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Abstract

Semi-supervised generative learning (SSGL) makes use

of unlabeled data to achieve a trade-off between the da-

ta collection/annotation effort and generation performance,

when adequate labeled data are not available. Learning

precise class semantics is crucial for class-conditional im-

age synthesis with limited supervision. Toward this end, we

propose a semi-supervised Generative Adversarial Network

with a Mask-Embedded Discriminator, which is referred to

as MED-GAN. By incorporating a mask embedding mod-

ule, the discriminator features are associated with spatial

information, such that the focus of the discriminator can be

limited in the specified regions when distinguishing between

real and synthesized images. A generator is enforced to syn-

thesize the instances holding more precise class semantics

in order to deceive the enhanced discriminator. Also ben-

efiting from mask embedding, region-based semantic reg-

ularization is imposed on the discriminator feature space,

and the degree of separation between real and fake class-

es and among object categories can thus be increased. This

eventually improves class-conditional distribution matching

between real and synthesized data. In the experiments, the

superior performance of MED-GAN demonstrates the effec-

tiveness of mask embedding and associated regularizers in

facilitating SSGL.

1. Introduction

Generative adversarial networks (GANs) [11] have made

great progress in high-fidelity image synthesis [4] [14] [15]

[16]. To better capture class semantics, class-conditional

GANs are developed to synthesize diverse instances to

match the underlying class-conditional distribution of real

data [26] [30] [27] [10]. For many scenarios of real-world

∗Corresponding author.

Figure 1. Visually compare the activation maps of a generic dis-

criminator (middle row) and a mask-embedded discriminator (bot-

tom row) used in MED-GAN on CUB-200. The top row shows

a real image and the images constructed via random regional re-

placement between the real image and a number of fake images.

applications, accurate and sufficient labeled data are expen-

sive to obtain, since the collection process typically needs

expertise. The difficulty of acquiring labeled data has moti-

vated the research on semi-supervised generative learning,

which addresses a challenging task: how to train a reli-

able generative model for the case where there are a lim-

ited amount of labeled data together with a large amount of

unlabeled data.

To improve class-conditional image synthesis in the

semi-supervised setting, a number of techniques have been

explored for enhancement on generators/discriminators.

Wu et al. [43] performed class-wise mean feature match-

ing between synthesized and real data in a classifier feature

space. In [24], real and fake images of each class were ran-

domly mixed through regional replacement. The resulting

images were used to regularize a discriminator. However,

a class-conditional discriminator always tends to learn the

most discriminative features. As shown in Figure 1, it fo-

cuses on the regions which are not necessarily important,

especially for the case of limited supervision. This may de-
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Figure 2. An overview of the proposed MED-GAN model, which consists of three constituent networks: a generator G, a discriminator

D, and a classifier C. C learns to produce pseudo labels ỹu of the unlabeled data xu, such that they can be used as well as the labeled

data x. To enforce G to focus more on the synthesis of class semantics-based content, a mask embedding model Amask is incorporated

to induce D to discover the local differences between real and synthesized images. Also based on mask embedding, the images x̂z,λ

constructed via random regional replacement between x and synthesized images xz can be used to increase the degree of class separation

in the discriminator feature space, which benefits class-conditional distribution matching between real and synthesized data.

grade the generation performance of the class-conditional

generator. In this work, we will explore how to induce a

discriminator to distinguish between real and synthesized

data from a local point of view. By reducing the depen-

dence of the discriminator on the background, the generator

may focus more on the synthesis of class semantics-related

content.

More specifically, we propose a semi-supervised Gen-

erative Adversarial Network with a Mask-Embedded Dis-

criminator (MED-GAN) for facilitating class-conditional

image synthesis. Figure 2 illustrates the structure of MED-

GAN. Considering the effectiveness of random regional re-

placement in constructing complex images, we adopt this

strategy to combine real and synthesized data. As for train-

ing the discriminator, there is a lack of guideline on how to

assign source (real/fake) labels to the resulting instances. To

bypass this issue, we incorporate a mask embedding mod-

ule in the discriminator, such that the mask of regional re-

placement can be embedded into the discriminator feature

space. This module aims to associate spatial information

with the corresponding features, and the discriminator thus

applies more attention on the specified region. Further, we

adopt a region-based consistent and contrastive regulariza-

tion approach to regularize the discriminator feature space.

