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Abstract

Aligning two partially-overlapped 3D line

reconstructions in Euclidean space is challenging, as

we need to simultaneously solve correspondences and

relative pose between line reconstructions. This paper

proposes a neural network based method and it has three

modules connected in sequence: (i) a Multilayer Perceptron

(MLP) based network takes Plücker representations of

lines as inputs, to extract discriminative line-wise features

and matchabilities (how likely each line is going to have a

match), (ii) an Optimal Transport (OT) layer takes two-view

line-wise features and matchabilities as inputs to estimate

a 2D joint probability matrix, with each item describes the

matchness of a line pair, and (iii) line pairs with Top-K

matching probabilities are fed to a 2-line minimal solver in

a RANSAC framework to estimate a six Degree-of-Freedom

(6-DoF) rigid transformation. Experiments on both indoor

and outdoor datasets show that registration (rotation and

translation) precision of our method outperforms baselines

significantly.

1. Introduction

Lines contain strong structural geometry information of

environments (even for texture-less indoor scenes), and

are widely used in many applications, e.g., SLAM [47,

64], visual servoing [3, 30], event camera [50, 38, 39],

image restoration [43, 36, 37], place recognition [48, 27]

and camera pose estimation [28, 24]. 3D lines can be

obtained from structure from motion [49], SLAM [61]

or laser scanning [31]. Compared with 3D points,

scene represented by lines is more complete and requires

significantly less amount of storage [22, 18, 59]. Given

3D line reconstructions, a fundamental problem is how to

register them (Figure 1). This technique can be used in

building a complete 3D map, robot localization, SLAM, etc.

This paper studies the problem of aligning two partially-

overlapped 3D line reconstructions in Euclidean space. This

is not doable for traditional methods as it’s very hard to find

line matches by only checking 3D line coordinates, often

Figure 1: Our problem is to align two partially-overlapped

line reconstructions or, equivalently, to estimate the relative

pose between two line reconstructions. Left: Red and Black

lines (depicting street-view buildings and landmarks) are in two

different coordinate systems from the Semantic3D dataset [14].

Right: our method is able to successfully align the two line

reconstructions in a one-shot manner.

one needs to manually set line matches [6, 5] or assumes

lines are mostly located on planes [22] and windows [9].

With deep neural networks, we give a learning-based

solution, dubbed as PlückerNet.

It is non-trivial to learn from lines, as we need to

carefully handle line parameterization and geometry. For

example, local structure defined by geometric nearest

neighbor is a core-component in point-based networks

(e.g., PointNet++ [42]). However, for line-based network,

defining geometric nearest neighbor is non-trivial as there is

no universally agreed error metric for comparing lines [6].

We parameterize a 3D line using a deterministic 6-dim

Plücker [41] representation with a 3-dim direction vector

lying on a 3D unit hemisphere and a 3-dim moment vector.

To capture local line structure, for each line, we first extract

local features in the subspace of direction and moment, and

then combine them to obtain a global high-dim line feature.

To make line-wise features discriminative for matching, we

use a graph neural network with attention mechanism [44,

45], as it can integrate contextual cues considering high-dim

feature embedding relationships.

As we are addressing a partial-to-partial matching

problem, lines do not necessarily have to match. We

model the likelihood that a given line has a match
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and is not an outlier by regressing line-wise prior

matchability. Combined with line-wise features from

two line reconstructions, we are able to estimate line

correspondences in a global feature matching module. This

module computes a weighting (joint probability) matrix

using optimal transport, where each element describes the

matchability of a particular source line with a particular

target line. Sorting the line matches in decreasing order

by weight produces a prioritized match list, which can be

used to recover the 6-DoF relative pose between source and

target line reconstructions.

With line matches are found, we develop a 2-line

minimal pose solver ([5]) to solve for the relative pose in

Euclidean space. We further show how to integrate the

solver within a RANSAC framework using a score function

to disambiguate inliers from outliers.

