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Abstract

Grounding referring expressions in RGBD image has

been an emerging field. We present a novel task of 3D visual

grounding in single-view RGBD image where the referred

objects are often only partially scanned due to occlusion.

In contrast to previous works that directly generate object

proposals for grounding in the 3D scenes, we propose a

bottom-up approach to gradually aggregate content-aware

information, effectively addressing the challenge posed by

the partial geometry. Our approach first fuses the lan-

guage and the visual features at the bottom level to gen-

erate a heatmap that coarsely localizes the relevant regions

in the RGBD image. Then our approach conducts an adap-

tive feature learning based on the heatmap and performs

the object-level matching with another visio-linguistic fu-

sion to finally ground the referred object. We evaluate the

proposed method by comparing to the state-of-the-art meth-

ods on both the RGBD images extracted from the ScanRefer

dataset and our newly collected SUNRefer dataset. Experi-

ments show that our method outperforms the previous meth-

ods by a large margin (by 11.2% and 15.6% Acc@0.5) on

both datasets.

1. Introduction

Localizing objects described by referring expressions

in vision signals, also known as visual grounding, has

long been a major motive for robotics and embodied vi-

sion. So far, we have seen growing efforts devoted to

visual grounding in images [17, 36, 13, 40, 24, 29, 33,

5, 41, 11, 42, 10, 9, 12, 19, 47, 18, 35, 38, 39, 20] and

videos [46, 45, 43, 37, 30, 31, 44]. Suppose that a robot

is going to take ‘the spoon on the table in the kitchen’

following your command [14, 23]; this would require a
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Query : This is a brown armchair. It is in a corner of the room.

Query : There is a gray trash can at the corner of the room. It 

is located left to the table legs and below the table.

Figure 1: We present a novel task of 3D visual grounding in

single-view RGBD images given a referring expression, and

propose a bottom-up neural approach to address it. Our goal

is to estimate the bounding box that encloses the full shape

of the referred object even this object is only partially ob-

served (top-left). Predicted bounding boxes of the referred

objects are in green.

more accurate localization result, preferable the 3D coordi-

nate of the referred object rather than a 2D bounding box.

Recent works [4, 1] extend the visual grounding task to

3D scenes [7] and localize the object referred by a natu-

ral language expression. While promising results are pro-

duced, these methods can only perform 3D visual ground-

ing in complete scenes that are reconstructed and/or seg-

mented [4, 1] in advance. Thus, they are not readily appli-

cable to single-view RGBD images with partial observation,

RGBD streaming data, or any dynamically changing envi-

ronments.

To this end, we propose a novel task for 3D visual

grounding: Given a single-view RGBD image of a scene,
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we aim at estimating the 3D bounding box of the full target

object described by a given referring expression. While this

novel task opens up many promising possibilities, it also

poses a major challenge due to the nature of single-view

RGBD images that they contain only incomplete informa-

tion about the scene and often partial observation of the re-

ferred object. Compared to 2D visual grounding on image

and 3D visual grounding on complete scene where geom-

etry information is complete in 2D and 3D space, various

occlusion cases in our task require a holistic understanding

of the object geometry to infer the 3D bounding boxes en-

closing the full target object.

Image-based grounding methods may be applied to

RGBD images but require an extra effort to lift the produced

2D bounding boxes to 3D. Chen et al. [4] proposed a one-

stage search and match strategy for 3D grounding. How-

ever, it fails to handle single-view RGBD images where

the referred objects are partially observed. The reason is

two-fold: First, it is inadequate to directly match between

features of these object proposals and the referring expres-

sion to achieve reliable grounding, as each proposal con-

tains only incomplete information due to the partial obser-

vation. Moreover, this is worsened by the fact that only

content-free object proposals are generated by a detection

network that searches the scene globally, thus failing to ac-

cumulate useful information about the referred object for

grounding.

With these observations, we propose a novel, bottom-

up matching approach for fine-grained grounding of the

referred objects in given single-view RGBD images. To

this end, our approach first matches the query expression

to the input RGBD image and generates a content-aware

heatmap on the voxel domain converted from the RGBD

image. This bottom-level matching amounts to coarse lo-

calization of regions, which are relevant to the referred ob-

ject. Then, based on the content-aware coarse localization,

an adaptive search-and-match strategy is employed. This

enables our network to conduct fine-grained search in the

relevant regions and generate visio-linguistic features by

fusing the query with more informative features from the

visual modality. These fused features are used to gener-

ate and refine the 3D object proposals to the final bounding

box enclosing the target object in the given referring expres-

sion. Compared to previous works, our bottom-up approach

exploits the language features at different levels, and thus

enables our network to be content-aware during searching

and matching stages. The adaptive search guided by the

content-aware heatmap also ensures the feature learning to

be concentrated in the relevant regions, mitigating the chal-

lenge posed by the partial geometry.

