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Figure 1: Our method generates smooth interpolations within and across domains in various image-to-image translation

tasks. Here, we show gender, age and smile translations from CelebA-HQ [20] and animal translations from AFHQ [10].

Abstract

Image-to-Image (I2I) multi-domain translation models

are usually evaluated also using the quality of their seman-

tic interpolation results. However, state-of-the-art models

frequently show abrupt changes in the image appearance

during interpolation, and usually perform poorly in inter-

polations across domains. In this paper, we propose a new

training protocol based on three specific losses which help

a translation network to learn a smooth and disentangled

latent style space in which: 1) Both intra- and inter-domain

interpolations correspond to gradual changes in the gener-

ated images and 2) The content of the source image is better

preserved during the translation. Moreover, we propose a

novel evaluation metric to properly measure the smoothness

of latent style space of I2I translation models. The proposed

method can be plugged in existing translation approaches,

and our extensive experiments on different datasets show

that it can significantly boost the quality of the generated

images and the graduality of the interpolations.

1. Introduction

Translating images from one domain to another is

a challenging image manipulation task that has recently

drawn increasing attention in the computer vision commu-

nity [9, 10, 16, 17, 26, 29, 37, 43]. A “domain” refers to a

set of images sharing some distinctive visual pattern, usu-

ally called “style” (e.g., the gender or the hair color in face

datasets) [10, 16, 43]. The Image-to-Image (I2I) translation

task aims to change the domain-specific aspects of an image

while preserving its “content” (e.g., the identity of a person

or the image background) [16]. Since paired data (e.g., im-

ages of the same person with different gender) are usually

not available, an important aspect of I2I translation models

is the unsupervised training [43]. Moreover, it is usually de-

sirable to synthesize the multiple appearances modes within

the same style domain, in such a way to be able to generate

diverse images for the same input image.

Recent work addresses the I2I translation using multi-

* These two authors contributed equally to this work. Correspondence

to: wei.wang@unitn.it and denadai@fbk.eu.
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Figure 2: An illustration of the relation between smoothness and disentanglement of the style space. (a) Two well-separated

distributions with a large margin in between. The intermediate area can lead to the generation of artifacts because it has not

been sufficiently explored during training. (b) When the margin is reduced, the corresponding image appearance changes are

smoother. (c) A t-SNE visualization of randomly sampled style codes using StarGAN v2 [10], which shows a disentangled

style space but also that the inter-domain area generates images with artifacts. (d) The same visualization shows that, using

our method, despite the disentanglement is preserved, the inter-domain area generates realistic images.

ple domains [9, 26, 10] and generating multi-modal out-

puts [26, 10]. These Multi-domain and Multi-modal Unsu-

pervised Image-to-Image Translation (MMUIT) models are

commonly evaluated based on the quality and the diversity

of the generated images, including the results obtained by

interpolating between two endpoints in their latent represen-

tations (e.g., see Fig. 1). However, interpolations are usually

computed using only points belonging to the same domain,

and most of the state-of-the-art MMUIT methods are in-

clined to produce artifacts or unrealistic images when tested

using across-domain interpolations. This is shown in Fig. 2

(c), where, using the state-of-the-art StarGAN v2 [10], the

inter-domain area in the style space frequently generates ar-

tifacts. Another common and related problem is the lack of

graduality in both intra and inter domain interpolations, i.e.,

the generation of abrupt appearance changes corresponding

to two close points in the latent space.

In this paper, we address the problem of learning a

smoothed and disentangled style space for MMUIT models,

which can be used for gradual and realistic image interpo-

lations within and across domains. With “disentangled” we

mean that the representations of different domains are well

separated and clustered (Fig. 2), so that intra-domain in-

terpolations correspond to only intra-domain images. With

“smoothed” we mean that the semantics of the style space

changes gradually and these changes correspond to small

changes in the human perceptual similarity.

