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Abstract

Scene recovery is a fundamental imaging task for sev-

eral practical applications, e.g., video surveillance and au-

tonomous vehicles, etc. To improve visual quality under dif-

ferent weather/imaging conditions, we propose a real-time

light correction method to recover the degraded scenes in

the cases of sandstorms, underwater, and haze. The heart

of our work is that we propose an intensity projection strat-

egy to estimate the transmission. This strategy is motivated

by a straightforward rank-one transmission prior. The com-

plexity of transmission estimation is O(N) where N is the

size of the single image. Then we can recover the scene

in real-time. Comprehensive experiments on different types

of weather/imaging conditions illustrate that our method

outperforms competitively several state-of-the-art imaging

methods in terms of efficiency and robustness.

1. Introduction

An image is worth one thousand words. However, an

image or a video captured in a turbid medium would not

provide sufficient and correct visual information. Figure 1

shows three images captured in turbid media, such as sand-

storms, underwater, and haze. Such kind of images suf-

fer from severe contrast and color alteration or degrada-

tion. These changes increase the difficulty in many com-

puter vision tasks, including object tracking, marine celes-

tial navigation, pattern recognition, and semantic segmen-

tation. Hence, recovering the correct scene from the de-

graded observation is an essential and fundamental task in

computer vision.

For sandstorm images, underwater images, and hazy im-

ages, the degradation is generally due to light absorption

and scattering [23, 46, 14, 19, 32]. More specifically, 1) due

*Corresponding author.

(a) sandstorm image (b) underwater image (c) hazy image

Figure 1. Example of different imaging conditions. The upper tri-

angles in (a)-(c) are degraded patterns and the corresponding pat-

terns in the lower triangles are restored by our method.

to the physical properties of the environmental medium, it

will scatter the visible light formed by the relaxation of mul-

tiple spectra such that the scattered light source and the ini-

tial visible light source together constitute the environmen-

tal light source; 2) the environmental medium also absorbs

the visible light, and the imaging process is completed by

the imaging equipment to obtain the emitted light irradia-

tion of the imaging scene. The acquired radiation intensity

will then be attenuated under the environmental mechanism,

and the attenuation degree depends on the distance between

the imaging scene and the imaging equipment. Usually,

there are conventional names for image restorations, such

as sand-dust/underwater image enhancement and image de-

hazing. Although the visual degradation appears differently,

they share similar features: color distortion, low contrast,

and low visibility.
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The physical model that is widely used to describe the

formation of an image suffered from light transmission haz-

ard [44, 40, 21] is often defined as follows:

I(x) = t(x)J(x) + t̃(x)A, (1)

where I is the observed degraded image, J is the scene

radiance, and A is the global ambient light. Moreover,

t̃(x) + t(x) = 1, t is the medium transmission describing

the portion of the light reaching the camera, and t̃(x) is the

transmission describing the portion of the ambient scattered

light that influences imaging. In 1924, this model was first

proposed by Koschmieder [29]. To recover the scene radi-

ance J, we need both the transmission t (or t̃) and the ambi-

ent light A. This task is challenging since both variables are

unknown. Furthermore, this problem is under-determined

since we usually have only one single degraded image.

When the environmental transmitter is homogeneous,

the t(x) in Eq. (1) can be expressed as follows:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the ambient medium

and d(x) is the scene depth.

Nevertheless, a single image scene recovery has re-

ceived much attention and obtained great progress and new

progress. Narasimhan and Nayar [37] derived geometric

constraints on scene color changes and then developed al-

gorithms to recover scene colors as they would appear on

a clear day. In [38], the same authors further presented

a physics-based model that described the appearances of

scenes in uniform bad weather conditions and they pro-

posed a fast algorithm to restore scene contrast. Fu et al.