Mauceri et al. [22] present the SUN-Spot dataset that

provides spatial referring expressions to raw single-view

RGBD images in the SUNRGBD dataset[32]. However, the

amount of language annotations as well as their linguistic

variations (only spatial references) are inadequate. Alter-

natively, one can extract the RGBD frames from 3D scene

datasets [3, 28, 7, 4, 1] that also provide rich object-centric

language descriptions. Yet, referring expressions provided

in these scene datasets are constructed based on the scene

context; they may contain other supporting objects that ex-

ist in the scene but are not observed in a particular frame.

This artifact between annotations and the extracted frames

from the 3D scenes motivates us to contribute a large-scale

annotation dataset, SUNRefer, to facilitate future studies on

visual grounding in single-view RGBD images. Built on

the SUNRGBD dataset, our dataset contains 7,699 RGBD

images with a total of 38,495 annotations of referring ex-

pressions on 7,699 objects.

We evaluated our proposed 3D visual grounding method

on both SUNRefer, our newly constructed dataset, and

the ScanRefer dataset using the extracted RGBD frames.

We show that our approach outperforms the state-of-the-

art methods by a significant margin and validate our des-

gin choices via extensive ablation study. Our method can

also be applied to 3D visual grounding in streaming RGBD

images at a processing rate of 10 frame-per-second.

Our key contributions are summarized as follows:

1) We present a novel and challenging task – 3D visual

grounding in single-view RGBD images with possible in-

complete information or partial occlusion

2) We propose a content-aware, bottom-up approach that

significantly outperforms the state-of-the-art methods on

both our newly collected dataset and the ScanRefer dataset.

3) We contribute a large-scale dataset of referring

phrases and the corresponding ground-truth bounding boxes

for a large amount of publicly available RGBD images.

2. Related Work

Given a referring expression along with an input image,

2D visual grounding tasks aim to estimate a 2D bounding

box or instance segmentation mask that localizes in the im-

age the object most relevant to the referring expression. Pre-

vious works [13, 40, 24, 29, 33, 5, 41, 11, 42, 10, 9, 12,

19, 47, 36] usually adopt a two-stage approach. Firstly,

object proposals or segmentation masks are produced by

pre-trained models. Then, these methods rank the matching

scores between the referring expression and the proposals to

retrieve the best-matched object proposal as the grounding

result. However, performance of the two-stage approach is

bounded by the pre-trained models chosen. one-stage meth-

ods are also proposed [18, 35, 38, 39, 20] which produce

both object proposals and matching scores. In addition,

similar approaches can be applied to object visual ground-

ing in streaming video frames [43, 37, 30, 31, 44, 46, 45] to

ground objects or referring expressions in videos.

However, visual grounding in 2D images is limited since
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Figure 2: Overview of the proposed method. Our bottom-up approach consists of two main modules. Given an RGBD image

and a referring sentence, we first match the input pair at the voxel level to coarsely localize the relevant regions. This is

followed by an adaptive feature learning enabled by weighted FPS based on the coarse localization result. An object-level

matching between the language feature and the content-aware visual features is performed to generate object proposals for

fine grounding. Finally, the referring sentence is grounded in the object proposal with the highest score.

it is only able to localize the referred objects with 2D

bounding boxes in the image domain. It is still unavail-

able to get the precise 3D locations of the objects which

are desirable for more advanced tasks, such as embodied

AI[28, 21, 2, 34, 8].

Grounding texts in the indoor scenes has been an impor-

tant research field. An earlier work [16] explored the text-

to-image coreference in RGBD scenes, which takes sen-

tences describing the whole scene as input and matches each

noun word with an object in the scene. This differs from

ours task where input sentences are referring to a particu-

lar object in the scene. Qi et al. [28] proposed a language-

guided navigation task in the indoor scenes where an agent

needs to follow the language instructions to find a remote

target. In this study, we focus on the task of 3D visual

grounding, i.e., localizing the 3D bounding box of the re-

ferred object in the single-view RGBD images. A close re-

lated work is ScanRefer [4] where the authors propose a 3D

visual grounding task to find the 3D bounding boxes of re-

ferred objects in a complete RGBD scene which requires

reconstruction from raw scans beforehand. ReferIt3D [1]

is another recent work on 3D visual grounding in scenes.