The main idea of our proposal is based on the hypothesis

that the interpolation problems are related to the exploration

of latent space areas which correspond to sparse training

data. We again refer to Fig. 2 to illustrate the intuition be-

hind this observation. Many MMUIT methods use adver-

sarial discriminators to separate the distributions of differ-

ent domains [10]. However, a side-effect of this disentan-

glement process is that some areas of the latent space do

not correspond to real data observed during training. Con-

sequently, when interpolating in those areas, the decoding

process may lead to generating unrealistic images. We pro-

pose to solve this problem jointly using a triplet loss [35, 4]

and a simplified version of the Kullback-Leibler (KL) di-

vergence regularization [24]. The former separates the do-

mains using a small margin on their relative distance, while

the latter encourages the style codes to lie in a compact

space. The proposed simplified KL regularization does not

involve the estimation of parametric distributions [24] and it

can be easily plugged in Generative Adversarial Networks

(GANs) [10, 3]. On the other hand, differently from ad-

versarial discrimination, the triplet-loss margin can control

the inter-domain distances and help to preserve the domain

disentanglement in the compact space, Finally, we also en-

courage the content preservation during the translation us-

ing a perceptual-distance based loss. Fig. 1 shows some

interpolation results obtained using our method. In Sec. 6

we qualitatively and quantitatively evaluate our approach

and we show that it can be plugged in different existing

MMUIT methods improving their results. The last contri-

bution of this paper concerns the proposal of the Perceptual

Smoothness (PS) metric based on the perceptual similar-

ity of the interpolated images, to quantitatively evaluate the

style smoothness in MMUIT models.

The contributions of this paper can be summarized

as follows. First, we propose a new training strategy

based on three specific losses which improve the interpo-

lation smoothness and the content preservation of different

MMUIT models. Second, we propose a novel metric to

fill-in the gap of previous MMUIT evaluation protocols and

quantitatively measure the smoothness of the style space.

2. Related Work

Unsupervised Domain Translation. Translating images

from one domain to another without paired-image super-

vision is a challenging task. Different constraints have been
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proposed to narrow down the space of feasible mappings

between images. Taigman et al. [39] minimize the feature-

level distance between the generated and the source im-

age. Liu et al. [27] create a shared latent space between the

domains, which encourages different images to be mapped

into the same space. CycleGAN [43] uses a cycle consis-

tency loss in which the generated image is translated back

to the original domain (an approach proved to be pivotal in

the field [23, 1, 32]). However, all these approaches are

limited to one-to-one domain translations, thus requiring

m(m−1) trained models for translations with m domains.

StarGAN [9] was the first single-model for multi-domain

translation settings. The generation process is conditioned

by a target domain label, input to the generator, and by a do-

main classifier in the discriminator. However, the I2I trans-

lation of StarGAN is deterministic, since, for a given source

image and target domain, only one target image can be gen-

erated (no multi-modality).

Multi-modal and Multi-domain Translation. After the

pioneering works in supervised and one-to-one image trans-

lations [44, 16, 30], the recent literature is mainly focused

in multiple-domains and multi-modal translations. Both

DRIT++ [26] and SMIT [34] use a noise input vector and

a domain label to increase the output diversity. StarGAN

v2 [10] relies on a multitask discriminator [28] to model

multiple domains, a noise-to-style mapping network, and

a diversity sensitive loss [30] to explore the image space

better. However, qualitative results show changes of sub-

tle “content” details (e.g., the color of the eyes, the shape

of the chin or the background) while translating the image

with respect to the style (e.g., the hair colour or the gender).

Although MMUIT models do not require any image-

level supervision, they still require set-level supervision (i.e.

domain labels for each image). Very recently, TUNIT [3]

proposed a “truly unsupervised” task where the network

does not need any supervision. TUNIT learns the set-level

characteristics of the images (i.e., the domains), and then it

learns to map the images to all the domains. We will empir-

ically show that our method can be used with both StarGAN

v2 and TUNIT, and significantly improve the interpolation

smoothness with both models.

Latent-space interpolations. There is a quickly grow-

ing interest in the recent I2I translation literature with re-

spect to latent space interpolations as a byproduct of the

translation task. However, most previous works are only

qualitatively evaluated, they use only intra-domain interpo-

lations [25, 26, 34], or they require specific architectural

choices. For example, DLOW [13] is a one-to-one domain

translation, and RelGAN [40] uses a linear interpolation

loss at training time, but it is not multi-modal. In StarGAN

v2 [10], the style codes of different domains are very well

disentangled, but the inter-domain interpolations show low-

quality results (e.g., see Fig. 2). HomoGAN [8] learns an

explicit linear interpolator between images, but the gener-

ated images have very limited diversity.