Our PlückerNet is trained end-to-end. The overall

framework is illustrated in Figure 2. Our contributions are:

1. A simple, straightforward and effective learning-based

method to estimate a rigid transformation aligning two

line reconstructions in Euclidean space;

2. A deep neural network extracting features from lines,

while respecting the line geometry;

3. An original global feature matching network

based on the optimal transport theory to find line

correspondences;

4. A 2-line minimal solver with RANSAC to register 3D

line reconstructions in Euclidean space;

5. We propose two 3D line registration baselines

(iterative closet lines and direct regression), three

benchmark datasets build upon [63, 14, 1] and show

the state-of-the-art performance of our method.

2. Related Work

For space reasons, we focus on geometric deep learning

and aligning line reconstructions, hence omitting a large

body of works on 2D line detection and description from

images [53, 2, 62, 25, 65, 60], and 3D line fitting [18, 59,

55]. Interested readers can refer to these papers for details.

Learning from unordered sets. PointNet-based [42]

networks can handle sparse and unordered 3D points.

Though most works focus on classification and

segmentation tasks [57, 42], geometry problems are

ready to be addressed. For example, 3D–3D point cloud

registration [4], 2D–2D [33] or 2D–3D [12] outlier

correspondence rejection, and 2D–3D camera pose

estimation [26, 7]. Instead of studying 3D points, this paper

tackles the problem of learning from lines, specifically,

aligning line reconstructions, which has not previously

been researched.

Feature

matching

Feature

embedding

Feature

embedding

Subspace

coding
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Figure 2: Overall pipeline of our method. First, lines are

represented as 6-dim Plücker coordinates, passed into a Siamese

network to extract line-wise deep features via subspace coding

and discriminative feature embedding (Section 3.2). Then a

global feature matching module estimates line matches from these

features using an optimal transport (OT) technique [52, 11, 10]

(Section 3.3). Finally, at test time, apart from automatically

recovering line correspondences, the 6-DoF relative pose (R

and t) between two coordinate systems is recovered via a 2-line

minimal solver with RANSAC (Section 3.4).

Sparse feature matching. Two sparse feature sets can be

matched via nearest neighbor search with ratio test [29]

or Hungarian algorithm [23]. Recently, researchers [26,

7, 44, 45] bring the Sinkhorn’s algorithm [11] to this

matching task for its end-to-end training ability. Though

[7, 44, 45, 13] show they can match sparse feature sets,

their usage only focuses on pairwise feature distance or

matching cost. In contrast, we formulate this matching

problem in line with traditional optimal transport [52,

11, 10] inside a probability framework, which aims to

align two 1D probability distributions by estimating a 2D

probabilistic coupling matrix. We directly regress these two

1D probability distributions using a multilayer perceptron

(MLP) based network, and use a variant of Sinkhorn’s

algorithm [46, 32] to calculate a 2D probability matrix,

describing the matchability of these two sparse line sets.

Relative pose estimation. Iff with ground-truth matches,

traditional methods [6, 5] can be utilized to estimate a

relative pose between two line reconstructions. Bartoli et

al. [6] present a family of line motion matrix in projective,

affine, similarity, and Euclidean space. Minimal 7 line

matches are required to solve the line motion matrix

linearly. They [5] further extend this method, and derives

a minimal 5 line matches method. They also give a minimal

2 line matches solver for solving the line motion matrix in

similarity space. This paper aligns line reconstructions in

Euclidean space with unknown line-to-line matches.

3. PlückerNet

In this section we present PlückerNet – our method

for aligning 3D line reconstructions. We first define

the problem in Section 3.1, then describe our pipeline.

Specifically, We present our method for extracting line-wise

discriminative features in Section 3.2. We then describe our
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global feature matching method for obtaining 3D–3D line

match probabilities in Section 3.3. Finally, we provide the

relative pose solver, a 2-line minimal solver in a RANSAC

framework in Section 3.4.

3.1. Problem Definition

Plücker line. A line ℓ in a 3D space has 4 degrees of

freedom. Usually, we have three ways to denote a 3D line:

1) a direction and a point the line passes through; 2) two

points the line passes through 1, i.e. line segment with two

start and end junction points; 3) the Plücker coordinates

(v,m) [17], where v is the 3-dim direction vector and m is

the 3-dim moment vector. We choose Plücker coordinates

to parameterize a 3D line for its uniqueness once fixing its

homogeneous freedom, and its mathematical completeness.

