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art, but warping is two orders of magnitude faster. The teaser shows content, style (geometry+texture), and output images for a Picasso style

transfer (left) and a Salvaor Dali style transfer (right).
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Abstract

Since its inception in 2015, Style Transfer has focused on

texturing a content image using an art exemplar. Recently, the

geometric changes that artists make have been acknowledged

as an important component of style [42, 55, 62, 63]. Our

contribution is to propose a neural network that, uniquely,

learns a mapping from a 4D array of inter-feature distances

to a non-parametric 2D warp field. The system is generic in

not being limited by semantic class, a single learned model will

suffice; all examples in this paper are output from one model.

Our approach combines the benefits of the high speed of

Liu et al. [42] with the non-parametric warping of Kim et

al. [55]. Furthermore, our system extends the normal NST

paradigm: although it can be used with a single exemplar, we

also allow two style exemplars: one for texture and another for

geometry. This supports far greater flexibility in use cases than

single exemplars can provide.

1. Introduction

Neural style transfer (NST) is a current area of research

in Non-photorealistic rendering (NPR), with applications in

games, artistic design, architecture, and many other fields. By

mimicking a wide gamut of artistic styles from visual examples,

it greatly enriches the expressiveness of digital images. To

reach its fullest extent, NST must be able to mimic not just the

textural elements of style that are related to (e.g., brush strokes),

but geometric warps that artists use. This paper considers

the problem of image stylization using deep neural networks,

specifically focusing on artistic warping.

NST was first proposed by Gatys et al. [15], a paper set

the paradigm for a great deal of work. The algorithm receives

a content image, Ic, and an artistic style exemplar, Is. These

images provide the subject and rendering style for an output im-

age: Io=τ(Ic,Is). The key idea is to construct a loss function

of two parts, for content LC(Io,Ic) and for style LS(Io,Is).

All of NST to date define both loss functions in terms of

kernel responses, typically drawn from the convolutional layers

within a network. The details of how the loss functions are

formed and how the network is trained largely explain the

development and diversification of current NST (see Section 2

for an overview). Such diversity notwithstanding, what is

common among all the techniques is that the kernel responses

depend on spatial color patterns and are spatially fixed. This

means that NST can be regarded as a sophisticated form of

tracing over the content image, which uses texture elicited from

the style image to construct the artwork.

The approach is limiting because artists change the shape

of the objects they render, that is: artists use geometric warping

in their work. Warping is evident across all of art, here we

give just a few examples among countless others. Caricaturists,

such as Ronald Searle, exaggerate semantic features in an

obvious way. English landscape artist George Stubbs painted

bulls to look much larger, stronger, “beefier” than in real life

– a kind of caricature. In his famous “Great Wave”, Hokusai

uses geometry to help emphasize natural power. Across the

world, and in all times, cultures have employed geometrical

distortions for expressive purpose. The art of children bears

little correspondence with geometric reality, yet often remains
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recognizable and is always cute. Figure 1 shows two artists

for whom geometric changes are an intrinsic part of their

style. Picasso took full advantage of the human capacity to

recognize highly distorted objects as he helped invent 20th

century Western art. Surrealist artist Salvador Dali’s melting

watches are instantly recognizable and attributable to him.

The importance of geometric warping is becoming recog-

nized in the NST literature. Recent work has included geometric

warping within an NST framework. The earliest of these are

designed for single classes such as faces [63] or text [62].

Later work has provided more generic solutions [42,55]. Our

contribution is an NST architecture that performs a geometric

warp and is uniquely characterized by the possession of all of

the following properties:

• unlike Yaniv et al. [63] and WarpGan [52], it is not

restricted to a single semantic class;

• unlike Kim et al. [55] who rely on forward and back-

ward optimizations, we train a specifically designed

feed-forward network to output warp fields given content

and geometric images;

• warping is up-to two orders of magnitude faster than

Kim et al. [55], while producing competitive results (see

Section 4);

• unlike Liu et al. [42] who are limited to parametric warp

fields, we produce a non-parametric warp;

• unlike every other NST algorithm other than Liu et

al. [42], we support the use of two images to specify style,

which adds versatility to image creation that is absent in

other NST algorithms.

Our technique is explained in Section 3 but is easy to summarise:

we warp an input image using our trained network, then apply

regular NST.