Interestingly, image interpolations are not limited to the

I2I translation field. The problem is well studied in Auto-

Encoders [24, 6, 5] and in GANs [2, 21, 22], where the

image is encoded into the latent space without an explicit

separation between content and style. For example, Style-

GAN [21] and StyleGANv2 [22] show high-quality inter-

polations of the latent space, where the latter has been fur-

ther studied to identify the emerging semantics (e.g. lin-

ear subspaces) without retraining the network [36, 18, 42].

Richardson et al. [33] propose to find the latent code of a

real image in the pre-trained StyleGAN space. This two-

stage inversion problem allows multi-modal one-to-one do-

main mappings and interpolations. However, these methods

are not designed to keep the source-image content while

changing the domain-specific appearance. Thus, they are

not suitable for a typical MMUIT task.

3. Problem Formulation and Notation

Let XXX =
⋃m

k=1XXX k be the image set composed of m dis-

joint domains (XXX i∩XXX j = ∅, i 6= j), where each domainXXX k

contains images sharing the same style. The goal of a multi-

domain I2I translation model is to learn a single functional

G(i, j) = XXX i → XXX j for all possible i, j ∈ {1, 2, · · · ,m}.

The domain identity can be represented either using a dis-

crete domain label (e.g., i) or by means of a style code sss,

where sss ∈ SSS is a continuous vector and the set SSS of all

the styles may be either shared among all the domains or it

can be partitioned in different domain-specific subsets (i.e.,

SSS = {SSS1, · · · ,SSSm}). In our case, we use the second solu-

tion and we denote with x̂xx = G(xxx,sss) the translation oper-

ation, where xxx ∈ XXX i is the source image (and its domain

implicitly indicates the source domain i), sss ∈ SSSj is the tar-

get style code and x̂xx ∈ XXX j is the generated image.

The MMUIT task is an extension of the above descrip-

tion in which:

a. Training is unsupervised. This is crucial when collect-

ing paired images is time consuming or impossible.

b. The source content is preserved. A translated image

x̂xx = G(xxx,sss) should preserve domain-invariant charac-

teristics (commonly called “content”) and change only

the domain-specific properties of the source image xxx.

For example, in male ↔ female translations, x̂xx should

keep the pose and the identity of xxx, while changing

other aspects to look like a female or a male.

c. The output is multi-modal. Most I2I translations meth-

ods are deterministic, since, at inference time, they can

produce only one translated image x̂xx given a source im-

age xxx and a target domain j. However, in many prac-

tical applications, it is desirable that the appearance of
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x̂xx depends also on some random factor, in such a way

to be able to produce different plausible translations.

There are mainly two mechanisms that can be used to obtain

a specific style code sss ∈ SSSj . The first option is to sample a

random vector (e.g., zzz ∼ N (000, III)) and then use an MLP to

transform zzz into a style code: sss = M(zzz, j) [21], where j is

the domain label. The second option is based on extracting

the code from a reference image (xxx′ ∈ XXX j) by means of an

encoder: sss = E(xxx′). In our case, we use both of them.

4. Method

Fig. 2 shows the main intuition behind our method.

A style space in which different domains are well sepa-

rated (i.e., disentangled) may not be sufficient to guaran-

tee smooth inter-domain interpolations. When the domain-

specific distributions are too far apart from each other, this

may lead to what we call “training gaps”, i.e., portions of

the space that are not populated with training samples. Con-

sequently, at training time, the network has not observed

samples in those regions, and, at inference time, it may mis-

behave when sampling in those regions (e.g., producing im-

age artifacts). Moreover, a non-compact style space may

create intra-domain “training gaps”, leading to the gener-

ation of non-realistic images when drawing style codes in

these areas. Thus, we argue that smoothness is related to re-

ducing these training gaps and compacting the latent space.

Note that the commonly adopted domain loss [9] or the

multitask adversarial discriminators [10, 28] might result

in domain distributions far apart from each other to facil-

itate the discriminative task. In order to reduce these train-

ing gaps, the domain distributions are expected to be pulled

closer while keeping the disentanglement. To achieve these

goals, we propose two training losses, described below.

First, we use a triplet loss [35] to guarantee the separabil-

ity of the style codes in different domains. The advantage

of the triplet loss is that, using a small margin, the disen-

tanglement of different domains in the latent space can be

preserved. Meanwhile, it is convenient to control the inter-

domain distance by adjusting the margin. However, our em-

pirical results show that the triplet loss alone is insufficient

to reduce the training gaps. For this reason, we propose to

compact style space using a second loss.