We fix homogeneous freedom of a 6-dim Plücker line by

first L2 normalizing its direction vector v to a unit-sphere,

and then set the value of the first dimension of v to be

greater than 0. This ensures v lie on a hemisphere.

Partial-to-Partial registration. Let LS = {ℓi}, i =
1, ...,M denote a 3D line set with M Plücker lines in the

source frame, LT = {ℓ′

j}, j = 1, ..., N denote a 3D line set

with N Plücker lines in the target frame, and C ∈ R
M×N

denote the correspondence matrix between LS and LT .

We aim to estimate a rotation matrix R and a translation

vector t which transforms source line set LS to align with

the target line set LT . Specifically, ℓ
′

j ≈ Tℓi for Cij = 1,

where the line motion matrix T [6] is given by:

T =

(

R [t]×R
0 R

)

, (1)

where [t]× is a skew-symmetric matrix.

The difficulty of this registration problem is to estimate

the correspondence matrix C. We propose to estimate C

using a deep neural network. Specifically, for each tentative

line match in C, we calculate a weight Wij describing

the matchability of ℓi and ℓ
′

j . We can obtain a set of line

matches by taking the Top-K matches according to these

weights. With line matches, we give a minimal 2-line

method with RANSAC to solve the problem.

3.2. Feature extraction

Basic block. Our input is a set of unordered lines. Inpired

by PointNet [42] which consumes a set of unordered points,

we also use MLP blocks to extract line-wise features. An

MLP block, e.g., MLP(128, 128) denotes a two layers

perceptron, with each layer size being 128. In our

network, Groupnorm [58] with GeLU [16] is used for

all layers (except the last layer) in an MLP block. We

1Extracting endpoints of lines accurately and reliably is difficult due to

viewpoint changes and occlusions [61, 25].

found Groupnorm [58] and GeLU [16] is better than the

commonly used Batchnorm [20] and ReLU, respectively.

Subspace coding. For a 6-dim Plücker line, its direction v

and moment m lies in two domains. v lies on a hemisphere

and m is unbounded with constraint v · m = 0. ‖m‖2
gives the distance from the origin to the line (iff v is L2-

normalized). To bridge this domain gap, we first use two

parallel networks without sharing weights to process v and

m independently, and then concatenate features from them

to embed a Plücker line to a high-dim space 2. The benefits

of this subspace coding process lie in two parts: 1) the

domain gap between v and m is explicitly considered; 2)

we are able to define geometric nearest neighbors in each

subspace of direction v and moment m. Angular distance

and L2 distance is used to find geometric nearest neighbors

in the subspace of v and m, respectively. Note that we

cannot define nearest neighbors in 6-dim space, as there is

no universally agreed global distance metric between two

Plücker lines, see discussions in Section 3.4.

For each oi (oi can be vi or mi, and i is a line index)

in a subspace, we first perform nearest neighbor search and

build a line-wise Knn graph. For a Knn graph around the

anchor oi, the edges from oi to its neighbors capture the

local geometric structure. Similar to EdgeConv [57], we

concatenate the anchor and edge features, and then pass

them through an MLP layer to extract local features around

the i-th line. Specifically, the operation is defined by

E (oi) = avgok,ok∈℧(oi)
(θ (ok − oi) + φoi) , (2)

where ok ∈ ℧(oi) denotes that ok is in the neighborhood

℧(oi) of oi, θ and φ are MLP weights performed

on the edge (ok − oi) and anchor oi respectively, and

avg(·) denotes that we perform average pooling in the

neighborhood ℧(oi) after the MLP to extract a single

feature for the i-th line.

After extracting line-wise local features E (vi) and

E (mi) in the subspace of v and m independently,

we lift them to high-dim spaces by using an MLP

block MLP(8, 16, 32, 64). Output features from the two

subspaces are concatenated, and further processed by an

MLP block MLP(128, 128, 128) to embed to a 128-dim

space. This subspace coding process is given in Figure 3.

Discriminative feature embedding. After coding 6-dim

Plücker lines to 128-dim features, we aim to make these

features discriminative for matching. Inspired by the

success of attention mechanism and graph neural network

in 3D–3D points cloud registration [56, 13, 45] and two-

view image matching [44], we adopt both self-attention and

cross-attention to extract line-wise discriminative features.

