, and Pierre Vandergheynst. Graph signal processing:

Overview, challenges, and applications. Proceedings of the

IEEE, 106(5):808–828, 2018.

[36] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-

beláez, Alexander Sorkine-Hornung, and Luc Van Gool. The

2017 davis challenge on video object segmentation. ArXiv,

2017.

[37] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,

and Jan-Michael Frahm. Usac: a universal framework for

random sample consensus. Transactions on pattern analysis

and machine intelligence, 35(8):2022–2038, 2012.

[38] Rahul Raguram, Jan-Michael Frahm, and Marc Pollefeys. A

comparative analysis of ransac techniques leading to adap-

tive real-time random sample consensus. In ECCV, 2008.

[39] René Ranftl and Vladlen Koltun. Deep fundamental matrix

estimation. In ECCV, 2018.

[40] Jerome Revaud, Philippe Weinzaepfel, César De Souza, Noe

Pion, Gabriela Csurka, Yohann Cabon, and Martin Humen-

berger. R2d2: Repeatable and reliable detector and descrip-

tor. arXiv preprint arXiv:1906.06195, 2019.

[41] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. Efficient

neighbourhood consensus networks via submanifold sparse

convolutions. arXiv preprint arXiv:2004.10566, 2020.

[42] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko

Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood consen-

sus networks. In Advances in Neural Information Processing

Systems, pages 1651–1662, 2018.

[43] Peter J Rousseeuw. Least median of squares regres-

sion. Journal of the American statistical association,

79(388):871–880, 1984.

[44] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. SuperGlue: Learning feature

matching with graph neural networks. In CVPR, 2020.

[45] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,

Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi

Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking

6dof outdoor visual localization in changing conditions. In

CVPR, 2018.

[46] Yafei Song, Ling Cai, Jia Li, Yonghong Tian, and Mingyang

Li. Sekd: Self-evolving keypoint detection and description.

arXiv preprint arXiv:2006.05077, 2020.

[47] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi,

and Kwang Moo Yi. Acne: Attentive context normalization

for robust permutation-equivariant learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 11286–11295, 2020.

[48] Bart Thomee, David A Shamma, Gerald Friedland, Ben-

jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and

Li-Jia Li. Yfcc100m: The new data in multimedia research.

Communications of the ACM, 59(2):64–73, 2016.

[49] Yurun Tian, Axel Barroso-Laguna, Tony Ng, Vassileios Bal-

ntas, and Krystian Mikolajczyk. Hynet: Local descrip-

tor with hybrid similarity measure and triplet loss. arXiv

preprint arXiv:2006.10202, 2020.

[50] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,

and Vassileios Balntas. Sosnet: Second order similarity regu-

larization for local descriptor learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 11016–11025, 2019.

[51] Lokender Tiwari and Saket Anand. Dgsac: Density guided

sampling and consensus. In 2018 IEEE Winter Conference

on Applications of Computer Vision (WACV), pages 974–

982. IEEE, 2018.

[52] Philip HS Torr and Andrew Zisserman. Mlesac: A new ro-

bust estimator with application to estimating image geome-

try. Computer vision and image understanding, 78(1):138–

156, 2000.

[53] Michał J Tyszkiewicz, Pascal Fua, and Eduard Trulls. Disk:

Learning local features with policy gradient. arXiv preprint

arXiv:2006.13566, 2020.

[54] Sebastian Volz, Andres Bruhn, Levi Valgaerts, and Henning

Zimmer. Modeling temporal coherence for optical flow. In

CVPR, 2011.

[55] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-

Ching Chang, Honggang Qi, Jongwoo Lim, Ming-Hsuan

Yang, and Siwei Lyu. UA-DETRAC: A new benchmark and

protocol for multi-object detection and tracking. Computer

Vision and Image Understanding, 2020.

[56] Olivia Wiles, Sebastien Ehrhardt, and Andrew Zisser-

man. D2d: Learning to find good correspondences

for image matching and manipulation. arXiv preprint

arXiv:2007.08480, 2020.

[57] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.

Sun3d: A database of big spaces reconstructed using sfm

and object labels. In ICCV, 2013.

[58] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal

Fua. Lift: Learned invariant feature transform. In European

Conference on Computer Vision, pages 467–483. Springer,

2016.

[59] Alan L Yuille and Norberto M Grzywacz. A mathematical

analysis of the motion coherence theory. International Jour-

nal of Computer Vision, 3(2):155–175, 1989.

[60] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei

Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hon-

gen Liao. Learning two-view correspondences and geometry

using order-aware network. In CVPR, 2019.

[61] Chen Zhao, Zhiguo Cao, Chi Li, Xin Li, and Jiaqi Yang.

Nm-net: Mining reliable neighbors for robust feature corre-

spondences. In CVPR, 2019.

3246