We propose to use the Kullback-Leibler (KL) divergence

with respect to an a priori Gaussian distribution to make the

style space compact. This choice is inspired by the regular-

ization adopted in Variational AutoEncoders (VAEs) [24].

In VAEs, an encoder network is trained to estimate the pa-

rameters of a multivariate Gaussian given a single (real) in-

put example. However, in our case, a style code sss can be

either real (using the encoder E, see Sec. 3) or randomly

sampled (using M , Sec. 3), and training an additional en-

coder to estimate the distribution parameters may be hard

and not necessary. For this reason, we propose to simplify

the KL divergence using a sample-based ℓ2 regularization.

Finally, as mentioned in Sec. 3, another important aspect

of the MMUIT task is content preservation. To this aim, we

propose to use a third loss, based on the idea that the content

of an image should be domain-independent (see Sec. 3) and

that the similarity of two images with respect to the content

can be estimated using a “perceptual distance”. The latter

is computed using a network pre-trained to simulate the hu-

man perceptual similarity [41].

In Sec. 4.1 we provide the details of these three losses.

Note that our proposed losses can be applied to different I2I

translation architectures which have an explicit style space

(e.g., a style encoder E, see Sec. 3), possibly jointly with

other losses. In Sec. 4.2 we show a specific implementation

case, which we used in our experiments and which is in-

spired to StarGAN v2 [10]. In the Supplementary Material

we show another implementation case based on TUNIT [3].

4.1. Modeling the Style Space

Smoothing and disentangling the style space. We propose

to use a triplet loss, which is largely used in metric learning

[35, 38, 14, 7], to preserve the domain disentanglement:

Ltri = E(sssa,sssp,sssn)∼SSS [max (||sssa − sssp)||−||sssa − sssn||+α, 0)],
(1)

where α is a constant margin and sssa and sssp (i. e., the anchor

and the positive, adopting the common terminology of the

triplet loss [35]) are style codes extracted from the same do-

main (e.g., sssa, sssp ∈ SSSi), while the negative sssn is extracted

from a different domain (sssn ∈ SSSj , j 6= i). These style codes

are obtained by sampling real images and using the encoder.

In more detail, we randomly pick two images from the same

domain i (xxxa,xxxp ∈ XXX i), a third image from another, ran-

domly chosen, domain j (xxxn ∈ XXX j , j 6= i), and then we

get the style codes using sssk = E(xxxk), k ∈ {a, p, n}. Us-

ing Eq. (1), the network learns to cluster style codes of the

same domain. Meanwhile, when the style space is compact,

the margin α can control and preserve the disentanglement

among the resulting clusters.

Thus, we encourage a compact space forcing an a prior

Gaussian distribution on the set of all the style codes SSS:

Lkl = Esss∼SSS [DKL(p(sss)‖N (000, III))], (2)

where III is the identity matrix, DKL(p‖q) is the Kullback-

Leibler (KL) divergence and p(sss) is the distribution corre-

sponding to the style code sss. However, p(sss) is unknown.

In VAEs, p(sss) is commonly estimated assuming a Gaus-

sian shape and using an encoder to regress the mean and the

covariance-matrix parameters of each single sample-based

distribution [24]. Very recently, Ghosh et al. [11] showed

that, assuming the variance to be constant for all the sam-

ples, the KL divergence regularization can be simplified (up
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to a constant) to LCV
SR (xxx) = ||µ(xxx)||22, where “CV” stands

for Constant-Variance, and µ(xxx) is the mean estimated by

the encoder using xxx. In this paper we propose a further sim-

plification based on the assumption that µ(sss) = sss (which is

reasonable if µ is estimated using only one sample) and we

eventually get the proposed Style Regularization (SR) loss:

LSR = Esss∼SSS [||sss||
2
2]. (3)

Eq. (3) penalizes samples sss with a large ℓ2 norm, so encour-

aging the distribution ofSSS to be a shrunk Gaussian centered

on the origin. Intuitively, while the SR loss compacts the

space, the triplet loss avoids a domain entanglement in the

compacted region (see also the Supplementary Material).

Finally, we describe below how the style-code samples are

drawn in Eq. (3) (sss ∼ SSS). We use a mixed strategy, in-

cluding both real and randomly generated codes. More in

detail, with probability 0.5, we use a real sample xxx ∈ XXX
and we get: sss = E(xxx), and, with probability 0.5, we use

zzz ∼ N (000, III) and sss = M(zzz, j). In practice, we alternate

mini-batch iterations in which we use only real samples

with iterations in which we use only generated samples.