By imposing separation between real and fake classes and

among object categories, the generator needs to improve

synthesis quality, while at the same time learn more pre-

cise class semantics in order to deceive the enhanced dis-

criminator. Extensive validation experiments verify that the

adopted techniques are effective for significantly improv-

ing synthesis quality in terms of Fréchet Inception Distance

(FID) [13]. Moreover, MED-GAN is able to consistent-

ly outperform the previous state-of-the-art semi-supervised

GANs on multiple standard benchmarks.

Main contributions. We summarize the main contri-

butions of this work as follows: (1) To induce a genera-

tor to focus more on synthesizing class semantics-related

content, we first enhance a discriminator by incorporating a

mask embedding module, which learns to associate spatial

information with the corresponding discriminator features.

(2) Also based on mask embedding, we construct region-

based regularizers to impose class separation on the dis-

criminator feature space, which facilitates class-conditional

distribution matching. (3) We judiciously design the opti-

mization formulation of the constituent networks. A clas-

sifier is jointly trained with the generator and discrimina-

tor, such that they can mutually reinforce each other for

capturing more precise class semantics. (4) In addition to

semi-supervised generative learning, we apply the devel-

oped techniques to the fully-supervised case where the gen-

eration performance of a BigGAN can also be significant-

ly improved, which indicates the applicability of our tech-

niques to generic class-conditional GANs.

2. Related Work

2.1. Semi­Supervised Image Classification

There are a variety of techniques developed for image

classification in the semi-supervised setting. To encour-

age high-confidence predictions, a widely used strategy is

to minimize the entropy of the posterior class probability

distribution on unlabeled data [12]. To smooth the deci-

sion boundaries, this strategy is often combined with other

consistency-based regularization approaches. In [28], Miy-

ato et al. proposed a virtual adversarial training method

to compute an adversarial perturbation which maximal-
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ly changes the model’s predictions, while the model was

trained to resist the perturbation at the same time. In addi-

tion, Park et al. [31] proposed a virtual adversarial dropout

method to perturb the model’s parameters. Laine and Aila

[21] proposed a Π-model, in which different stochastic

transformations were applied to each instance, while requir-

ing the corresponding predictions to be consistent. To ex-

ploit the similarities among unlabeled instances, Luo et al.

[25] built a prediction-based graph, and regularized a model

by minimizing the representation divergence of the neigh-

bors in the graph. Incorporating an additional model is also

an effective way to construct consistency-based regulariza-

tion [32] [44] [17]. In [37], a ‘Mean Teacher’ model was

proposed to jointly train a student network and a teacher

network. These two networks were required to have con-

sistent predictions on unlabeled instances. Also along this

line, a correction module was incorporated to enhance the

complementarity between constituent networks [44]. In [2],

Athiwaratkun et al. proposed a stochastic weight averag-

ing strategy to improve the generalization performance of

the consistency-based methods. More recently, Berthelot et

al. [3] adopted a MixUp method [46] [38] to linearly com-

bine training images and corresponding class labels, and en-

forced a model to have linear predictions along the interpo-

lation path. Verma et al. [39] combined the ‘Mean Teacher’

model with MixUp, such that the teacher network was able

to provide more reliable pseudo labels when mixing unla-

beled data.

2.2. Semi­Supervised Image Synthesis

Semi-supervised generative learning has exhibited the

possibility of class-conditional high-fidelity image synthe-

sis, conditioned on limited supervision [19] [6] [24]. A

number of GAN-based methods have been developed for

this task. Due to the lack of labeled data, a widely used

strategy is to train a categorical discriminative network,

which aims at distinguishing real data from fake data along

with predicting the class labels of real data. Toward this

end, Springenberg presented a categorical generative adver-

sarial network (CatGAN) in [35]. The discriminator in Cat-

GAN was required to produce high-confidence prediction-

s of the class labels of real instances, while the predicted

class probability distributions of the synthesized instances

should be close to uniform. In [41], Wei et al. adopted

the Wasserstein GAN (WGAN) [1] to stabilize the GAN’s

training process. In [33], a variety of techniques were also

explored to improve model stability and synthesis quality.