This work assumes the availability of segmentation masks

of object instances for both training and testing. We are dif-

ferent to both previous works in that we focus on grounding

in single-view RGBD images where partial occlusions or

incomplete data are our major challenges.

We also differ from ScanRefer in terms of methodology.

ScanRefer employs a one-stage matching between the ob-

ject proposals generated by [26] and the language features

to obtain the grounding results. In contrast, we propose to

conduct 3D visual grounding using a bottom-up approach.

We first conduct a visual-language matching on the voxel

domain to coarsely localize the relevant regions. Then, we

accumulate features from these relevant regions for the fol-

lowing fine-grained matching on the object level.

3. Method

Overview We present a novel task of grounding a re-

ferring expression of a 3D object in a given RGBD image.

The expected output of this task is the 3D bounding box

of the full object referred in the language expression. This

is not a trivial task as the input RGBD image may contain

only part of the referred object. We propose a novel neural

solution to tackle this task in a bottom-up approach. Our

framework consists of two main modules as shown in Fig-

ure 2. We first produce a confidence heatmap from voxel-

level matching between voxel and the query sentence, to

coarsely localizes the relevant regions to the referred ob-

ject in the image. Next, an adaptive search strategy is pro-

posed to conduct fine-grained, content-aware search for the

referred object based on the heatmap. Finally, we fuse the

features accumulated from adaptive search and the language

feature to conduct object-level matching, yielding matching

scores and axis-aligned bounding box.

3.1. Voxel­level Matching for Coarse Localization

Given a referring expression and an RGBD image, this

module aims to learn from the two input modalities and pro-

duces a heatmap using the global context to localize relevant

regions to the referred object in the input image.

Heatmap generation. The input RGBD image X is

converted to a voxel grid V with 0.05m cell size. We adopt

a U-Net model [29], an encoder-decoder structure with skip

links constructed by 3D sparse convolutions [6], to regress

a voxel-wise heatmap Hvox indicating the relevancy of the
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referred object in the voxel grid. For further grounding in

the point cloud data, we project the produced heatmap Hvox

to the point cloud P, and eventually yield a heatmap H on

the point cloud domain P.

The voxel grid is chosen to produce the heatmap due

to two considerations. First, they can maintain the spatial

awareness of the objects compared to the 2D images. Sec-

ond, they are insensitive to superficial details compared to

the point clouds. This design choice is further validated in

our ablation study (see Table 4 and Figure 7).

Fusing language features for coarse localization. To

fuse the language input for the grounding purpose, We first

pass the given referring expression to a language encoder

and obtain language feature l. In particular, We employ

GloVe [25] to obtain the vector embedding for each word,

and use Gated Recurrent Units (GRU) to extract feature l

from the sequence of word embedding vectors.

We then introduce language feature l to modulate the

heatmap generation process for content-aware coarse lo-

calization. Specifically, we concatenate the output feature

maps of the voxel encoder with l, and feed the concatenated

features to a visio-linguistic encoder to obtain the fused fea-

tures. It is followed by the voxel decoder that generates the

content-aware heatmap Hvox that coarsely localizes the re-

gions relevant to the referring expression.

3.2. Object­level Matching for Fine Grounding

We leverage the generated heatmap to perform fine-

grained grounding by a high-level object and language

matching. To this end, we first propose a content-aware

sampling to generate seed points that concentrated in the

regions highlighted by the heatmap. We then conduct a

visio-linguistic fusion between the seeds and language fea-

ture, and employ a voting mechanism proposed in [26] for

proposals generation and object-language matching.

Adaptive feature learning. Based on the heatmap, we

conduct an adaptive feature learning using PointNet++[27]

to aggregate information only at the relevant regions.