Preserving the source content. The third loss we propose

aims at preserving the content in the I2I translation:

Lcont = Exxx∼XXX ,sss∼SSS [ψ(xxx,G(xxx,sss))], (4)

where ψ(xxx1,xxx2) estimates the perceptual distance between

xxx1 and xxx2 using an externally pre-trained network. The

rationale behind Eq. (4) is that, given a source image xxx

belonging to domain XXX i, for each style code sss, extracted

from the set of all the domains SSS , we want to minimize the

perceptual distance between xxx and the transformed image

G(xxx,sss). By minimizing Eq. (4), the perceptual content (ex-

tracted through ψ(·)) is encouraged to be independent of the

domain (see the definition of content preservation in Sec. 3).

Although different perceptual distances can be used (e.g.,

the Euclidean distance on VGG features [19]), we imple-

ment ψ(xxx1,xxx2) using the Learned Perceptual Image Patch

Similarity (LPIPS) metric [41], which was shown to be well

aligned with the human perceptual similarity [41] and it is

obtained using a multi-layer representation of the two input

images (xxx1,xxx2) in a pre-trained network.

The sampling procedure in the content preserving loss

(Lcont) is similar to the SR loss. First, we randomly sample

xxx ∈ XXX . Then, we either sample a different reference image

xxx′ ∈ XXX and get sss = E(xxx′), or we use zzz ∼ N (000, III) and

sss =M(zzz, j).

We sum together the three proposed losses and we get:

Lsmooth = Lcont + λsrLSR + Ltri, (5)

where λsr is the SR loss-specific weight.

4.2. Smoothing the Style Space of an Existing Model

The proposed Lsmooth can be plugged in existing

MMUIT methods which have an explicit style space, by

summing it with their original objective function (Lorig):

Lnew = Lsmooth + Lorig. (6)

In this subsection, we show an example in which Lorig

is the original loss of the MMUIT state-of-the-art StarGAN

v2 [10]. In the Supplementary Material we show another

example based on TUNIT [3], which is the state of the art

of fully-unsupervised image-to-image translation.

In StarGAN v2, the original loss is:

Lorig = λstyLsty − λdsLds + λcycLcyc + Ladv (7)

where λsty, λds and λcyc control the contribution of the

style reconstruction, the diversity sensitive, and the cycle

consistency loss, respectively.

The style reconstruction loss [16, 44, 10] pushes the tar-

get code (sss) and the code extracted from the generated im-

age (E(G(xxx,sss))) to be as close as possible:

Lsty = Exxx∼XXX ,sss∼SSS [‖sss− E(G(xxx,sss))‖1] . (8)

The diversity sensitive loss [10, 31] encourages G to pro-

duce diverse images:

Lds = Exxx∼XXX i,(sss1,sss2)∼SSSj
[‖G(xxx,sss1)−G(xxx,sss2)‖1] . (9)

The cycle consistency [43, 9, 10] loss is used to preserve the

content of the source image xxx:

Lcyc = Exxx∼XXX ,sss∼SSS [‖xxx−G(G(xxx,sss), E(xxx))‖1] . (10)

Finally, StarGAN v2 uses a multitask discriminator [28]

D, which consists of multiple output branches. Each branch

Dj learns a binary classification determining whether an

image xxx is a real image of its dedicated domain j or a fake

image. Thus, the adversarial loss can be formulated as:

Ladv = Exxx∼XXX i,sss∼SSSj
[logDi(xxx) + log(1−Dj(G(xxx,sss)))]

(11)

Note that this loss encourages the separation of the domain-

specific distributions without controlling the relative inter-

domain distance (Sec. 4). We use it jointly with our Ltri.

We refer the reader to [10] and to the Supplementary Ma-

terial for additional details. In Sec. 6 we evaluate the com-

bination of our Lsmooth with StarGAN v2 (Eq. (7)), while

in the Supplementary Material we show additional experi-

ments in which Lsmooth is combined with TUNIT [3].