To test the importance of geometric warping in human

recognition of style, we performed an experiment. Details

are provided in Section 4, but we summarise here. Given a

style exemplar and outputs from two randomly selected NST

algorithms, humans were asked to select the most similar pair,

leaving the other as the odd-one-out. If neither NST algorithm

used geometric warping, the style exemplar was the odd-one-out

about 60% to 70% of the time, i.e., the two NST outputs were

said to be more similar to one another than to the exemplar. In

contrast, if one of the NST algorithms used geometric warping

and the other did not, the non-warped image was odd-one-out

between 60% and 70% of the time, leaving the non-warped

NST as the odd-on-out. We emphasize that all of the outputs

were subject to regular NST. This result shows that geometric

warping is a major contributor to style recognition by humans, in

addition to textural elements. The code is available at https:

//github.com/xch-liu/learning-warp-st.

2. Related Work

Prior to Neural Style Transfer (NST), Non-Photorealistic

Rendering (NPR) algorithms were used to create artistic images.

NPR algorithms accept 3D models, photographs, or videos

as input, while no exemplar is necessary. NPR is capable

of reaching many styles including Cubism [10], symbolic

substitution [25], non-linear cameras that warp images [20],

and caricature [2, 3]. The broader history of NPR is well

documented elsewhere, see (e.g., [32]).

Most, but not all NPR algorithms are prescriptive, Image

Analogies [23] being an exception. All NST algorithms learn,

from Gatys et al. [15] onwards. The core innovation was to

match the style of an output image to that of an exemplar. More

specifically, the network receives a photographic content image,

Ic, and an artistic style exemplar, Is. It outputs the content in

the style of the exemplar: Io=f(Ic,Is).

2.1. Texture NST

Until very recently, Texture-NST has been the dominant,

indeed sole, form of NST and was called NST with no further

qualification. Jing et al. [27] use a full partition of (Texture)

NST, which we follow.

Image-Optimization-Based Online: Methods in this category

are characterized by transferring the style through iteratively

optimizing an image. The first algorithm was proposed by

Gatys et al. [15,16]. They used the feature responses in higher

layers of the VGG-Network [53] to represent the content of

an image. The image style was represented by the feature

correlations (also called Gram matrix) between different layers

of the VGG. Some latter works used additional loss functions

(e.g., Histogram loss [48] and Laplacian loss [34]) to help

eliminate irregular artifacts. Li and Wand [33] were the first

to propose an MRF-based NST algorithm.

Model-Optimization-Based Offline: Methods in this category

optimize a generative model offline and generate the stylized

image with a single forward pass at the testing stage. The

first two algorithms were proposed by Johnson et al. [28] and

Ulyanov et al. [58]. Ulyanov et al. [59] further replaced batch

normalization with single image normalization and improved

the stylization quality. However, the trained models in these

methods are style-specific, which means separate models have

to be trained for images with particular styles. To improve the

flexibility, some works [6,13,35] incorporated multiple styles

into one single model, or used one model to transfer arbitrary

artistic style [18,26,36,46,56,60,61].

Variations of Texture NST: To date, NST has been extended for

many different tasks (e.g., portrait painting style transfer [50], vi-

sual attribute transfer [9,31,39,41,64], semantic style transfer [4,

8,45], video style transfer [5,19,24,49], 3D style transfer [7,29],

and photorealistic style transfer [37,43,44]). Interested readers

can refer to reviews [27,51] and the explanation [38] on NST.

2.2. Geometric NST

There is a growing consensus that the geometric deforma-

tions artists used to make imaginative recreations of objects

are worthy of consideration within NST. The literature is far
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Figure 2. Our algorithm consists of two modules: D (geometric

deformation) and R (texture rendering). For a given image pair{Ig,

Ic}, module D estimates a pixel-wise warp field and computes the

corresponding warping result Iw. Module R further renders Iw in the

texture style of It. Artworks are by Egon Shiele.

less voluminous than for texture NST, but the subject is no less

important. Some methods are limited to specialized content

domains such as faces [63], and text [62]. These methods

produce excellent results. Yaniv [63] manages to characterize

the geometric style of individual artists – analysis of style is

absent from the literature otherwise, style is defined by example.

More recently Kim et al. [55] and Liu et al. [42] described

more generic methods that operate over many classes. This

added flexibility does not appear to cost much in terms of

quality, see Section 4.