To this end, we employ a weighted farthest point sam-

pling (weighted FPS) with a modified distance metric to ob-

tain adaptive samples guided by the heatmap. In particular,

we use the heatmap value at the query point q as the scal-

ing factor, and modify the Euclidean distance metric used

in farthest point sampling (FPS) as follow:

d̂(q, c) = h(q)d(q, c) (1)

where d(q, c) is the Euclidean distance between points q

and c. h(q) is the heat value of point q. This weighted

FPS can ensure that a point with a higher heat value will

have a higher chance to be chosen, and thus result in seed

points densely distributed in relevant regions identified by

the heatmap. The weighted FPS also maintains the unifor-

mity of the sampled points in the relevant region (as shown

in Figure 6).

The adaptive sampled seed points are denoted as

{si}
M
i=1. To obtain the features associated with the seed

points, PointNet++[27] is first employed to extract features

(residing in a set of key-points) from point cloud P. We

then use the Feature Propagation module as in [27] to aggre-

gate features from the nearby key-points to our seed points.

Visual-language fusion for proposal generation.

Next, we fuse the language features and visual features sam-

pled in a content-aware manner for the object-level ground-

ing. Specifically, we concatenate seed point features fi
with the language feature l, and process them using another

visio-linguistic encoder for fusion.

f̂i = EV L(cat(fi, l)). (2)

We denote the seed points with associated fused features as

{ŝi = [si ∈ R
3, f̂i ∈ R

C ]}Mi=1.

We adopt the voting module proposed in [26] to gen-

erate votes {vi}
M
i=1 pointing at objects’ center from the

obtained seed points {ŝi}
M
i=1. Then, the votes are clus-

tered in the 3D space to produce object proposal features

{pk ∈ R
3+C}Kk=1

, where the first three channels represent

the cluster center of the proposal. Finally, we use a shared

MLP-based regressor to estimate, for each of the K pro-

posal features, the proposal box Bk = (x, y, z, w, l, h) and

its score Sk to match the referred object. Among K can-

didate proposals, we choose the highest scored proposal as

our predicted bounding box to localize the referred object.

Proposal refinement: As the proposal features are ag-

gregated from each cluster formed by the votes, they contain

only local information from that cluster. Thus, we provide

an optional module to refine the proposal features {pk}
K
k=1

.

We perform another feature aggregation among {pk}
K
k=1

and {si}
M
i=1 to produce a set of refined proposal features

{p̂k}
K
k=1

. Then we feed {p̂k}
K
k=1

to the regressor to pro-

duce final proposal boxes {B̂k}
K
k=1

.

3.3. Loss Function

We train our network with the following loss function,

Ltotal = λ1Lheat + λ2Lvote + λ3Lmatch + λ4Lresp

(3)

Heatmap loss Lheat encourages the generation of the dis-

tinctive heatmap which is able to determine regions’ rele-

vancy to the sentence query. We firstly construct a ground-

truth (GT) point cloud heatmap H̄ according to the target

object’s location. We calculate it using a Gaussian kernel so

that further distance from the target object’s center will have

diminished value. Lheat is obtained by the mean square er-

ror (MSE) between H̄ and generated H as follow:

Lheat =
∥

∥H̄−H
∥

∥

2
(4)
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Table 1: Statistics of SUNRefer dataset comparing some public 3d referring expression datasets.

dataset # of annotations # of objects Annotated on averaged description length

ScanRefer [4] 51,583 11,046 704 scenes 20.3

Nr3D [1] 41,503 5,879 642 scenes 11.4

REVERIE [28] 21,702 4,140 90 scenes 18.0

SUN-Spot [22] 7,990 3,245 1,948 RGBD images 14.1

SUNRefer 38,495 7,699 7,699 RGBD images 16.3

Vote loss Lvoteis defined following [26]:

Lvote =
1

Mpos

∑

i

‖vi − v̄i‖2 ✶[si on objects], (5)

where Mpos is the total number of seed points on objects,

vi and v̄i are the predicted vote coordinates and GT centers

of the object that the seed point si resides on, if applica-

ble. Thus, the vote loss enforces the network to produce a

correct vote, when a seed point on any object is given.

Matching loss Lmatch is designed to ensure matching

score Sk to approximate the Intersection of Union (IoU)

between the proposal Bk and the GT bounding box of the

target object B̄. This way, it can return high responses to

correct proposals while suppressing any mismatched pro-

posals. Thus, the matching loss is computed using MSE as

follows:

Lmatch =
1

K

K
∑

i=1

‖IoUk − Sk‖2 (6)

where K is the number of proposals and IoUk denotes the

IoU between Bk and B̄.