Another effective strategy is to incorporate a classifier into

the minimax game. Li et al. [22] proposed a Triple-GAN

model, in which a classifier competed with a discriminator

by estimating the class labels of unlabeled data as accurately

as possible. To improve the class separability of synthesized

data, Wu et al. [43] incorporated class-conditional distribu-

tion matching in Triple-GAN. Furthermore, Gan et al. [9]

proposed a Triangle-GAN model, in which one more dis-

criminator was used to identify two types of fake instance-

label pairs: synthesized instances with specified labels and

unlabeled instances with pseudo labels. To address the issue

of imbalance between real and synthesized data, Liu et al.

[24] applied random regional replacement [45] to construc-

t between-class instances, and regularize the behaviors of

the classifier and discriminator in Triangle-GAN. To assist

image classification, in [5], a ‘bad’ generator was trained

to synthesize the instances, which were located in the low-

density regions in the classifier feature space, such that the

synthesized data were complementary to the real data to

a certain extent. To increase the class margin of synthe-

sized data, Dong and Lin [7] proposed a MarginGAN mod-

el based on Triple-GAN. Unlike Triple-GAN, the generator

competed with the classifier which was trained to minimize

the class margin of the synthesized data.

Differences from the existing works. Although the ran-

dom regional replacement method [45] was applied to im-

age synthesis [34] [24], we adopt a fundamentally different

approach to utilize the constructed data. (1) We incorpo-

rate a mask embedding module to enable a discriminator to

discover local differences between real and synthesized im-

ages, which benefits the synthesis of class semantics-related

content. (2) We further exploit mask embedding to con-

struct effective regularizers to increase the degree of class

separation in the discriminator feature space, which benefits

class-conditional distribution matching. These two aspects

distinguish MED-GAN from the existing semi-supervised

GANs.

3. Preliminaries

Before describing MED-GAN in detail, we briefly intro-

duce an image mixing method based on random regional

replacement denoted by T . Let xi and xj denote paired im-

ages. To mix xi and xj , a binary mask mλ of spatial resolu-

tion H×W is constructed by determining a rectangular region

and setting the values of the elements in the region to 1, and

those outside the region to 0, where the random variable

λ ∼ Beta(α, α) controls the location and size of the re-

gion. Specifically, the top-left corner (u0, v0) of the region

is randomly sampled on the image plane, and the bottom-

right corner is positioned at (u0+
√
1− λW, v0+

√
1− λH).

Next, the constructed image x̂λ is represented as follows:

x̂λ = T (xi, xj ,mλ),

= mλ ⊙ xi + (1−mλ)⊙ xj ,
(1)

where ⊙ denotes element-wise multiplication. x̂λ is more

complex than xi and xj , and inferring its class label is thus

challenging, especially in the case where the original im-

ages are from different classes. Regularizing the model’s
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behavior on the constructed data is typically beneficial for

the generalization performance.

4. Proposed Approach

4.1. Overview

In the semi-supervised setting, there are a limited

amount of instance-label pairs (x, y) ∼ pr and a large

amount of unlabeled instances xu ∼ pu, where pr and pu
denote the distributions of labeled and unlabeled data, re-

spectively. The proposed framework aims to train a class-

conditional generative model with the limited supervision,

and the synthesized instances should be indistinguishable

from real instances, while at the same time hold correct

class semantics. Toward this end, our framework consists

of three components: a generator G, a discriminator D, and

a classifier C. For class-conditional synthesis, G maps a

random vector z together with a specified class label yz to

an instance xz = G(z, yz), where z is sampled from a prior

distribution q0. On the other hand, D is trained to distin-

guish real pairs (x, y) from the synthesized ones (xz, yz).
To exploit unlabeled data xu, C learns to produce pseudo

labels ỹu as accurately as possible, and the resulting pairs

(xu, ỹu) can be utilized as well as the labeled data.

To induce G to learn precise semantics of different ob-

ject categories, D is enhanced by incorporating a mask em-

bedding module Amask, such that it is able to apply more

attention on the specified region. An important benefit is

to fully exploit the constructed data via random regional re-

placement. We further regularize the discriminator feature

space by incorporating region-based consistent and con-

trastive regularizers, which benefit class-conditional distri-

bution matching between real and synthesized data. G, D,

and C are jointly optimized in the proposed framework.

With the enhancement on D, G and C mutually reinforce

each other during training. G learns class-conditional dis-

tributions with the help of the unlabeled data and pseudo

labels estimated by C, and C can in turn learn from G by

using the synthesized instance-label pairs.