Kim et al. [55] proposed Deformable Style Transfer. They

used Neural Best-Buddies (NBB) [1] to match points between

the content image and the style exemplar, filtered matches with

low activations, incorporated a warping loss in STROTSS-based

texture style transfer [31]. While producing high-quality results,

this method is computationally expensive since both NBB

and STROTSS are optimization-based approaches and require

back-and-forth passes through the pretrained network. Each

step takes several minutes on a modern GPU.

Liu et al. [42] posited a mapping from a 4D function of

distance measures, M(i,j,k,l) to a 2D parametric warp field,

w(i,j|θ). Each M(i,j,k,l) measures the distance between filter

responses at two response locations, i.e., (i,j) in the content and

(k,l) in the exemplar. The output is a 2D warp field covering

the content image. The mapping is learned, making is very fast

to use. Liu et al. [42] demonstrate their method with affine and

bi-quadratic warps.

The approach we present in this paper has the speed of

Liu et al. [42], yet supports the same arbitrary deformations

as DST [55]. DST [55] is akin to Image Optimization, we use

Model Optimization.

3. Geometric & Texture Style Transfer

The inputs to our neural style transfer algorithm are: 1) a

content image Ic to be transferred, 2) an exemplar Ig to guide

geometric transfer, and 3) an exemplar It to guide texture

transfer. Note that we can set Ig = It, so that a single style

exemplar is sufficient.

As shown in Figure 2, our neural style transfer algorithm con-

tains two main modules. Our geometric warping moduleD com-

putes a non-parametric vector field to warp the content image

Ic to match the geometric style in the exemplar Ig. The texture

Figure 3. Geometric deformation module D. Geometric exemplar and

content image (Ig, Ic) are passed through the geometric deformation

module to generate a pixel-wise warping field.

rendering module R uses the texture exemplar It to produce the

final result Io. The modules are independent, but in use need to

be ordered. Rendering texture which is then warping also warps

the texture, we prefer to warp the content before texturing. All

the outputs in this paper we produced under the following model:

Io=R(D(Ig,Ic),It). (1)

The warp module D and the texture module R are detailed in

Section 3.1 and Section 3.2, respectively.

3.1. Geometric Style

The role of module D is to warp the content image Ic to

match the geometric exemplar Ig. The key idea is to train a

neural network that is able to infer a two-dimensional warp field

w given a four-dimensional scalar function M that measures

feature similarity. As shown in Figure 3, the module has three

major components: 1) feature extraction to get features Fc from

Ic, and Fg from Ig; 2) feature correlation to measure feature

similarity M(Fc,Fg); and 3) training a warp network to output

a function f such that w=f(M). Once trained, the network

f can be used on new inputs without modification. All outputs

in this paper were produced with a single warp network.

Note that the warp field is determined by w is non-

parametric. Also, training and using the network are very

efficient (see Section 4). The approach is not limited to a narrow

range of semantic content, (e.g., faces, text), yet combines the

advantages of the diverse deformations of Kim et al. [55] and

the computational efficiency of Liu et al. [42]. In the following,

we elaborate on each of the three components in detail.

3.1.1 Feature Extraction

Like many NST algorithms, we use the VGG network [53],

trained for object recognition as a feature source. We

extract features from pool4 layer of VGG, followed by an

L2-normalization. The output is a feature fieldF of sizeW×H.

This is 16 × 16 in our case, which balances computational

efficiency with warp quality. Each F(i,j) is an N dimensional

vector of unit length. We use this network on the content image

Ic and the geometric style exemplar Ig to get feature fields Fc

and Fg, respectively.
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Figure 4. Warp field estimation. The warp field is iteratively estimated by repeating the forward propagation. The upper row shows the predicted

field after each forward propagation, the final w was got by adding them to the initial w0. The lower row shows the intermediate results. Cat

target is by Ronald Searle.

3.1.2 Feature Correlation

This component computes feature correlation scores between

every position (i,j) in Fc and every position (k,l) in Fg. The

result is stored in a four dimensional scalar function M ∈
R
W×H×W×H . Each element Mc,g(i,j,k,l) is computed as:

Mcg(i,j,k,l)=
〈Fc(i,j)|Fg(k,l)〉

√

∑W
p=1

∑H
q=1〈Fc(i,j)|Fg(p,q)〉2

, (2)

where 〈Fc(i,j)|Fg(k,l)〉 is the inner product between vectors.