Response loss Lresp aims to pull the proposal Bi that

has the maximum IoU with GT bounding box closer to it.

Given target bounding box B̄, The loss is written as follow:

Lresp =
∥

∥Bi − B̄
∥

∥

2
, i = argmax

k
(IoUk). (7)

When proposal refinement is employed, {Bk}
K
k=1

will

be supervised by GT bounding box B̄partial enclosing

the partial object in the input and the refined proposals

{B̂k}
K
k=1

will be supervised by GT bounding box B̄intact

enclosing the full object. Otherwise, Proposals {Bk}
K
k=1

will be directly supervised by B̄intact.

4. SUNRefer Dataset

Due to the lack of a large-scale dataset dedicated to vi-

sual grounding in single-view RGBD images, we contribute

a large-scale referring expression dataset, named SUNRe-

fer. Our dataset contains 7,699 RGBD images from SUN-

RGBD [32] and annotation of 3d orientated bounding boxes

enclosing the full objects. We hire annotation workers to

annotate each target object with referring expressions.

Given an RGBD image with the bounding box enclos-

ing an object, we ask the annotators to describe this object

using its own attributes (e.g. color, shape, and material)

and/or spatial relationship in the surrounding environment

with multiple sentences. A description is expected to dis-

tinguish the target object from its neighboring objects and

those with similar appearances but different locations.

For each target object, we collect five descriptions from

different annotators in order to ensure linguistic diversity.

Verification was conducted to obtain high-quality annota-

tions. An example of SUNRefer dataset is shown in Fig-

ure 3. Statistics of the SUNRefer dataset and comparison

with some public datasets are shown in Table 1. More de-

tails can be found in our supplementary.

5: There are two chairs on the floor, and the left one is below the round 

table.

2: Nearest to the blue garbage 

bin is a yellow chair with four 

legs.

3: Between the round wooden 

table and the blue recycle bin, 

there is a yellow chair with a 

backrest.
4: Under the round table, there is a chair with yellow plastic on the top 

and a metal bracket on the bottom.

1: Next to the blue bin, there is a 

yellow chair, which is placed 

under the round wooden table.

Figure 3: An example of the SUNRefer dataset with five dif-

ferent language descriptions referring to the chair enclosed

by the green bounding box.

5. Experiments

5.1. Implementation Details

We first train the language-guided coarse localization

module (and the GRU) independently with the heatmap loss

for 10 epochs. Based on this pre-trained module, we then

train the entire framework with the described loss function

(Equation 3) for another 60 epochs. The coefficients for the

loss terms are λ1 = 0.5, λ2 = 0.5, λ3 = 2.0, λ4 = 1.0. The

Adam optimizer [15] is used for optimization. The learn-

ing rate is set to 0.0001 for the coarse localization module,

and 0.001 for the rest of the model parameters. Both learn-

ing rates are decayed by 0.2 at the 50-th epoch. Data aug-
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Table 2: Quantitative comparison between our methods and the state-of-the-art methods. Our method outperforms the

comparing methods by a large margin on both SUNRefer and ScanRefer datasets under the single-view RGBD setting.

Dataset SUNRefer ScanRefer (single-RGBD)

Methods Acc@0.5 Acc@0.25 R@5 Acc@0.5 Acc@0.25 R@5

ReSC[38] 7.4 23.6 9.4 12.4 34.3 17.1

One Stage[39] 2.6 12.8 7.9 5.8 26.1 21.7

ScanRefer[4] 20.3 45.0 23.6 20.3 48.2 33.8

Ours 35.9 49.6 52.9 31.5 56.5 49.3

Query: The nightstand 

is between the desk 

and the bed. The 

nightstand is a dark 

brown square box.

One Stage ReSC ScanRefer Ours

Query: This is a armchair. 

It’ s white with patterns 

on it. It’ s closest to the 

window in the room.

Query: On the left of the 

whiteboard, there 

placed a small picture 

with a wooden frame.

Query: The table is placed 

next to the garbage bin.

Figure 4: Comparison between our method and the state-of-the-art. A bounding box is considered as a successful prediction

(green) if it has an IoU larger than 0.5 with the ground-truth box (yellow) of the entire object even if it is partially observed;

otherwise, it is considered as a failure one (red). More visual results are presented in the supplementary.

Table 3: Quantitative comparison against the state-of-the-

art methods on the ScanRefer dataset. Our method achieves

comparable, if not better, results comparing to two variants

of ScanRefer even under the whole-scene setting.