[19] proposed a sandstorm image enhancement approach

based on fusion principles. Wang et al. [49] proposed a fast

color balance and multi-path fusion method for sandstorm

image enhancement. Based on the assumption that the

transmission and surface shading are locally uncorrelated,

Fattal [16] estimated the surface albedo and then inferred

the medium transmission. With two observations, i.e., haze-

free images have more contrast than images plagued by bad

weather; and airlight tends to be smooth, Tan [47] proposed

to remove the haze by maximizing the local contrast of the

restored image. Fang et al. [15] proposed to handle the

hazy image in YUV color space with two priors and they

showed that most of the chrominance information of the

image can be well preserved. Generally, these preset con-

ditions can be viewed as priors of the latent clean images.

Referring to priors, the assumption of dark channel prior

(DCP), proposed by He et al. [23], could be regarded as

the best-known one. The DCP is based on the statistics of

haze-free images. Afterwards, numerous DCP-based meth-

ods [36, 24, 11, 45, 48, 13] have been proposed for image

restoration, such as sandstorm, underwater, and hazy im-

ages. In [22], Golts et al. proposed a dehazing method

of unsupervised training of deep neural networks based on

DCP loss. Note that the DCP has also been successfully

applied in blur kernel estimation [39]. However, the DCP-

based methods may fail if the haze-free images do not con-

tain zero-intensity pixels. Unlike the DCP that assumes zero

minimal value in local patches, Fattal [17] proposed a sin-

gle image dehazing method based on the color-lines pixel

regularity in natural images. There are also some other ef-

fective priors, to name a few, color attenuation prior [53],

non-local prior [6], color ellipsoid prior [8], gradient chan-

nel prior [28], and gamma correction prior [27], etc.

In recent years, the convolutional neural network (CNN)

based methods for single image restoration have become

popular. Cai et al. [9] proposed a deep neural network

(DehazeNet) for transmission map and then used the con-

ventional method to estimate atmospheric light. A multi-

scale version of Dehazenet [43] was trained to estimate

the transmission map. In [30], Li et al. proposed to di-

rectly restore the latent sharp image from a hazy image

through a light-weight CNN (AOD-Net). Yang and Sun

[51] proposed a proximal Dehaze-Net by incorporating the

haze imaging model, dark channel, and transmission pri-

ors into a deep architecture. Jamadandi and Mudenagudi

[25] proposed a deep learning framework to enhance the

underwater image with wavelet corrected transformations.

Li et al. [32] adopted the CNN network to perform un-

derwater image enhancement based on the assumption of

underwater scene prior. Li et al. [33] constructed an

underwater image enhancement benchmark and proposed

an underwater image enhancement network (Water-Net)

trained on their proposed model. However, these super-

vised learning-based imaging results essentially depend on

the diversity and volume of collected datasets. The gener-

ative adversarial network (GAN), an unsupervised learning

method, has achieved significant success toward scene re-

covery [12, 34, 42]. It is capable of generating realistic-

looking synthetic images and enhance the visual quality un-

der different weather/imaging conditions.

We can briefly divide the aforementioned methods into

two main categories: traditional physical property-based

methods (such as preset priors) and data-driven based meth-

ods (end-to-end network training methods). In this paper, to

make scene recovery easier and more flexible, we focus on

the first case due to its simplicity, stability, and flexibility.

The contributions of this work are as follows:

• We propose a new and straightforward method for

estimating the transmission based on the rank-one

prior. This effective method achieves state-of-the-art

performance for various applications under different

weather/imaging conditions.

• The complexity of transmission estimation is O(N)
where N is the size of the single image. The proposed
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method is then super fast and the GPU acceleration

achieves 4 ∼ 8 times faster than the CPU computing.

• The implementation of our method is very easy since

there is no iteration step. Furthermore, we expect that

our method can be applied in other related tasks.

2. Rank-One Transmission Prior

Rank-one transmission prior is based on the following

observation for outdoor degradation images: in most of the

regions except the light source area, the imaging scene is

covered by spatially homogenous light. The thickness of

scattered light depends on the scenery depth, or the light

transmission. The transmission t̃ has strong correlation with

scattered light. If the spectrum of scattered light is given,

the transmission can be characterized by their correlation

coefficients. For further discussion, let us describe their cor-

relation to be linear. Mathematically, if we stack the trans-

mission t̃(x) ∈ R
1×3 into a matrix T̃ ∈ R

r×3 (r = mn, if

the image I ∈ R
m×n×3), the matrix T̃ should be a rank-one

matrix. Specifically, if J is an outdoor scene image except

for the ambient light source, the transmission t̃(x) can be

represented as follows:

T̃ = CIu, (3)

where C ∈ R
r is a coefficient vector and Iu ∈ R

1×3 is the

transmission basis of t̃. We call this observation rank-one

transmission prior.