2For features from the two subspace, we find no additional benefit of

imposing the orthogonal constraint via the Gram-Schmidt process, though

the original direction v is orthogonal to the moment m.
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Figure 3: Pipeline of subspace coding. The network takes M

6-dim Plücker lines as input, split lines into M 3-dim moments

and directions, extract features in the subspace of moments and

directions independently, and finally concatenate features from

subspaces to obtain global high-dim Plücker line features. Local

conv. stands for aggregating line-wise local geometry features and

is given in Eq. (2). MLP(·) stands for multi-layer perceptron block,

numbers in bracket are layer sizes.
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Figure 4: Pipeline of discriminative feature embedding. The

network takes M and N 128-dim line features from subspace

coding as input, improve feature discriminativeness via both self

and cross attention. We use 6 attention blocks in total.

This process is given in Figure 4.

We first define two complete graphs for source and target

line reconstructions, denoted by GLS
and GLT

, respectively.

Nodes in GLS
and GLT

corresponds to lines ℓi and ℓ
′

j ,

respectively. Node values corresponds to line features, and

are denoted by (t)
fℓi and (t)

f
ℓ
′

j
, where t is the layer index.

Initial node values (t = 1) are outputs of subspace coding.

The two complete graphs (GLS
, GLT

) form a multiplex

graph [34, 35]. It contains both intra-frame (or self)

edges Eself and inter-frame (or cross) edges Ecross. Intra-

frame edges connecting all lines within the same line

reconstructions. Inter-frame edges connecting one line from

GLS
to all lines in GLT

, and vice versa.

Node values are updated using multi-head self and cross

attention in a message passing framework [44, 45]. The

merit of using this framework is integrating both intra-frame

and inter-frame contextual cues to increase distinctiveness

of line features. For self-contain purposes, we briefly

summarize it.

Node values in GLS
are updated via (same for GLT

):

(t+1)
fℓi =

(t)
fℓi + U

(

(t)
fℓi ||mE→ℓi

)

, (3)

where ·||· denotes concatenation, mE→ℓi denotes message

from E to node ℓi, and U(·) denotes feature propagation and

is implemented as an MLP block MLP(256, 256, 128). The

message mE→ℓi encodes propagation of all nodes which are

connected to node ℓi via edges E (E = Eself or Ecross). In our

implementation, the total depth of network is set to 12 (i.e.,

t ∈ [1, T ], T = 12) and we alternate to perform self and

cross message passing with increasing network depth, i.e.,

E = Eself if t is odd and E = Ecross if t is even.

Message mE→ℓi is calculated through attention [51]:

mE→ℓi = Σj:(i,j)∈E αi,jvj , (4)

where attention weight αi,j is the Softmax over the key

kj to query qi similarites, αi,j = Softmaxj (q
T

ikj/
√
D),

D = 128 is the feature dimension. In our implementation,

the key kj , query qi and value vj are obtained via linear

projection of line features, using different projection matrix.

Following common practice, multi-head (4-heads in this

paper) attention is used to improve the performance of

Eq. (4). We do not use recent works [8, 54] concerning

speed-up the computations of Eq. (4) as they all decrease

the performance of our PlückerNet.

3.3. Feature matching

Given a learned feature descriptor per line in LS and

LT , we perform global feature matching to estimate the

likelihood that a given Plücker line pair matches.

Matching cost. We first compute the pairwise distance

matrix H ∈ R
M×N
+ , which measures the cost of assigning

lines in LS to LT . To calculate H, we linearly project

outputs (T )
fℓi and (T )

f
ℓ
′

j
from discriminative feature

embedding process to obtain fxi
and fyj

for lines in LS

and LT , respectively. fxi
and fyj

are post L2 normalized

to embed them to a metric space. Each element of H is

the L2 distance between the features at line ℓi and ℓ
′

j , i.e.,

Hij = ‖fxi
− fyj

‖2.