This form of correlation volume has been used in tasks such

as flow estimation [12,57], correspondence estimation [30,66],

and exemplar-based colorization [65].

3.1.3 Warp Network: Training and Using.

Our key technical contribution is to train a neural network f to

output a non-parametric warp field w, given a four dimensional

correlation volume M. We can write this as w = f(M).
Formally, the network f is a mapping as follows:

f :ℜW×H×W×H 7→ℜWI×HI×2, (3)

with W , H being the size of the feature arrays, and WI , HI the

image size. The warp field is used to warp the content image

to get w[Ic], which is the output of the warp module D.

In principle, training is not required as it is sufficient to solve

an optimization problem of the form minwh(w[Ic],Ig) for any

pair of images Ic and Ig, with h a measuring function. This

optimization-based approach is followed by Kim et al. [55], and

we optimize during training. But per-instance optimization is

slow when compared to computing the warp field directly from

a trained network f . Our results show that direct computation is

two orders of magnitude faster than Kim et al. [55] (see Table 2

in Section 4).

Training: Our network is trained with a set of image pairs that

are semantically related or have geometrically similar parts.

The image pairs cover a wide range of semantic content: faces,

animals, and so on. To improve the model’s generalization

on artistic domains, we use artistic augmentation to create a

texture-augmented copy of every training image. Once trained

the deformation network can be applied to any image regardless

of its semantic content.

The underlying idea is to locally move pixels in the content

image and (re-)compute features in the newly warped image un-

til a loss function is minimized. More specifically, letFm denote

the elements within a feature field that are influenced by pixel

m. Let w(Fc) denote the content feature field after the content

image is warped. Let M(w(Fc),Fg) denote the measure field

computed after the warp. The loss function is specified to be:

L(Fc,Fg|w)=−
∑

m∈Ic

∑

n∈Nm

log(p(w(Fm
c ),Fn

g )), (4)

where Nm is a search window centered on m, we use a 9×9
region. p(., .) is the probability that two features should be

classified together, we use the softmax function:

p(w(Fm
c ),Fn

g )=
exp(M(w(Fm

c ),Fn
g )

∑

t∈Nm
exp(M(w(Fm

c ),F t
g)
. (5)

The goal of training is to find the network parameters (i.e.,

its connection weights) that minimise the loss. The derivatives

of L with respect to the warp field w (∂L/∂w(Fc), ∂w(Fc)/∂w)

can be back-propagated into the warp net f to learn parameters.

Improving the Result: To achieve a high-precision estimation,

we iteratively refine the warp field during training. At each step

we use the current warp field wi to transform the content image,

then (re-)extract the features Fc so that a new measure M can

be computed. Notice that each step estimates the change from

the previous step, which is a differential. We express this as:

wi−wi−1=f(M(wi−1(Fc),Fg)), (6)

where wi represents the estimated transformation field at the ith

iteration. The final transformation field w is the accumulated

differential fields:

w=w0+

K−1
∑

k=0

f(M(wk(Fc),Fg)), (7)

wherew0 is the initial transformation field which was computed

through Equation 3 using the original feature pair{Fc, Fg},

and K is the chosen number of iterations (in practice we

find K = 3 is enough, giving four fields w0 to w3). As

shown in Figure 4, the estimated transformation fields become

increasingly accurate with respect to the geometric exemplar.
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Network-based Warping: Once trained, the network will di-

rectly compute a warp field given a pair of feature maps. Each

pass takes about 0.3 seconds. Multiple passes can be used to in-

crease accuracy, as described above. We stop iterating when the

result changes little, or after 4 passes, whichever is sooner. Four

passes consume 1.2 seconds, compared with about 6 seconds for

a single pair during training, and between 80 and 133 seconds for

using Kim et al.’s optimisation [55]. Table 2 has more details.

3.2. Texture Style

In this sub-section, we detail the texture rendering stage with

module R. As shown in Figure 2, this module accepts warped

image Iw and texture exemplar It as input, to yield an output

image: Io=R(Iw,It).
In line with the majority of the NST literature, we formulate

this as an optimization task to minimize both content loss

∆C(Io,Iw), and texture style loss ∆S(Io,It), both of which

depend on feature maps from a neural network trained for object

detection. Our only change is to adopt a coarse-to-fine strategy

that preferentially transfers texture with increasing details into

different areas of the output image. This strategy has been

used for decades in prescriptive texture synthesis [22,47], and

more recently in texture-only NST [14,17,54] where it helps

improve the style transfer results. In our work, we leverage it

to resolve blur and other artifacts that would otherwise occur

due to geometric warping.