5. Evaluation Protocols

FID. For each translation XXX i → XXX j , we use 1,000 test im-

ages and estimate the Fréchet Inception Distance (FID) [15]
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using interpolation results. In more detail, for each image,

we randomly sample two style codes (sss1 ∈ SSSi and sss2 ∈
SSSj), which are linearly interpolated using 20 points. Each

point (included sss1 and sss2) is used to generate a translated

image. The FID values are computed using the 20× 1, 000
outputs. A lower FID score indicates a lower discrepancy

between the image quality of the real and generated images.

LPIPS. For a given domain XXX i, we use 1,000 test images

xxx ∈ XXX i, and, for each xxx, we randomly generate 10 image

translations in the target domain XXX j . Then, the LPIPS [41]

distances among the 10 generated images are computed. Fi-

nally, all distances are averaged. A higher LPIPS distance

indicates a greater diversity among the generated images.

Note that the LPIPS distance (ψ(xxx1,xxx2)) is computed using

an externally pre-trained network [41], which is the same

we use in Eq. (4) at training time.

FRD. For the specific case of face translations, we use a

metric based on a pretrained VGGFace2 network (φ) [35,

7], which estimates the visual distance between two faces.

Note that the identity of a person may be considered as a

specific case of “content” (Sec. 3). We call this metric the

Face Recognition Distance (FRD):

FRD = Exxx∼XXX ,sss∼SSS

[

‖φ(xxx)− φ(G(xxx,sss)))‖22
]

. (12)

PS. Karras et al. [21] recently proposed the Perceptual Path

Length (PPL) to evaluate the smoothness and the disentan-

glement of a semantic latent space. PPL is based on mea-

suring the LPIPS distance between close points in the style

space. However, one issue with the PPL is that it can be

minimized by a collapsed generator. For this reason, we

alternatively propose the Perceptual Smoothness (PS) met-

ric, which returns a normalized score in [0, 1], indicating the

smoothness of the style space.

In more detail, let sss0 and sssT be two codes randomly

sampled from the style space, P = (sss0, sss1, . . . , sssT ) the se-

quence of the linearly interpolated points between sss0 and

sssT , and A = (G(xxx,sss0), . . . , G(xxx,sssT )) the corresponding

sequence of images generated starting from a source image

xxx. We measure the degree of linear alignment of the gener-

ated images using:

ℓalig = Exxx∼XXX ,sss0,sssT∼SSS

[

δ(xxx,sss0, sssT )
∑T

t=1 δ(xxx,ssst−1, ssst)

]

(13)

where δ(xxx, s1, s2) = ψ(G(xxx, s1), G(xxx, s2)) and ψ(·, ·) is

the LPIPS distance (modified to be a proper metric, more

details in the Supplementary Material). When ℓalig = 1,

then the perceptual distance betweenG(xxx,sss0) andG(xxx,sssT )
is equal to the sum of the perceptual distances between con-

secutive elements in A, thus, the images in A lie along a

line in the space of ψ(·, ·) (which represents the human per-

ceptual similarity [41]). Conversely, when ℓalig < 1, then

the images in A contain some visual attribute not contained

in any of the endpoints. For example, transforming a short-

hair male person to a short-hair girl, we may have ℓalig < 1
when the images in A contain people with long hair. How-

ever, although aligned, the images in A may have a non-

uniform distance, in which δ(xxx,ssst−1, ssst) varies depending

on t. In order to measure the uniformity of these distances,

we use the opposite of the Gini inequality coefficient [12]:

ℓuni = E xxx∼XXX
sss0,sssT∼SSS

[

1−
∑

T
i,j=1

|δ(xxx,sssi−1,sssi)−δ(xxx,sssj−1,sssj)|
2T 2µP

]

where µP is the average value of δ(·) computed over all

the pairs of elements in P = (sss0, . . . , sssT ). Intuitively,

ℓuni = 1 when an evenly-spaced linear interpolation of the

style codes corresponds to constant changes in the perceived

difference of the generated images, while ℓuni = 0 when

there is only one abrupt change in a single step. Finally, we

define PS as the harmonic mean of ℓalig and ℓuni:

PS = 2 ·
ℓalig · ℓuni
ℓalig + ℓuni

∈ [0, 1]. (14)

6. Experiments

Baselines. We compare our method with three state-of-

the-art approaches: (1) StarGAN v2 [10], the state of the

art for the MMUIT task; (2) HomoGAN [8]; and (3) TU-

NIT [3]. Moreover, as a reference for a high image quality,

we also use InterFaceGAN [36], a StyleGAN-based method

(trained with 1024 × 1024 images) which interpolates the

pre-trained semantic space of StyleGAN [21] (see Sec. 2).