2.1. Rank­one prior validation

In this subsection, we provide statistical support for the

correctness of our rank-one prior. We carry out a statistical

experiment on several novel datasets named I-Haze [4], O-

Haze [5], and Dense-Haze [2], respectively. These datasets

are of real hazy images obtained in indoor and outdoor envi-

ronments with ground truth. I-Haze and O-Haze have been

employed in the dehazing challenge of the NTIRE 2018

CVPR workshop [1]. Dense-Haze has been used in the de-

hazing challenge of the NTIRE 2019 CVPR workshop [3].

Unlike other dehazing databases, hazy images in I-Haze, O-

Haze, Dense-Haze are generated using real haze produced

by a professional haze machine. We collect 30 pairs of real

hazy and corresponding haze-free images of various indoor

scenes from I-Haze, 45 pairs of different outdoor scenes

from O-Haze, and 55 pairs of dense homogeneous hazy im-

ages and haze-free images from Dense-Haze.

To give a more comprehensive demonstration, we com-

pute the transmission map t ∈ R
m×n×3 by two differ-

ent ways, and stack the third-order slice of t into a matrix

T ∈ R
mn×3. We compute the singular value decompo-

sition (SVD) of T and verify that the best rank-1 approx-

imation T1 takes the major energy of T, i.e., the energy
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Figure 2. The energy percentage of the obtained rank-one approxi-

mations. (a) The transmission map is computed by using the phys-

ical image formation model. (b) The transmission map is com-

puted by using an existing transmission estimation method [45].

percentage [26] r of the obtained rank-one matrix T1 sat-

isfies r =
‖T1‖

2

F

‖T‖2

F

=
σ2

1∑
3

i
σ2

i

≥ 90% with σi, i = 1, 2, 3 the

singular value of T.

• Case 1. Using the physical image formation model.

Figure 2 (a) shows the energy percentage of the ob-

tained rank-one approximations among 130 different

hazy images. From this real case, we can observe that

for over 96% images, the rank-one transmission energy

is higher than 90% of the total energy, which ensures

the correctness of the proposed prior.

• Case 2. Using an existing transmission estimation

method [45]. In this case, we first compute the trans-

mission map by Shu et al.’s method for each hazy im-

age, and then stack the third-order slice of t into a

matrix T ∈ R
mn×3. Similar to Case 1, we display

the energy ratio of rank-one approximation in Figure 2

(b). All rank-one approximations’ energy percentages

achieve more than 99.98%. This result further proves

that our proposed rank-one prior is valid.

2.2. Unified spectrum

Eqs. (1) and (2) show that, for the scenes in a long dis-

tance apart from the camera, due to the effect of the ambient

transmission, the obtained image I is mainly the irradiation

of the ambient light source. For the near scenes, the imag-

ing radiation contains a relatively small amount of ambient

light source irradiation. Although the radiation intensity of

the scene is different in imaging, they reflect the same radia-

tion spectrum, which we name the unified spectrum. Figure

3 visually demonstrates what is the unified spectrum.

For the observed intensity I, the unified radiance Su ∈
R

1×3 is given by the following formula:

min
Sc

u

‖Ic − S
c
u‖

2
F , (4)

where ‖·‖F denotes the Frobenius norm and c ∈ {R,G,B}
is the color channel of I. The closed-form solution of (4)
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Figure 3. Flowchart of the proposed method. Su denotes the unified radiance and Snu denotes the unified spectrum. The projection of

I(x) onto the unified spectrum is the scatter light transmission t̃(x).