Prior Matchability. We are solving a partial-to-partial

registration problem. Lines in LS and LT do not

necessarily have to match. To model the likelihood that

a given line has a match and is not an outlier, we define

unary matchability vectors, denoted by r and s for lines in

LS and LT , respectively. To estimate r (same for s), we

add a lightweight matchability regression network, and the

operation is defined by:

rℓi = Softmaxi

(

P

(

(T )
fℓi ||avg

ℓ
′

j
∈LT

(T )
f
ℓ
′

j

||max
ℓ
′

j
∈LT

(T )
f
ℓ
′

j

))

,

(5)

where avg
ℓ
′

j
∈LT

(·) and max
ℓ
′

j
∈LT

(·) denotes performing

average and max pooling at each feature dimension, aiming

to capture global context of line features for LT . P(·)
denotes feature propogation and is implemented as an MLP

block MLP(384, 256, 256, 128, 1). Softmax is used to

convert lines’ logits to probabilities. Eq. (5) is based on
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Figure 5: Our feature matching pipeline. Given an M × 128
feature set from discriminative feature embedding of source line

set LS and an N × 128 feature set from the target line set LT , we

compute the pairwise L2 distance matrix H. Along with a unary

matchability M -vector r from LS and N -vector s from LT , the

distance matrix H is transformed to a joint probability matrix W

using Sinkhorn’s algorithm. Reshaping W and sorting the line

matches by their corresponding matching probabilities generates

a prioritized line match list. We take the Top-K matches as our set

of putative correspondences.

the idea of looking at global context of cross frame LT to

regress line-wise matching prior for current frame LS .

Collecting the matchabilities for all lines in LS or

LT yields a matchability histogram, a 1D probability

distribution, given by r ∈ ΣM and s ∈ ΣN , where a

simplex in R
M is defined as ΣM =

{

r ∈ R
M
+ ,

∑

i ri = 1
}

.

Global matching. From H, r, and s, we estimate a

weighting matrix W ∈ R
M×N
+ where each element Wij

represents the matchability of the Plücker line pair {ℓi, ℓ
′

j}.

Note that each element Wij is estimated from the cost

matrix H and the unary matchability vectors r and s, rather

than locally from Hij . In other words, the weighting

matrix W globally handles pairwise descriptor distance

ambiguities in H, while respecting the unary priors. The

overall pipeline is given in Figure 5.

Sinkhorn solver. From optimal transport theory [52, 11,

10], the joint probability matrix W can be solved by

argmin
W∈Π(r,s)

〈H,W〉 − λE (W) , (6)

where 〈·, ·〉 is the Frobenius dot product and Π(r, s) is

the transport polytope that couples two unary matchability

vectors r and s, given by

Π(r, s) =
{

W ∈ R
M×N
+ ,W1

N = r,WT
1
M = s

}

,
(7)

where 1
N = [1, 1, ..., 1]T ∈ R

N . The constraint on W

ensures that we assign the matchabilities of each line in

LS (or LT ) to all lines in LT (or LS ) without altering

its matchability. The entropy regularization term E (W)

facilitates efficient computation [11] and is defined by

E (W) = −
∑

i,j

Wij (logWij − 1) . (8)

To solve (6), we use a variant of Sinkhorn’s Algorithm

[46, 32], given in Algorithm 1. Unlike the standard

algorithm that generates a square, doubly-stochastic matrix,

our usage generates a rectangular joint probability matrix,

whose existence is guaranteed (Theorem 4 [32]).

Algorithm 1: Sinkhorn’s Algorithm to solve (6).

Hadamard (elementwise) division is denoted by ⊘.

Inputs: H, r, s, b = 1N , λ, and iterations Iter

Output: Weighting matrix W

1 Υ = exp (−H/λ)
2 Υ = Υ/

∑

Υ

3 while it < Iter do

4 a = r⊘ (Υb); b = s⊘ (ΥT
a)

5 end

6 W = diag(a)Υ diag(b)

Loss. To train our feature extraction and matching

network, we apply a loss function to the weighting matrix

W. Since W models the joint probability distribution

of r and s, we can maximize the joint probability of

inlier correspondences and minimize the joint probability

of outlier correspondences using

L =

M
∑

i

N
∑

j

γi,jF
(

C
gt
ij ,Wij

)

, (9)

where C
gt
ij equals to 1 if {ℓi, ℓ

′

j} is a true correspondence

and 0 otherwise. F
(

C
gt
ij ,Wij

)

and γi,j are given by,







F
(

C
gt
ij ,Wij

)

= − logWij ; γi,j = 1/Atrue if C
gt
ij = 1

F
(

C
gt
ij ,Wij

)

= − log (1−Wij) ; γi,j = 1/Afalse if C
gt
ij = 0,

(10)

where γi,j is a weight to balance true and false

correspondences. Atrue and Afalse are the total number of

true and false correspondences, respectively.