4.2. Enhancement on the Discriminator

4.2.1 Mask embedding

Let m denote a binary mask, in which the values of the el-

ements in a rectangular region are 1, and those outside the

region are 0. We can use m to encode the region that need-

s attention. To encourage the discriminator to apply more

attention on the specified region, we modify the discrimina-

tor D by including an additional mask embedding module

Amask on top of the backbone denoted by Df , as depict-

ed in Figure 2. Amask is expected to offer insights on the

important spatial regions when training D. By inputting m,

Amask embeds it into an intermediate feature space, and the

resulting weight maps are represented by Amask(m). We

further use Amask(m) to weight the intermediate feature

maps as follows:

D̂f (x,m) = Df (x) +Amask(m)⊙Df (x), (2)

where D̂f (x,m) represents the mask-embedded features.

Different from the attention-based methods [42] [47],

Amask aims to associate the discriminator features with the

specified region. For identifying real and synthesized data

of each class, we need another embedding module Alabel

to further embed class label at the last latent layer Dg as

follows:

D̂g(x,m, y) = Dg(x) +Alabel(y)⊙Dg(x). (3)

The resulting features D̂g(x,m, y) are used to make a final

decision.

Discussion. Mask embedding unlocks more effective

approaches of utilizing the constructed images via random

regional operation to regularize the discriminator. We can

mix real and synthesized images as x̂z,λ = T (x, xz,mλ).
For training D, it is crucial to determine the source (re-

al/fake) label and class label for x̂z,λ, since x̂z,λ is com-

posed of a real image and a synthesized image. Construct-

ing a soft source label via linear combination conflicts with

the discriminator’s role in the adversarial training process.

In [24], x and xz are required to have the same class label,

and the source label of x̂z,λ is simply determined accord-

ing to the ratio of the real image part. However, the case

of the ratio≈0.5 still confuses the discriminator. Empow-

ered by mask embedding, we can bypass this issue, since

the mixing mask mλ can be utilized by our D. Both the

source and class labels of x̂z,λ are consistent with that of x,

and the training objective is to maximize D(x̂z,λ,mλ, y),
which denotes the probability of x̂z,λ being from real data,

conditioned on the mask and class label. By competing with

the enhanced discriminator, the generator is encouraged to

focus more on class semantics-related content.

4.2.2 Region-based regularization

To facilitate class-conditional distribution matching be-

tween real and synthesized data, we explore the benefits

of mask embedding in regularizing the discriminator fea-

ture space. To enable D to capture class semantics-related

information, the discriminator features should be robust to

changes in the masks, and a consistency loss can thus be

defined as follows:

Lcons = Ex̂z,λ,x̂z,λ′∼p̂z

‖mλ−mλ′‖<ǫ

[‖D̂f (x̂z,λ,mλ)− D̂f (x̂z,λ′ ,mλ′)‖22],

(4)

where p̂z denotes the distribution of the constructed in-

stances, and ǫ denotes a hyper-parameter controlling the de-

gree of difference between the masks. Since both the real
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image parts of x̂z,λ and x̂z,λ′ are from x, minimizing Lcons

encourages D to apply more attention to the content shared

by the constructed images. This strategy exploits the large

amount of synthesized data for learning class semantics.

When constructing x̂z,λ, we can also define a contrastive

prediction task on the following pairs: (x, x̂z,λ) is positive

since they have the same image part indicated by the mask

mλ, and (x, xz) is negative. Our objective is to push x and

x̂z,λ closer together, while moving away from xz in the fea-

ture space, and the corresponding contrastive loss function

is defined as follows:

Lctrs = Ex̂z,λ∼p̂z
[max(‖D̂f (x,mλ)− D̂f (x̂z,λ,mλ)‖22

− ‖D̂f (x,mλ)− D̂f (xz,mλ)‖22 + γ, 0)],

(5)

where γ denotes a margin that separates the negative in-

stances from the positive ones. Minimizing Lctrs not only

enforces Amask to accurately discover the features associat-

ed with the region indicated by the mask, but also induces D
to learn more discriminative representation to separate real

and synthesized data from a local point of view. It is noted

that the class label of x is not necessarily the same as that

of xz . When y 6= yz , the class separability in the feature

space can also be improved by minimizing this contrastive

loss. In this case, the generator is able to more effectively

learn class-conditional data distributions.