(a) Raw images (b) DCP [23] (c) MSCNN [43] (d) Haze-Lines [7] (e) LDCP [54] (f) Fusion [19] (g) Retinex [20] (h) Ours

Figure 4. Sandstorm image enhancement results obtained by different methods. (The images are best viewed in the full-screen mode.)

can be directly computed by mean:

S
c
u =

1

|Ω|

∑

x∈Ω

I
c(x), c ∈ {R,G,B}. (5)

The unified radiance reflects the homogenous ambient light.

To describe its essential nature, we normalize the unified

radiance via the following formula:

Snu =
Su

‖Su‖1
, (6)

where Snu is called the unified spectrum. It describes the

spectral characteristics of the ambient light source. We
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(a) Raw images (b) Dive+ (c) Two-step [18] (d) Blurriness [41] (e) UWCNN [32] (f) Ours

Figure 5. Enhanced results obtained by different methods. (The images are best viewed in the full-screen mode.)

(a) Raw images (b) DCP [23] (c) MSCNN [43] (d) LDCP [54] (e) AODNet [30] (f) Ours

Figure 6. Dehazing results obtained by different methods. (The images are best viewed in the full-screen mode.)

claim that the unified spectrum Snu is a good approxima-

tion of transmission basis Iu. That is to say, Snu approx-

imates the common direction for the transmission. Then,

here comes a new way for estimating the transmission t̃ and

ambient light source A (details in the next section).

3. Scene Recovery with Rank-One Prior

3.1. Estimation of the transmission

To differentiate from the existing haze removal methods

which rely overly on the local contrast of degraded images,

the new strategy focuses on the optical principle of degraded

images and is physically valid.

t̃(x) = 〈I(x),Snu〉 · Snu. (7)

This formula is due to the fact that the proposed prior de-

pends on the main direction of the observed intensity, i.e.,

Snu. This novel approach provides a pixel-wise-based es-

timation strategy and initializes a transmission involving

many details corresponding to imaging contents. Moreover,

if t̃ is used directly for computing the latent scene radi-

ance J(x), the recovered result’s contrast is low. Since the

transmission map t̃ is obtained by the pixel-to-pixel com-

putation, it will present the details of scenery which do not

make sense. It is reasonable and necessary to make t̃ in (7)

less structured and more smooth. Although there are many

methods to smooth it, in this paper, we first downsample t̃

and then upsample it to obtain a smoothed t̃. This direct

strategy can help get satisfactory results.

3.2. Final recovery formula

Using the image formulation model (1), the final latent

radiance J is given by

J(x) =
I(x)− ωt̃(x)A

max(1− ωt̃(x), t0)
, (8)

where ω ∈ (0, 1] is an introduced constant relaxation pa-

rameter and t0 is the lower bound for a stable computation.

We choose t0 = 0.001 in this paper.

The estimation of the ambient light A is also very im-

portant. Note that the observed pixel is correlated with the

ambient light, i.e., the pixel with the highest norm of the

transmission is dominated by A. To estimate A, we first

pick the pixels with the highest top 0.1% norm in t̃ to avoid

outliers and then set the mean value of these pixels in the

observed image I to be A. The whole process of scene re-

covery by our method is shown in Figure 3.
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3.3. Complexity of our algorithm

From the flowchart shown in Figure 3, we know that our

method is quite straightforward, and we only need several

simple steps. We need Eq. (5) to compute the mean value

of the channel images, and Eq. (7) to compute the trans-

mission, and a Gaussian filter to smooth on the image. The

last step is Eq. (8). All these steps are of complexity O(N)
where N is the size of the single image. Hence, the com-

plexity of our algorithm is O(N).

4. Numerical Experiments

In this section, we will elaborate on the implementation

details, and analyze the imaging results on three different

exemplary applications of the proposed method, i.e., sand-

storm image enhancement, underwater image enhancement,

and image dehazing.

4.1. Implementation

The prominent advantage of our method is that the imag-

ing performance only depends on ω ∈ (0, 1] in Eq. (8). The

estimation of the transmission t̃ is thus parameter-free and

robust under different visibility conditions. We have im-

plemented numerous experiments to determine the optimal

parameter ω. This parameter is empirically set as ω = 0.8,

which guarantees high-quality visual results in most cases.