3.4. Pose estimation

We now have a set of putative line correspondences,

some of which are outliers, and want to estimate the

relative pose between source and target line reconstructions.

According to [5], we need minimal 2 line correspondences

to solve the relative rotation R and translation t in similarity

space. In Euclidean space, by substituting Eq. (1) to ℓ
′

j =
Tℓi, we obtain,

m
′

j = Rmi + [t]×Rvi (11)

v
′

j = Rvi. (12)
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Note t is not contained in Eq. (12). We can first solve R,

then substitute R to Eq. (11) to solve t.

According to Eq. (12), R aligns line direction vi to v
′

j .

In [19], authors show that R is the closest orthonormal

matrix to M =
∑

v
′

jv
T

i . Let M = UΣV
T

be the singular

value decomposition of M, then R = UV
T

. The sign

ambiguity of R is fixed by R = R/ det(R).
Substitute estimated R to Eq. (11), and reshape it as:

[Rvi]
T

×t = m
′

j −Rmi. (13)

Stacking along rows for i = 1, 2 yields a linear equation

At = b, where A is a 6× 3 matrix and b is a 6× 1 vector.

The least square solution is given by t = A
+
b, where A

+

is the pseudo-inverse of A.

2-line minimal solver in RANSAC framework. Given

the above 2-line minimal solver, we are ready to integrate it

into the RANSAC framework. We need to define the score

function, which is used to evaluate the number of inlier line

correspondences given an estimated pose from the minimal

solver. Our score function is defined by:

S(ℓ′

, ℓ) =
∥

∥

∥
ℓ
′ −Tℓ

∥

∥

∥

2
, (14)

where we use estimated line motion matrix T (Eq. (1)) to

transform 6-dim Plücker lines from LS to LT , and measure

the L2 distance between 6-dim Plücker lines.

We choose to use L2 distance for its simplicity, and

quadratic for easy-minimization. Though L2 distance only

works in a neighborhood of ℓ
′

(v and m lie in two different

subspaces), in practice, transformed lines from LS using

our estimated pose lie within the local neighborhood of their

matching line in LT (if have), leading to the success of

using L2 distance. Despite Plücker lines lie in a 4-dim Klein

manifold [41], we do not use distance defined via Klein

quadric as it needs to specify two additional planes for each

line pair, which introduces many hyper-parameters [40].

For a Plücker line matching pair, if the score function

defined in Eq. (14) is smaller than a pre-defined threshold

ǫ, it is deemed as an inlier pair. After RANSAC, all inlier

matching pairs are used to jointly optimize Eq. (14).

4. Experiments

4.1. Datasets and evaluation methodology

We first conduct experiments on both indoor

(Structured3D [63]) and outdoor (Semantic3D [14])

datasets, and then show our results of addressing real-world

line-based visual odometry on the Apollo dataset [1].

Structured3D [63] contains 3D annotations of junctions

and lines for indoor houses. It has 3, 500 scenes/houses

in total, with average/median number of lines at 306/312,

respectively. The average size of a house is around 11m ×

10m × 3m. Since the dataset captures structures of indoor

houses, most lines are parallel or perpendicular to each

other. We randomly split this dataset to form a training and

testing dataset, with numbers at 2975 and 525, respectively.

Semantic3D [14] contains large-scale and densely-

scanned 3D points cloud of diverse urban scenes. We use

the semantic-8 dataset, and it contains 30 scans, with over

a billion points in total. For each scan, we use a fast 3D

line detection method [59] to extract 3D line segments.

Large-scale 3D line segments are further partitioned into

different geographical scenes/cells, with cell size at 10m ×
10m for the X–Y dimensions. Scenes with less than 20
lines are removed. We obtain 1, 981 scenes in total, with

average/median number of lines at 676/118, respectively.