Dataset ScanRefer (whole scene)

Methods Acc@0.5 Acc@0.25 R@5

ScanRefer-full 27.1 41.0 43.5

ScanRefer-xyz+rgb 23.1 35.9 39.7

FPS baseline-xyz+rgb 24.2 35.1 44.7

Ours-xyz+rgb 29.0 40.2 47.1

mentation is applied to both voxel and point cloud models

by perturbing them with small translations and rotations in

all three axes. The batch size is set to 14 for training. The

training time is approximately 30 hours on a single NVIDIA

RTX-2080-TI GPU. More implementation details are sup-

plied in the supplemenetary materials

5.2. Evaluation Metric

We use the highest scored proposal from our network

as the predicted bounding box of the referred object. We

follow [4] to use Acc@0.5 and Acc@0.25 as our evaluation

metrics. We also introduce another evaluation metric, R@5,

which is widely used in 2D visual grounding to reflect the

retrieval accuracy, where the retrieval is considered correct

if at least one of the proposals of top-5 scores has an IoU

> 0.5 with the GT box. Thus, Acc@{0.5, 0.25} focus on

how close the highest scored proposal to the GT box, and

R@5 evaluates the quality of the proposal candidates.

5.3. Comparison with SOTA

Comparison in the single-view RGBD setting: We

compare the proposed method with ScanRefer [4] and the

other two methods extended from 2D grounding, i.e., One
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Table 4: Quantitative results of ablation study. We compare our full model using the voxel-based heatmap and the weighted

FPS with several alternative configurations. The comparisons validate our design choices.

Dataset SUNRefer ScanRefer (single-RGBD)

Methods Acc@0.5 Acc@0.25 R@5 Acc@0.5 Acc@0.25 R@5

Ours (voxel + weighted FPS) 35.9 49.6 52.9 31.5 56.5 49.3

Voxel-level matching only 12.2 31.0 18.4 16.8 39.8 28.4

FPS baseline w/o voxel-level matching 28.6 45.7 43.5 25.4 52.7 39.2

Weigthed random sampling 34.1 48.2 51.9 29.4 56.4 46.8

image modality 33.6 48.3 48.3 29.2 54.9 45.1

point cloud modality 34.0 47.8 50.4 29.8 55.2 48.3

w/o proposal refinement 35.8 49.5 52.9 30.7 55.6 47.7

Stage [39] and ReSC [38], under the single-view RGBD

setting on both ScanRefer and SUNRefer datasets.

As the ScanRefer dataset provides only the complete

scene annotations, we extract the raw RGBD images from

ScanNet [7]. For each extracted images, we identify the

objects that are visible in the image and use these objects

and their corresponding referring sentences as paired input

to our network for training and testing. We select a subset

of the images in which the objects have different visibil-

ity ranging from high to nearly invisible. This ensures our

model can cope with target objects with severe incomplete-

ness. We follow the train/val split of the ScanRefer dataset.

For the two methods extended from 2D grounding, we

train a VoteNet to generate 3D object proposals and match

them with the 2D grounding results to produce the 3D

grounding output. See Supplementary for more details.

Quantitative comparison between these methods is

shown in Table 2. Our method significantly outperforms the

other methods with a large margin on both datasets. This

shows that ScanRefer may not be suitable for grounding

in single-view RGBD images. Performance of 2D visual

grounding methods indicates the inefficiency of obtaining

3D precise localization results from a 2D bounding box.

Figure 4 depicts some qualitative results. The proposed

method has both higher retrieval accuracy and localization

accuracy than previous methods.

Comparison in the whole-scene setting: We then dis-

cuss the performance of our method in the whole-scene set-

ting, the same setting as in [4]. We compare our method

to two ScanRefer variants: 1) ScanRefer-xyz+rgb using the

spatial coordinates and colors; and 2) ScanRefer-full us-

ing its full configuration (including pre-trained multi-view

image features, point cloud normals, and a language clas-

sifier). Table 3 shows our method outperforms the two

variants of ScanRefer in Acc@0.5 (29.0 against 27.1) and

R@5 (47.1 against 43.5), and attains a comparable perfor-

mance in Acc@0.25. Our method using xyz+rgb outper-

forms ScanRefer with the same input and achieves com-

parable results compared to the full configuration of Scan-

Refer which uses extra inputs. This shows our bottom-up

grounding method is applicable to the 3D scenes as well.