Note that this parameter is application-based, the readers

can try different ω to get a better performance.

All experiments are performed using Matlab R2018a on

a machine with an Intel(R) Core (TM) i9-10850K CPU

@3.60GHz. Unless specified, all test images are realis-

tic scenarios collected from the Internet. Our method will

be compared with several state-of-the-art methods. For the

sake of fairness, the competing methods produce the most

satisfactory imaging results with the best tuning parameters

in this work.

4.2. Visibility restoration in sandstorm weather

We first validate the effectiveness and robustness of our

method for visibility reconstruction in sandstorm weather.

The sandstorm could tremendously degrade the visibility

due to the light scattering and absorption by floating sand

and dust. It negatively influences practical applications,

e.g., video surveillance system, automatic navigation, and

remote sensing, etc. Performance of the proposed method

is compared with six different approaches, i.e., DCP [23],

MSCNN [43], Haze-Lines [7], LDCP [54], Fusion [19], and

Retinex [20]. The sample sandstorm images and respective

restoration results are visually displayed in Figure 4. It is

observed that the comparative dehazing methods (i.e., DCP

[23], MSCNN [43], Haze-Lines [7], and LDCP [54]) tend to

restore the prominent structures, but fail to effectively sup-

press the impact of dust and sandstorms. This phenomenon

could be related to the fact that images in sandstorm and

haze weathers are generated based on different imaging the-

ories. Although Retinex-based method [20] achieves good

performance, it still suffers from color distortion, i.e., cold-

tone appearance. In contrast, our method can produce more

natural-looking results with better structures in a more ro-

bust manner. Although all competing methods illustrate the

capacity for sandstorm reduction, Retinex-based method

[20] has obvious color distortion problems, e.g., inconsis-

tent brightness and loss of textural details, leading to im-

age quality degradation. Due to the rank-one transmission

prior, our method shows a stronger ability to robust visibil-

ity restoration in the sandstorm weather.

To facilitate the related researches, we will release a

dataset including realistic sandstorm images with different

imaging scenes and sizes.

Run-time performance. To test the efficiency of differ-

ent methods on different single image sizes, we also show

the run-time of our method on a machine with an NVIDIA

GTX 2080Ti GPU (11GB RAM).

Table 1 shows that our method performs much faster than

competitors (even deep learning-based methods). With the

GPU acceleration, our method can reach real-time perfor-

mance on the moderate size image.

Besides the astonishing performance on sandstorm im-

age enhancement, our method also does well in underwater

image enhancement and image dehazing. We will present

some results in the following subsections.

4.3. Underwater image enhancement

The realistic underwater images are obtained from a

dataset named Underwater Image Enhancement Benchmark

(UIEB) established by Li et al. [33]. We compare our

method with two-step based method [18], blurriness-based

method [41], UWCNN [32] and one commercial applica-

tion for enhancing underwater images (Dive+1). For the

Dive+, we adjust the parameter settings to generate satis-

factory results. Figure 5 (a) is the raw underwater image

that seems greenish. Without a doubt, such color devia-

tion affects the visual quality. As can be seen from Figures

5 (b)∼(h), our method produces quite competitive results.

Among these competitors, the two-step based method and

the commercial app Dive+ perform better than others. Our

results have better colorfulness, sharpness, and contrast.

4.4. Image dehazing

We compare our method with the state-of-the-art that in-

clude DCP [23], MSCNN [43], LDCP [54], and AODNet

[30]. The test images are obtained from the dataset (RE-

SIDE) established by Li et al. [31]. The DCP is a well-

1https://itunes.apple.com/us/app/dive-video-color-correction/id12515

06403
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Table 1. Run-time (seconds) performance. All methods are tested on the same machine using the same test images. Our method can reach

real-time performance for the moderate image size using GPU (Nvidia 2080Ti). Without specified, all methods are carried out using CPU

(lntel(R) Core(TM) i9-10850K CPU @3.60GHz). (Blue: Fastest method using CPU; Red: GPU acceleration on our method.)