InterFaceGAN is not designed for domain translation and

for preserving the source content, but it can linearly in-

terpolate a fixed latent space, massively trained with high-

resolution images. All the baselines are tested using the

original publicly available codes.

Datasets. We follow the experimental protocol of StarGAN

v2 [10] and we use the CelebA-HQ [20] and the AFHQ

dataset [10]. The domains are: male-female, smile-no smile,

young-non young in CelebA-HQ; cat, dog, and wildlife in

AFHQ. For a fair comparison, all models (except InterFace-

GAN) are trained with 256×256 images. Additional details

are provided in the Supplementary Material.

Settings. We test our method in two experimental settings,

respectively called “unsupervised” (with only set-level an-

notations) and “truly unsupervised” (no annotations [3]).

Correspondingly, we plug our training losses (Lsmooth) in

the state-of-the art StarGAN v2 [10] and TUNIT [3] (see

Sec. 4.1). In each setting, we plug our method in the original

architecture without adding additional modules and adopt-

ing the original hyper-parameter values without tuning. We

refer to the Supplementary Material for more details.

6.1. Smoothness of the Style Space

Fig. 3 shows a qualitative evaluation using the style-

space interpolation between a source image and a reference
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Input Interpolations 

(a)

(b)

(c)

(d)

Figure 3: Inter-domain interpolation results: (a) StarGAN v2 [10], (b) HomoGAN [8], (c) InterFaceGAN [36], (d) ours. The

domains correspond to genders. Our method generates smoother results while better preserving the source-person identity.

Model
PS↑ FRD↓

Gender Smile Age Gender Smile Age

HomoGAN [8] .401 .351 .389 .903 .820 .842

StarGAN v2 [10] .272 .282 .283 1.082 .894 .882

Ours .504 .513 .601 .837 .625 .650

InterFaceGAN [36]§ .328 .436 .409 .884 .560 .722

Table 1: Smoothness degree and identity preservation on

the CelebA-HQ dataset. §Trained on 1024× 1024 images.

Model
FID↓ LPIPS↑

Gender Smile Age Gender Smile Age

HomoGAN [8] 55.23 58.02 57.50 .010 .005 .008

StarGAN v2 [10] 48.35 29.65 26.60 .442 .413 .407

Ours 23.37 22.21 23.57 .337 .095 .128

InterFaceGAN [36]§ 13.75 12.81 12.25 .211 .115 .146

Table 2: Image quality and translation diversity on the

CelebA-HQ dataset. §Trained on 1024× 1024 images.

style. As mentioned in Sec. 1 and 4, StarGAN v2 frequently

generates artifacts in inter-domain interpolations (see Fig. 3

(a)). HomoGAN results are very smooth, but they change

very little the one from the other, and the model synthetizes

lower quality images (Fig. 3 (b)). InterFaceGAN (Fig. 3

(c)) was trained at a higher image resolution with respect

to the other models (ours included). However, compared

to our method (Fig. 3 (d)), the interpolation results are less

smooth, especially in the middle, while the image quality

of both methods is very similar. Moreover, comparing our

approach to StarGAN v2, our method better preserves the

background content in all the generated images.

These results are quantitatively confirmed in Tab. 1.

The PS scores show that our proposal improves the state

of the art significantly, which means that it increases the

smoothness of the style space in all the CelebA-HQ ex-

periments. Note that our results are also better than In-

terFaceGAN, whose latent space is based on the pretrained

StyleGAN [21], a very large capacity and training-intensive

model. Tab. 3 and Fig. 5 show similar results also in the

challenging AFHQ dataset, where there is a large inter-

domain shift. In this dataset, we tested both the unsuper-

vised and the truly unsupervised setting, observing a clear

improvement of both the semantic-space smoothness and

the image quality using our method.

The comparison of the qualitative results in Fig. 3 and

Fig. 5 with the PS scores in Tab. 1 and Tab. 3, respectively,

show that the proposed PS metric can be reliably used to

evaluate MMUIT models with respect to the style-space

smoothness. In the Supplementary Material we show ad-

ditional evidence on the quality of the PS metrics and how

domain separation can be controlled by tuning the margin

value of the triplet loss.