We follow the parametric modeling strategy proposed by

Gatys et al. [16] to represent texture style and content in

the domain of a CNN. Specifically, we use a Gram-based

representation, which is the correlation between filter responses

in different layers of VGG, to model textures. The content

representation is relatively straightforward, we use the

inter-layer filter response directly.

Denote the feature activation map of input image I at layer

l of VGG by F l(I). This map is of size Wl×Hl, and each

feature element is a vector of Cl components corresponding

to the number of channels. Then the texture style of image I
at layer l can be represented by the Gram matrix as:

G(F l(I))=[F l(I)]⊺[F l(I)], (8)

where [F l(I)] is the reformatted feature map such that each

feature is a row vector in a matrix of Wl×Hl columns, and

G is a Cl×Cl symmetric matrix. The texture style distance is

specified to be:

∆S(Io,It)=
∑

l∈lt

∥

∥G(F l(Io))−G(F l(It))
∥

∥

2
, (9)

where lt is the set of selected layers for texture style represen-

tation. The content distance is specified to be the L2-norm

between feature maps:

∆C(Io,Iw)=
∥

∥F lc(Io)−F lc(Iw)
∥

∥

2
, (10)

Figure 5. Texture rendering at multiple scales: larger scales fill regions

stretched by warping, smaller scales deal with compressed regions

with fruitful details. The complement of multiple scales improves the

rendering quality. Upper right shows the image rendered with a single

pyramid layer, P=1.

where lc is the selected layer for content representation.

Texture style transfer is then instantiated as the following

optimization problem:

Io=argmin
I

[α∆S(I,It)+β∆C(I,Iw)], (11)

where α and β are the balancing weights used to control the

extent of stylized effects.

Multi-scale Strategy. We apply the texture rendering process to

the images involved (Io, Iw, and It) at multiple scales. Images

at different scales are obtained by feeding them into a Gaussian

pyramid, where each pyramid layer is formed by blurring and

downsampling the previous layer. Let Ip, Ipw, and Ipt be the

images at the pth scale of the Gaussian pyramid. Rather than

solve Equation 11 for each layer, we solve across all scales:

Io=argmin
I

P−1
∑

p=0

α∆S(I
p,Ipw)+β∆C(I

p,Ipt ), (12)

where P is the number of scales (we use P=4).

As shown in Figure 5, higher pyramids level will compensate

and strengthen regions that are not well covered by lower levels

(typically where an image region has been stretched). On the

other hand, low-levels fill in the small-scale details that the

higher levels tend to blur (where regions have been compressed).

3.3. Implementation

The geometric warping network is trained with images

from PF-PASCAL [21] and MS COCO [40]. All images are

resized to 256×256. We trained the network with batch size

16 and learning rate 1×10−5. Training takes about two hours

on a single GPU. Please see the supplementary for a detailed

description of the architecture of the warp network f . After

warping, empty background regions are inpainted. For the

texture rendering module, we compute content distance at

layer relu4 2 and texture distance at layers relu1 1, relu2 1,

relu3 1, relu4 1, and relu5 1.
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Content Style NST [16] AdaIN [26] DST [55] Ours
Figure 6. By using a single style exemplar, we compare style transfer results with Gatys et al. [16], AdaIN [26], and DST [55]. Texture-based

NST methods [16,26] do not change the geometric style of the content image. In contrast, both DST [55] and our approach deform the content

image to match the geometry of the style exemplar. Our method not only warps, but positions and proportions the main object to be consistent

with the style exemplar. From top to bottom the artists are: Picasso, Bacon, an anonymous child, and Hokusai.

4. Results

We present qualitative and quantitative results, over a variety

of artistic styles and comparing with several alternative methods.

All results are generated from the same trained deformation

module. Further results, including tests of our method’s

performance on annotated dataset and robustness to the artistic

domain, can be found in the supplementary material.

4.1. Qualitative Comparisons

We provide images for qualitative comparison against both

generic and class-specific NST algorithms. The class-specific

geometric NST algorithms rely on extensively trained models

– there is no guarantee a model we train would reproduce the

results. Therefore we have used their results directly from their

literature, producing our results using the same source material.