We randomly split this dataset to form a training and testing

dataset, with numbers at 1683 and 298, respectively.

Partial-to-Partial registration. For 3D lines of each

scene (LS ), we sample a random rigid transformation

along each axis, with rotation in [0◦, 45◦] and translation

in [−2.0m, 2.0m], and apply it to the source line set LS

to obtain the target line set LT . We then add noise to

lines in LS and LT independently. Specifically, we first

transform Plücker representation of a line to point-direction

representation, with the point at the footprint of line’s

perpendicular through the origin. Gaussian noise sampled

from N (0m, 0.05m) and clipped to [−0.25m, 0.25m] is

added to the footprint point, and the direction is perturbed

by a random rotation, with angles sampled form N (0◦, 2◦)
and clipped to [−5◦, 5◦]. After adding noises, point-

direction representations are transformed back to Plücker

representations. To simulate partial scans of LS and LT , we

randomly select 70% lines from LS and LT independently,

yielding an overlapping ratio at ∼ 0.7.

Implementation details. Our network is implemented

in Pytorch and is trained from scratch using the Adam

optimizer [21] with a learning rate of 10−3 and a batch size

of 12. The number of nearest neighbors for each line is set

to 10 in Eq. (2). The number of Sinkhorn iterations is set

to 30, λ is set to 0.1, Top-200 line matches are used for

pose estimation, the inlier threshold ǫ is set to 0.5m, and the

number of RANSAC iterations is set to 1000. Our model is

trained on a single NVIDIA Titan XP GPU in one day.

Evaluation metrics. The rotation error is given by the

angle difference ζ = arccos((trace(RT

gtR)− 1)/2), where

Rgt and R is the ground-truth and estimated rotation,

respectively. The translation error is given by the L2

distance between the ground-truth and estimated translation

vector. We also calculate the recalls (percentage of

poses) by varying pre-defined thresholds on rotation and

translation error. For each threshold, we count the number

of poses with error less than that threshold, and then

normalize the number by the total number of poses.
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Figure 6: Recall of rotation (Left) and translation (Right)

on the Structured3D (Top-row) and Semantic3D (Bottom-row)

datasets, with respect to an error threshold. The regression

baseline diverges on the Semantic3D dataset, leading to the poor

performance.

Baselines. There is no off-the-shelf baseline available.

We propose and implement: 1) ICL. an Iterative-Closest-

Line (ICL) method, mimicking the pipeline of traditional

Iterative-Closest-Point (ICP) method. 2) Regression. This

baseline does not estimate line-to-line matches. After

extracting line-wise features, we append a global max-

pooling layer to obtain a global feature for each source and

target set. A concatenated global feature is fed to an MLP

block to directly regress the rotation and translation.

4.2. Results and discussions

Comparison with baselines. In this experiment, we show

the effectiveness of our method to estimate a 6-DoF pose.

We compare our method against baselines. The pose

estimation performance is given in Table 1 and Figure 6.

It shows that our method outperforms baselines with much

higher recalls at each level of pre-defined error thresholds.

For example, the median rotation and translation error on

Semantic3D dataset for our method, ICL and regression

is 0.961◦/2.050◦/20.934◦ and 0.064m/0.226m/1.871m,

respectively. We found that the regression baseline

can be trained to converge on the Structured3D dataset,

while diverges on the Semantic3D dataset. This shows

that directly regressing the relative pose between line

reconstructions falls short of applying to different datasets.

Since both our method and ICL outperforms the regression

baseline significantly, we only compare our method with

ICL for following experiments.

Robustness to overlapping ratios. We test the robustness

of our network to overlapping ratios for partial-to-partial

registration. Overlapping ratios are set within [0.2, 1],
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Figure 7: Median rotation (Left) and translation error (Right) on

the Structured3D (Top-row) and Semantic3D (Bottom-row), with

respect to increasing level of partial overlapping ratio.

where overlapping ratio at 1 means source and target

line reconstructions have one-to-one line match. For

overlapping ratios smaller than 0.2, both our method and

ICL fail to estimate meaningful poses. Note we do not re-

train networks. The median rotation and translation errors

with respect to increasing levels of overlapping ratio are

given in Figure 7. Our method outperforms ICL on the

Structured3D and Semantic3D datasets.