Format DCP [23] Retinex [20] LDCP [54] Fusion [19] MSCNN [43] Haze-Lines [7] DehazeNet [9] AODNet [30] CAP [52] Ours Ours (GPU)

360p 0.47 0.25 0.44 0.28 0.55 0.39 0.85 0.36 0.54 0.05 0.04

480p 0.95 0.46 0.86 0.54 0.98 0.83 1.88 0.70 0.78 0.12 0.04

720p 2.51 1.20 2.29 1.57 2.48 2.47 6.01 1.84 1.56 0.33 0.07

1080p 5.71 3.15 5.11 3.70 5.62 5.98 14.89 4.34 3.11 0.80 0.12

2k 10.15 6.08 9.34 6.75 11.22 11.20 27.33 8.07 6.80 1.47 0.18

4k 27.75 17.58 25.42 18.60 30.90 35.54 76.22 21.72 13.55 4.05 0.46

known prior-based method. However, DCP may fail when

there exist large sky regions. The luminance model (LDCP)

can help assist in estimating the transmission map in the

sky. AOD-Net [30] directly restored the latent sharp image

from a hazy image through a light-weight CNN. A multi-

scale CNN (MSCNN) is the first method that generates the

transmission matrix by a coarse-to-fine strategy. Figure 6

shows the comparisons of different methods.

In Figure 6, we find that DCP produces garish results,

i.e., the sky presents abnormally blue. Although LDCP

performs better than DCP, the results appear unreal. Both

deep learning-based methods MSCNN and AODNet pro-

duce good and stable results. Visually, the dehazed results

by our method are very competitive in comparison with oth-

ers. The sky in our results looks more natural and real.

5. Analysis and Discussion

The proposed rank-one prior provides a good guidance

for computing the transmission by projecting the observed

spectrum onto the unified spectrum. Our method derives the

transmission from the ambient light instead of the scene ra-

diance. Using statistical validation on real haze datasets,

we introduce rank-one prior and unified spectrum to de-

scribe and measure the ambient-light-based transmission.

Hence, we approximate the transmission linearly by the uni-

fied spectrum for each pixel.

5.1. Relation with other methods

Both DCP and our method are based on physical as-

sumptions. However, DCP is prior for the natural image,

while ours is for the ambient light. Apparently, the trans-

mission computed by DCP satisfies our rank-one prior.

In addition, our method is related to some automatic

white balancing algorithm. Indeed, estimating Su is similar

to the gray world (GW) [35], which requires illumination

estimation. In GW, the mean of the r, g, b channels in a

given scene should be roughly equal. It computes the aver-

age of individual red, green, and blue color components.

5.2. Limitations

Since we use the whole degraded image to obtain the

unified spectrum, it may not be good enough if the distance

between nearby object and distant object is too large. A

possible solution is to use a supervised strategy, i.e., select

a good region to obtain the unified spectrum. Another prob-

lem is that the originally unnoticeable impurities, such as

noise and blocking, will be amplified [10, 50].

6. Conclusion

In this paper, we have proposed a new and straightfor-

ward but effective method for the scene recovery in differ-

ent real applications. The main idea of our work was that

we considered an intensity projection strategy to estimate

the transmission. This strategy was motivated by a rank-

one transmission prior. The complexity of transmission

estimation is O(N) where N is the size of the single im-

age. The transmission map of a single degraded image ob-

tained by the proposed method is very competitive with the

state-of-the-art. Indeed, we can recover the scene in real-

time. Supervised learning-based methods have achieved

astonishing performance in the low-level computer vision

field. The limitation of these methods is that they require

a large amount of training data to improve the network’s

generalization ability and robustness. Although some self-

supervised learning-based methods no longer rely on a large

number of paired datasets to obtain results similar to super-

vised learning-based methods, limited by the sandstorms

imaging models and related datasets, the research and de-

velopment of deep learning-based sandstorm removal meth-

ods are progressing slowly. In contrast, our method has

the best performance to a great extent. More results can

be found in the supplemental material.
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