4.3. Joint Training of Constituent Networks

Optimizing the generator. To increase the proximity of

the synthesized instances to the real data of each class, one

of G’s objectives is to fool D by minimizing an adversarial

training loss defined as follows:

Ladvs = E z∼q0
m∼qm

[log(1−D(G(z, yz),m, yz))], (6)

where the mask m is sampled from a prior distribution

qm to encode a random rectangular region, e.g., various

sized regions whose size is distributed evenly between 75%

and 100% of the whole image area and whose aspect ratio

is chosen randomly between 3/4 and 4/3. In addition, G
should be penalized for synthesizing instances which devi-

ate from the specified class. The classifier C serves to com-

plement D on this point. We define another objective of G
to synthesize instances which can be correctly recognized

by C, and the corresponding recognition loss is defined as

follows:

Lrecg = Ez∼q0 [−yz logC(G(z, yz))], (7)

where C(·) represents the estimated class probability distri-

bution of an instance. By minimizing Lrecg , G is encour-

aged to enrich the class semantics of synthesized instances

under the guidance of C. After integrating the above two

aspects, the optimization problem of G is formulated as fol-

lows:

min
θG

Ladvs + Lrecg, (8)

where G is parameterized by θG. By competing with D and

working cooperatively with C, G is trained to synthesize

high-fidelity images, while at the same time hold identifi-

able class semantics.

Optimizing the classifier. To exploit real unlabeled da-

ta, C is used to estimate their class labels as accurately as

possible. Due to lack of real labeled data, the synthesized

instance-label pairs (xz, yz) are used to extend the train-

ing set. Instead of directly feeding the training instances

to C, we construct two types of ‘multi-label’ instances via

random regional replacement: x̂z,λ = T (x, xz,mλ) mix-

ing between real labeled and synthesized instances, and

x̂u,λ = T (x, xu,mλ) mixing between real labeled and un-

labeled instances. Since x̂z,λ/x̂u,λ is derived from two d-

ifferent images, its class labels can be defined as ŷz,λ =
{y, yz|λ}/ŷu,λ = {y, ỹu|λ}, where λ denotes the ratio be-

tween the two labels. C is required to identify the associ-

ated classes of x̂z,λ/x̂u,λ, and the prediction is evaluated as

follows:

ϕ(ŷz,λ, C(x̂z,λ)) = −(1− λ)y logC(x̂z,λ)− λyz logC(x̂z,λ),
(9)

and ϕ(ŷu,λ, C(x̂u,λ)) can be computed in a similar way.

Consequently, C can be trained in a supervised manner, and

the optimization formulation is expressed as follows:

min
θC

Ex̂z,λ∼p̂z [ϕ(ŷz,λ, C(x̂z,λ))]+Ex̂u,λ∼p̂u [ϕ(ŷu,λ, C(x̂u,λ))],

(10)

where C is parameterized by θC , and p̂u denotes the dis-

tribution of the constructed instances between real labeled

and unlabeled instances. Both the increased diversity and

complexity of training data benefit C’s generalization per-

formance.

Optimizing the discriminator. To enforce G to precise-

ly match the underlying class-conditional distributions, D is

trained in opposition to G. There are four types of training

data fed to D: real labeled data (x, y), real unlabeled da-

ta (xu, ỹu), synthesized data (xz, yz), and constructed data

(x̂z,λ, y). Compared to x, it is more difficult for D to identi-

fy x̂z,λ as real, since only a part of x̂z,λ is from x. Indicated

by mλ, D can be enhanced by minimizing an identification

loss on the constructed data as follows:

Lidnt = Ex̂z,λ∼p̂z
[log(1−D(x̂z,λ,mλ, y))]. (11)

For (x, y) and (xz, yz), D is encouraged to apply more at-

tention on discovering their differences in random rectan-

gular regions. We formulate the optimization problem of D
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as follows:

max
θD

E x∼pr
m∼qm

[logD(x,m, y)] + Exu∼pu
m∼qm

[logD(xu,m, ỹu)]

+ Ladvs − Lcons − Lctrs − µLidnt,

(12)

where µ is a weighting factor. By providing pseudo labels

for real unlabeled data, C cooperates with D in matching

the synthesized data with real unlabeled data.

5. Experiments

We evaluate MED-GAN on multiple standard bench-

marks. Our experiments mainly include four aspects: (1)

We illustrate the effectiveness of the contrastive regulariza-

tion in the discriminator feature space on synthetic data.