General Comparison. Figure 6 allows readers to gauge the

impact of geometric warping. It shows texture-only NST [16,

26] alongside the non-parametric warped outputs from both

DST [55] and our system. We believe is easy to see the effective-

ness of geometry transfer. The texture-only NST methods [16,

26] fail to capture the shape changes that are an inherent part of

the style. This limits their capacity for mimicry to artistic styles

that exhibit no geometric warping. In contrast, DST [55] and

our method are capable of capturing the geometric style of the

exemplar images. Our coarse-to-fine warping strategy achieves

better deformation on multiple object classes, such as the head

shape/posture of portraits and the size/proportion of the main

objects. Meanwhile, the texture styles are also well transferred.

Non-parametric vs. Parametric Warp. GST [42] provides

a neural architecture for geometric warping, but is limited to

global bilinear warps. Figure 7 compares the output from GST

with ours, using a cow image as content and a bull painting by

Stubbs as the single exemplar. GST increases the body mass

Content Style Ours GST
Figure 7. Deformation comparison with GST [42]. The results are

directly adopted from their paper. An animal painting by Stubbs is

used as a single exemplar. Due to non-parametric warp, our method

better transfers the head in terms of its size compared with the body.
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Content Style DST [55] FoA [63] Ours
Figure 8. Comparison of our method with DST and FoA [63] on face

art. The style images are from Leger.

of the cow, which is in line with the geometric style of Stubbs,

who painted bulls to look bigger and stronger than the actual

case. However, because their parametric warp is global, the

cow’s head also increases in size – but should not. Our result is

closer to Stubbs’s style in keeping the head size small compared

to the body.

Face-of-Art and WarpGAN. The ST literature includes

geometric warping designed for specific cases. Yaniv et al. [63]

use a strong model of faces (a point distribution model [11])

that needs to be trained with many examples from the same

artist. The model can be analyzed to elicit artistic style, and

high-quality images can be generated. However, the use of

a strong model restricts its scope to a single semantic class.

Figure 8 shows the comparison with DST [55] and FoA [63]

using portraits by Fernand Leger as the style exemplar. All

methods echo the geometric style of the exemplar, although in

slightly different ways; texture transfer differs too. The final

output is of high quality in all cases.

WarpGAN [52] is designed specifically for stylized portraits

or caricatures. It falls into the category of collection style

transfer, in which the target style is defined by a collection

of images rather than one. In contrast, our approach and DST

belong to example-guided style transfer, in which the target style

comes from a single example. This means only our approach

and DST can handle every single content/style image pair.

Figure 9 compares our results, outputs of DST taken from [55]

and outputs of WarpGAN taken from [52]. All methods produce

high-quality results. Our coarse-to-fine warp strategy helps to

preserve details such as face contours, eyebrow shapes, etc.

12.68% 8.45% 61.97% 12.68% 4.23% 38.03% 100.00%

21%

59%
38%

70%68%

79%

41%
62%

30%32%

Style exemplars Results of other algorithms

Gatys el al. AdaIN DST Ours(unwarped) Ours(full)

Table 1. Subjective similarity.

Content Style DST WarpGAN Ours
Figure 9. Comparison of our method with DST [55] and Warp-

GAN [52] on facial caricature.

4.2. Quantitative Comparisons

Here we provide comparison results from quantitative

experiments, to assess the subjective similarity between the

output and GPU running times.

Subjective Similarity. The aim of NST is to transfer style, here

we ask “how well the style was transferred?” To quantitatively

gauge this subjective assessment, we performed an on-line simi-

larity experiment. Each of the 50 participants was shown a style

exemplar and two output images from NST algorithms as listed

below. The three images were presented on a row in random

order. The participant was asked to pick two they judged to be

the most similar. Each participant repeated this 5 times.

The output images were created using five different NST

methods: Gatys et al. [16], AdaIN [26], DST [55], our method

without warping, and our method with warping. We used ten

content-style pairs to generate results. In each case a single

exemplar was used to represent both geometry and texture

styles. In this way, we created a group of five outputs for each

exemplar. At each trial, the exemplar was selected at random,

and then two output images from its group were selected at

random. We obtained 25 votes for each pair of methods.