Tab. 2 and 3 show that the improvements on the style-

space smoothness and the corresponding interpolation re-

sults do not come at the expense of the image quality. Con-

versely, these tables show that the FID values significantly

improve with our method. The LPIPS results in Tab. 2 also

show that HomoGAN generates images with little diversity.

However, the LPIPS scores of StarGAN v2 are higher than

our method. Nevertheless, the LPIPS metric is influenced

by the presence of possible artifacts in the generated im-

ages, and, thus, an increased LPIPS value is not necessarily

a strength of the model. We refer to the Supplementary Ma-

terial for additional qualitative and quantitative results.

Finally, we performed a user study where we asked 40

users to choose between the face translations generated by
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Source Reference StarGAN v2 [10] Ours

Figure 4: Content preservation using the CelebA-HQ

dataset. Our method better preserves the ethnicity and iden-

tity of the source images compared to StarGAN v2.

StarGAN v2 and our method, providing 30 random image

pairs to each user. In 75.8% of cases, the image generated

by our model was selected as the better one, compared to

StarGAN v2 (25.2%).

6.2. Identity Preservation

MMUIT models aim at translating images from one

domain to another while keeping the content unchanged.

While this goal is clear, the degree of content preservation is

usually evaluated only qualitatively. Thus, we use the FRD

(Sec. 5) and the most popular I2I translation task (face trans-

lation) to measure the content preservation of the compared

models. Tab. 1 shows that our FRD is the lowest over all

the methods compared on the CelebA-HQ dataset, indicat-

ing that our method better maintains the person identity of

source images. Qualitatively, Fig. 4 shows that our method

better preserves some distinct face characteristics (e.g., the

eye color, the chin shape, or the ethnicity) of the source im-

age while changing the style (i.e., the gender). This result

also suggests that our model might be less influenced by

the CelebA-HQ biases (e.g. Caucasian people). Additional

experiments, with similar results, are presented in the Sup-

plementary Material for smile and age translations.

6.3. Ablation Study

In this section, we evaluate the importance of each pro-

posed component. Tab. 4 shows the FID, LPIPS, PS and

FRD values for all the configurations, where each compo-

nent is individually added to the baseline StarGAN v2, us-

ing CelebA-HQ. First, we observe that adding the Ltri loss

to the baseline improves the quality, the diversity and the

content preservation of the generated images. However the

PS score decreases. This result suggests that better disen-

tanglement might separate too much the styles between do-

mains, thus decreasing the interpolation smoothness. The

addition of LSR helps improving most of the metrics but

the diversity, showing that a more compact style space is

a desirable property for MMUIT. As mentioned before, we

note that higher diversity (LPIPS) might not be strictly re-

lated to high-quality images.

The combination of the two proposed smoothness losses

dramatically improves the quality of generated images and

the smoothness of the style space. This suggests that the

style space should be compact and disentangled, while

keeping the style clusters of different domains close to each

other. Finally, Lcont further improves the FID, the PS and

the FRD scores. The final configuration corresponds to our

full-method and confirms that all the proposed components

are helpful. We refer to the Supplementary Material Sec. B

for additional analysis on the contribution of our losses.

Model Setting FID↓ PS↑

StarGAN v2 [10]
Unsupervised

15.64 .226

Ours 14.67 .301

TUNIT [3]
Truly Unsupervised

29.45 .443

Ours 16.59 .447

Table 3: Quantitative evaluation on the AFHQ dataset.

(a)

(b)

(c)

(d)

Figure 5: AFHQ dataset. (b,d) Generation results using TU-

NIT [3]. (a,c) TUNIT jointly with our losses.

Model FID↓ LPIPS↑ PS↑ FRD↓

A: Baseline StarGAN v2 [10] 48.35 .442 .272 1.082

A + Ltri 37.54 .403 .292 1.040

A + LSR 35.23 .368 .432 .912

A + LSR, Ltri 24.29 .374 .501 .848

A + LSR, Ltri, Lcont 23.37 .337 .504 .837

Table 4: Ablation study on the CelebA-HQ dataset with a

gender translation task.

7. Conclusion

In this paper, we proposed a new training strategy based

on three specific losses which jointly improve both the

smoothness of the style space and the content preservation

of existing MMUIT models. We also proposed the PS met-

ric, which specifically evaluates the style smoothness of I2I

translation models. The experimental results show that our

method significantly improves both the smoothness and the

quality of the interpolation results and the translated images.
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