(2) We also investigate the relative contributions of mask

embedding and adopted regularizers on natural image syn-

thesis. (3) We further perform extensive comparison with

state-of-the-art semi-supervised generative methods in both

image synthesis and classification. (4) We finally explore

the applicability of the proposed improvement techniques

to fully-supervised generative learning.

5.1. Datasets and Settings

We conduct extensive experiments on diverse datasets:

CIFAR-10 and CIFAR-100 [20], FaceScrub [29], and CUB-

200 [40]. CIFAR-10 (CIFAR-100) contains 50k and 10k

natural images of resolution 32×32 from 10 (100) object

categories for training and testing, respectively. FaceScrub

is a human face dataset, in which the 100 largest classes

are selected to build the FS-100 dataset. FS-100 contains

about 13k training images and 2k test images of size 64×64.

CUB-200 contains about 6k training images and 6k test im-

ages from 200 bird classes. In the experiments, the CUB

images are resized to 128×128.

To comply with the semi-supervised setting in the liter-

ature, there are 4k, 10k, 2k, and 2.8k labeled images, and

the remaining images are unlabeled in CIFAR-10, CIFAR-

100, FS-100, and CUB-200, respectively. The network-

s are jointly trained from scratch. There are a total of

600 training epochs, and each batch contains 50/50/50

labeled/unlabeled/synthesized instances (16/16/16 for FS-

100, 32/32/32 for CUB-200). The Adam optimization

method [18] is adopted for stochastic gradient descent. The

learning rate ς and two momentum parameters (β1 & β2)

are set to 0.0002, 0, and 0.999, respectively. For mixing

images as in Eq.(1), the random vector λ is drawn from the

distribution Beta(0.2, 0.2), which is the same as [24]. The

hyper-parameter γ in Eq.(5) and the weighting factor µ in

Eq.(12) are set to 0.5 and 0.1, respectively. The impact of γ
and µ will be investigated in Sec.5.5. We use the Inception

Score (IS) [33] and FID [13] to quantitatively evaluate the

quality of synthesized images.

Table 1. The results on synthetic data.

Method # Modes ↑ % HQ int. ↑ Reverse KL ↓

Baseline 5.3±1.1 58.9±2.0 0.184±0.011

+ Lrecg 7.8±0.1 87.2±1.2 0.123±0.051

+ Lctrs 8.0±0.0 96.7±0.1 0.081±0.007

(a) (b) (c) (d)

Figure 3. Visual comparison of synthesized points on the 2D-ring

dataset: (a) Ground truth, (b) Baseline, (c) Baseline+Lrecg and (d)

Baseline+Lrecg+Lctrs.

Table 2. FID scores of the baseline and variants on CIFAR-10,

CIFAR-100, FS-100 and CUB-200.

Method CIFAR-10 CIFAR-100 FS-100 CUB-200

Baseline 13.69 19.52 23.18 35.04

+ Ma. emb. 9.11 10.87 17.13 23.73

+ Re. reg. 6.87 8.84 14.95 17.94

Improvement -6.82 -10.68 -8.23 -17.10

5.2. Verification on Synthetic Data

We verify the effectiveness of the proposed improvemen-

t strategies on a 2D-ring synthetic dataset. There are 8

2D Gaussians with means (cos(2kπ/8), sin(2kπ/8)), k ∈
{0, . . . , 7} and the same variance 0.1. The training set

is built by sampling 16 labeled points and 256 unlabeled

points from each Gaussian. Similar to MED-GAN, a base-

line model consists of a generator, a discriminator, and a

classier, and all of them are implemented by multi-layer

perceptrons. Note that there is no mask embedding in the

discriminator due to the non-image data. We construct pos-

itive and negative pairs according to (pseudo) class labels.

The baseline is trained based on Triple-GAN [22]. We in-

corporate the recognition loss in Eq.(7) and contrastive loss

in Eq.(5) to improve the baseline, and the resulting mod-

els are referred to as ‘Baseline + Lrecg’ and ‘Baseline +

Lrecg + Lctrs’. We adopt three metrics: the number of cov-

ered modes, percentage of high quality (HQ) instances and

reverse KL divergence, to evaluate the performance of the

baseline and variants as [23] [36]. The results shown in Ta-

ble 1 and the density plots in Figure 3 suggest that inclusion

of Lrecg and Lctrs leads to capturing all 8 modes and syn-

thesizing higher quality instances. The insights gained on

the synthetic data also apply to the real data.