FPS baseline w/o 

voxel-level matching
Voxel heatmap Ours

Query: This is a blue towel. It is between the toilet and the sink.

Query: This is a round trash can. It is under the counter top.

Query:  There sits a black laptop on the desk.

Figure 5: Comparison between the FPS baseline with the

proposed bottom-up approach. Successful predictions are

in green; failures in red; and ground-truth in yellow.

5.4. Ablation Study

In order to show the effectiveness of different design

choices in our proposed approach, we conducted extensive

ablation studies.

FPS baseline w/o voxel-level matching: We first com-

pare our method to the FPS baseline where no voxel-level

matching is performed. Thus, the FPS baseline amounts to

use a standard VoteNet [26] with a single visual-language

matching at the object level. Quantitative comparison

demonstrates that our method with voxel-level matching is

able to achieve far better results; see the first row block of

Table 4. Some qualitative results are provided in Figure 5.

In the first and third row, our method successfully localizes

the correct object, while FPS baseline fails. In the second

row, both methods are successful, yet our method obtain

more accurate results.

Voxel-level matching only: We also consider the con-

figuration where object-level matching is removed. We con-

ducted an experiment of using only voxel-level matching
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Input RGBD image FPS

Weighted random sampling Weighted FPS

Query: The keyboard sits atop the desk. It is in front of the 

left side monitor that is also on the desk.

Figure 6: Comparison between different sub-sampling

methods. Seed points are visualized in red.

for grounding. Specifically, we trained a VoteNet [26] to

generate object proposals and ground the text in the pro-

posal with the highest confidence value based on the point

cloud heatmap. Results are shown in the first row block in

Table 4. Using only voxel-level matching severely deterio-

rates the performance, further demonstrating the necessity

of combining voxel-level and object-level matching.

Different sampling strategies: We show the advantage

of weighted FPS over the weighted random sampling tech-

nique which randomly samples the point set using their

heatmap value as the sampling probability. As can be seen

from the first row block of Table 4, weighted FPS (Ours)

can attain slightly better results compared to weighted ran-

dom sampling. Both methods outperform the FPS baseline

by a large margin. The performances show that weighted

FPS facilitates object proposal generation. Intermediate re-

sults are shown in Figure 6 where weighted FPS can yield

well-patterned seed points that are densely concentrated in

the relevant regions. The weighted random sampling only

scatters the majority of seed points around relevant regions,

while the FPS spreads the seed points uniformly in the point

cloud with few seed points in the relevant regions.

Different modalities for heatmap generation: We val-

idate the design choice of using voxel modality for coarse

localization. We compare our model using 3D voxels with

its variants using 2D images and 3D point clouds. See sup-

plementary for more details of these variants.

We show the performances of the three models using dif-

ferent modalities in the second row block of Table 4. Com-

parison shows our method using the voxel-based heatmap

achieves the best result among the three optional configu-

rations. In terms of efficiency, the voxel-based model can

run at 10.0 fps, slightly lower than the frame-rate of the

image-based model (12.5 fps) but much higher than that

of the point cloud model (5.3 fps). Qualitative examples

are given in Figure 7. Our voxel-based model can learn

a more concentrated heatmap than models using the other

two modalities. With such a heatmap, the network can ex-

tract content-aware features from the regions relevant to the

target object, and hence precisely infer the bounding box of

the target object.

From image 

heatmap model

From point cloud

heatmap model

Query: The pillow on the floor is green. It also has a square shape.

From voxel 

heatmap model

Figure 7: Comparison between different modalities used by

the heatmap generation model. Successful predictions are

in green; failures in red; and ground-truth in yellow.

Without proposal refinement: The grounding perfor-

mance can be increased by a moderate margin on both

datasets with the additional module designed for refining

the final proposals. Comparison against results without this

refinement module is shown in the bottom block in Table 4.

6. Conclusions

This paper presents a novel task of 3D visual grounding

in single-view RGBD images. A bottom-up method is pro-

posed that matches the query sentence to visual features at

both voxel level and object level. We also contribute a large-

scale referring expression dataset, SUNRefer, on more than

7,000 single-view RGBD images corresponding to 38, 495
descriptions in total. Extensive experiments on both the

SUNRefer and ScanRefer datasets show that the proposed

method significantly outperforms previous methods.
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