This experiment is similar to those conducted by Liu et

al. [42] and by Kim et al. [55], although the latter also asked

about the preservation of content. We have yet to find an

example where the warp is so extreme as to make content

unrecognizable, so we opted for the simpler, one question

experiment. As shown in Table 1, our results agree with the

previous literature: geometric warping has a significant impact

on subjective similarity. Our method achieved the highest user

Methods

Runtime (s)

Geometric

Warping

Texture Rendering

256
2

512
2

1024
2

Gatys et al. [16] N/A 14 33 116

AdaIN [26] N/A 0.037 0.14 0.55

DST [55] 83–133 62 100 165

Ours 0.3–1.2 16 48 140

Table 2. Computational efficiency comparison on RTX 2080 Ti. Run-

ning times are in seconds. Artistic warping is not applicable to [16,26].
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preference, i.e., is subjectively deemed closer to the target style.

GPU Time. In Table 2 we compare the running time of

our method and [16, 26, 55] for several image sizes. Note

that the geometric warpings of DST [55] and our method

are all independent of the image size. The warping of DST

consists of two steps: (1) find matching points with Neural

Best-Buddies [1], which takes about two minutes on a GPU;

and (2) clean (NBB) points, which takes a few seconds. For

texture rendering, compared to model optimization based

offline method [26], [16, 55] and our work are advantageous

for quality at the cost of speed. Our geometric warping module

could be combined with offline NST methods such as [26].

5. Discussion

In this section, we discuss potential applications of our

method, followed by its limitations.

Applications. Since we explicitly model both geometry and

texture styles, we can easily use two exemplars to produce

an output as Io =µ(Ic,Ig,It). This provides the potential for

previously unavailable versatility and control. Figure 10 shows

several practical examples benefiting from separated geometry

and texture style transfer.

The first example uses a face and an African mask made of

clay, along with two different textures to produce two different

outputs. One warps the face to the mask, which is then textured

using a marble example to create an image of a statuette. The

second example warps the mask onto the face, which is then

textured with wood to create a wooden mask to snugly fit

the face. This shows that the model learned by the network

“goes both ways”. Our second example is inspired by Picasso’s

famous remark, “Every child is an artist. The problem is how

to remain an artist once he grows up.” Child art is notoriously

difficult – perhaps impossible – for adult artists to reproduce.

Our approach makes it possible to emulate child art using

child art exemplars. In this case, we have warped a chicken

to a child’s drawing, which we then “crayoned” over. A third

example is virtual try-on. In our example, a dress that might be

Figure 10. Example applications. Left: a face, clay mask, and two

textures make a wooden mask and marble statuette. Top: emulating

a child’s crayon drawing. Bottom: virtual try-on.

Figure 11. The in-principle limit is the 1-1 mapping assumption. Left:

A low-feature count in the Matisse (detail) leads to unexpected results

in the warped dancer. Middle: Hindu god Brahma, with many similar

faces having too many features. Right: a cycle of starfish, doughnut,

eight-shaped octopus cause failures due to topological differences.

bought is warped onto the dress being worn, and then textured.

This is not an art example, rather it shows that applications of

our system may extend beyond its original design intent.

Limitations. Our approach is limited by its assumptions in

terms of both geometric and texture transfer. The limitations

on texture transfer are shared with many other NST algorithms.

We will focus on discussing geometric transfer, since our

contribution is in geometric warping.

The key limiting assumption is that the content image and ge-

ometric exemplar each exhibit local discriminative features that

can be mapped 1-1. The mapping struggles when the geometric

exemplar has too few features, or has too many nearly identical

features. Both of these cases are shown in Figure 11. Another

interesting failure case occurs when the topology of the shapes

involved differ, again shown. All of these are fundamental in

that they will require changes to our algorithm to address.

The reader may be surprised we have not included cases

where the semantic content of source and target differ. Output

can vary in such case, but acceptability is a value judgment that

depends on the intentions of the user. We anticipate that most

people wish to follow the majority of artistic practice and deform

objects within semantic class limits, most of the time. They will

rarely if ever wish to warp an owl into a house, for example, and

if they choose to do so, the output may be acceptable (there may

be some artistic reason to have a house-shaped owl). This dis-

cussion is expanded upon in the supplementary, with examples.

6. Conclusion

Our paper presents a novel method for neutral style transfer

with more flexible and efficient non-parametric geometric

deformations. While generating competitive results, our method

significantly improves speed. The impact of geometric warping

on style is clear – warping is needed to better mimic many

artistic styles. Partitioning texture from geometry allows greater

flexibility in use allowing two exemplars to influence the

outcome, including potential applications beyond NST.
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