5.3. Effectiveness of the Improvement Strategies

To further verify the benefit of the mask embedding

and related regularization components, we build a baseline
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Table 3. IS and FID scores of MED-GAN and state-of-the-art semi-supervised GANs on CIFAR-10, CIFAR-100, FS-100 and CUB-200.

CIFAR-10 (4k) CIFAR-100 (10k) FS-100 (2k) CUB-200 (2.8k)

Method IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓

ImprovedGAN [33] 5.56±0.28 47.25 - - - - - -

Triple-GAN [22] 5.77±0.14 47.08 - - - - 3.91±0.05 140.94

Triangle-GAN [9] 6.56±0.07 35.31 - - - - 4.22±0.03 96.42

ETGAN [43] 7.23±0.09 25.64 4.86±0.04 65.11 1.57±0.02 57.58 3.95±0.06 133.57

R3-CGAN [24] 7.42±0.05 20.34 7.49±0.01 26.29 1.73±0.02 25.28 4.46±0.08 88.62

MED-GAN 8.47±0.08 5.76 9.23±0.12 8.06 1.96±0.03 14.42 5.54±0.10 16.90

Ground truth 9.07±0.14 - 11.40±0.13 - 2.44±0.04 - 17.73±4.87 -

model, in which the constituent networks have the same net-

work architectures as those in our full model. The baseline

is trained based on Triple-GAN. We incrementally incor-

porate the components to investigate the improvement of

synthesis quality in terms of FID. The experiments are per-

formed on all the four datasets, and the results of the base-

line and its variants with different strategies are reported in

Table 2. When incorporating mask embedding ‘Ma. em-

b.’ in the discriminator, we find that the synthesis quality

can be significantly improved over ‘Baseline’. In particular,

the improvement reaches 6.05 FID points on FS-100. Af-

ter incorporating the region-based regularization ‘Re. reg.’,

we can further significantly improve the fidelity of synthe-

sized images. The corresponding variant consistently out-

performs the baseline by a large margin across the datasets.

On CUB-200, the FID score of synthesized images decreas-

es from 35.04 to 17.94. The result again verifies the benefit

of regularizing the discriminator feature space in facilitating

semi-supervised generative learning.

5.4. Comparison with State­of­the­arts

Image synthesis. We compare MED-GAN with state-

of-the-art semi-supervised generative models, including

ImprovedGAN [33], Triple-GAN [22], Triangle-GAN [9],

ETGAN [43], and R3-CGAN [24]. Table 3 summarizes the

results of the competing methods. We also report the IS

score of real images as an upper bound. R3-CGAN out-

performs other competing methods, while MED-GAN is

able to achieve higher synthesis quality than R3-CGAN on

each dataset. On the common benchmarks CIFAR-10 and

CIFAR-100, MED-GAN improves the previous state-of-

the-art results from 7.42/20.34 and 7.49/26.29 to 8.47/5.76

and 9.23/8.06 in IS/FID, respectively. Furthermore, we no-

tice that our achieved results are close to the ground truth

on CIFAR-10 and FS-100. On the more challenging dataset

CUB-200, MED-GAN performs much better than the com-

peting methods. In Figure 4, we show a number of the

images synthesized by R3-CGAN and MED-GAN. We be-

lieve that the proposed mask embedding and regularization

strategies are useful for inducing the discriminator to dis-

cover the subtle differences among the fine-grained classes.

Figure 4. Examples of the images synthesized by R3-CGAN (up-

per part) and MED-GAN (bottom part) on the benchmarks which

from left to right are FS-100 and CUB-200. Each column shares

the same random vector, and each row uses the same class label.

Table 4. Test error rates (%) of MED-GAN and state-of-the-art

methods on CIFAR-10, CIFAR-100, and FS-100.