Generalization ability. We test the generalization ability

of our network via cross-dataset validation, i.e., using

a network trained on the Structured3D to test its

performance on the Semantic3D, and vice versa. The

comparison of recall performance is given in Figure 8. For

the Structured3D dataset, our network trained on the

Semantic3D dataset get a similar recall performance as

the network trained on the Structured3D dataset, both

outperforming the ICL method. For the Semantic3D

dataset, though there is a recall performance drop for

our cross-dataset trained network, its performance is

comparable to the ICL method.

Real-world line-based visual odometry. In this

experiment, we demonstrate the effectiveness of our

method for a real-world application of registering 3D line

reconstructions, i.e. visual odometry. We randomly select

one sequence (road02 ins) from the apollo repository [1],

and it contains 5123 frames. For each frame, we first use a

fast line segment detector [2] to obtain 2D line segments,

and then use the provided depth map (from Lidar) to fit 3D

lines [15]. The median number of 3D lines is 1975. Sample

2D and 3D line segments are given in Figure 9.

Given 3D line segments for each frame, we use Plücker

representations of line segments to compute relative poses

for consecutive frames, using our model trained on the
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Table 1: Comparison of rotation and translation errors on the Structured3D and Semantic3D dataset. Q1 denotes the first quartile, Med.

denotes the median, and Q3 denotes the third quartile.

P
P
P
P
P
P
P

Method

Error
Structured3D Semantic3D

Rotation (◦) Translation (m) Rotation (◦) Translation (m)

Q1 Med. Q3 Q1 Med. Q3 Q1 Med. Q3 Q1 Med. Q3

ICL 0.353 0.520 0.795 0.030 0.044 0.078 0.803 2.050 5.239 0.084 0.226 0.881

Regression 2.436 3.610 4.935 0.151 0.240 0.367 15.902 20.934 24.947 1.347 1.871 2.281

Ours 0.342 0.468 0.621 0.013 0.019 0.026 0.482 0.961 1.791 0.032 0.064 0.119
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Figure 8: Recall of rotation (Left) and translation (Right) on

the Structured3D (Top-row) and Semantic3D (Bottom-row), with

respect to an error threshold. Ours cross denotes using network

trained on one dataset to test on the other.

Figure 9: Sample 2D (Left) and 3D (Right) line segments from the

Apollo dataset.

Semantic3D dataset without fine-tuning. We compare our

method with ICL, and the results are given in Figure

10. Our method outperforms ICL with much higher

rotation and translation recalls, with median rotation and

translation error for our method and ICL at 1.13◦/0.44m

and 2.83◦/1.12m, respectively.

Computational efficiency. We compare the computation

time of our approach to ICL. The averaged time breakdowns

for our method are 0.037s/0.008s/0.327s (Structured3D),

0.036s/0.024s/0.335s (Semantic3D) for feature extraction,

matching and RANSAC pose estimation, respectively. The

averaged time for ICL is 0.055s/0.144s for Structured3D

and Semantic3D, respectively. The most time-consuming

part of our method is the RANSAC pose estimation step,

which is programmed in Python. Interested readers can
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Figure 10: Recall of rotation (Left) and translation (Right) on the

Apollo dataset, with respect to an error threshold. We directly use

model trained on Semantic3D dataset without fine-tuning.

speed-up the time-consuming RANSAC iterations in C++.

5. Conclusion

In this paper, we have proposed the first end-to-end

trainable network for solving the problem of aligning two

partially-overlapped 3D line reconstructions in Euclidean

space. The key innovation is to directly learn line-

wise features by parameterizing lines as 6-dim Plücker

coordinates and respecting line geometry during feature

extraction. We use these line-wise features to establish

line matches via a global matching module under the

optimal transport framework. The high-quality line

correspondences found by our method enable to apply a 2-

line minimal-case RANSAC solver to estimate the 6-DOF

pose between two line reconstructions. Experiments on

three benchmarks show that the new method significantly

outperforms baselines (iterative closet lines and direct

regression) in terms of registration accuracy.
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