Method CIFAR-10 CIFAR-100 FS-100

CatGAN [35] 19.58±0.58 - -

ImprovedGAN[33] 18.63±2.32 - -

ALI [8] 17.99±1.62 - -

Triple-GAN [22] 16.99±0.36 - -

Triangle-GAN [9] 16.80±0.42 - -

GoodBadGAN [5] 14.41±0.03 - -

CT-GAN [41] 9.98±0.21 - -

ETGAN [43] 9.42±0.22 36.18±0.37 16.08±0.24

R3-CGAN [24] 6.69±0.28 32.66±0.21 6.96±0.43

MarginGAN [7] 6.44±0.10 - -

MED-GAN 6.02±0.08 30.67±0.15 5.71±0.09

Image classification. In MED-GAN, the classifier

is jointly trained with the generator, and we also com-

pare the resulting model with the current semi-supervised

VAE/GAN-based methods in image classification. Table
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Figure 5. The impact of the margin γ (left) and weighting factor µ

(right) on the synthesis quality of MED-GAN on CIFAR-10.

4 summarizes the test error rates of the competing meth-

ods on CIFAR-10, CIFAR-100 and FS-100. CIFAR-10

is a relatively simple dataset, MED-GAN, R3-CGAN and

MarginGAN achieve comparable classification results. For

CIFAR-100 and FS-100, it becomes difficult to synthesize

realistic images of 100 categories. The classification perfor-

mance of ETGAN and R3-CGAN are affected by the syn-

thesis quality. On these two datasets, MED-GAN reduces

the previous best test error rates of 32.66% and 6.96% (ob-

tained by R3-CGAN) to 30.67% and 5.71%, respectively.

The results suggest that the images synthesized by MED-

GAN hold more precise class semantics than those synthe-

sized by the competing methods.

5.5. Further Analysis

Impact of parameters. We investigate the impact of

the margin γ in Eq.(5) and the weighting factor µ in E-

q.(12) on the synthesis quality. The experiments are con-

ducted on CIFAR-10, and the search is limited to γ =
{0.1, 0.2, 0.5, 1, 1.25, 1.5} and µ = {0.01, 0.1, 0.5, 1, 2, 3}.

Figure 5 shows the changes in the FID scores of the syn-

thesized images with different values of each parameter. In

Figure (a), we observe that the synthesis quality is relatively

stable when γ < 1. Figure (b) shows that the proposed ap-

proach achieves the best performance when µ is set to 0.1.

Considering the complexity of the mixed instances, relative-

ly smaller value of µ benefits the stability of the adversarial

learning process.

Class-wise FID. It is important for class-conditional im-

age synthesis to measure the extent to which synthesized

instances match with the real data distribution of each class.

We compare MED-GAN and R3-CGAN in terms of class-

wise FID on CUB-200. Based on the result of R3-CGAN,

we select the 50 classes with the lowest FID scores, and

show the improvement achieved by the proposed approach

in Figure 6. One can find that the improvement reaches 172

points in terms of average FID over the 50 classes.

Applicability. We consider that the proposed mask em-

bedding and related regularization components can also be

applied to enhance other GAN-based generative models. To

verify this point, we adopt a fully-supervised BigGAN as a

strong baseline, and incrementally apply the components to

regularize its discriminator. Table 5 summarizes the gener-

Figure 6. Comparison of MED-GAN and R3-CGAN in terms of

class-wise FID scores on CUB-200.

Table 5. FID scores of BigGAN and its variants on CIFAR-10,

CIFAR-100, FS-100 and CUB-200.

Method CIFAR-10 CIFAR-100 FS-100 CUB-200

BigGAN 9.06 10.32 20.76 25.62

+ Ma. emb. 7.43 8.76 18.31 21.84

+ Re. reg. 5.01 7.22 14.28 15.40

Improvement -4.05 -3.1 -6.48 -10.22

ation performance of the resulting models in terms of FID.

The result suggests that inclusion of each component can

lead to consistent improvement across the four datasets ac-

cordingly, which demonstrates the possibility of its applica-

tion to generic class-conditional image synthesis.

6. Conclusion

To facilitate semi-supervised class-conditional image

synthesis, our work focuses on enhancing the discrimina-

tor in a GAN-based model. We first incorporate a mask

embedding module in the discriminator to associate the dis-

criminator features with spatial information. When distin-

guishing real images from synthesized images, the discrim-

inator is able to focus more on the specified regions. In this

case, the generator is enforced to synthesize instances hold-

ing more precise class semantics. Under the help of mask

embedding, we can more effectively exploit the constructed

images via random regional replacement between real and

synthesized images, and further regularize the discriminator

feature space to increase the degree of class separation. The

regularization of these aspects leads to significant improve-

ment in synthesis quality.
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