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Abstract

Unsupervised Domain Adaptation (UDA) can tackle the

challenge that convolutional neural network (CNN)-based

approaches for semantic segmentation heavily rely on the

pixel-level annotated data, which is labor-intensive. How-

ever, existing UDA approaches in this regard inevitably re-

quire the full access to source datasets to reduce the gap

between the source and target domains during model adap-

tation, which are impractical in the real scenarios where

the source datasets are private, and thus cannot be released

along with the well-trained source models. To cope with this

issue, we propose a source-free domain adaptation frame-

work for semantic segmentation, namely SFDA, in which

only a well-trained source model and an unlabeled target

domain dataset are available for adaptation. SFDA not only

enables to recover and preserve the source domain knowl-

edge from the source model via knowledge transfer during

model adaptation, but also distills valuable information from

the target domain for self-supervised learning. The pixel-

and patch-level optimization objectives tailored for semantic

segmentation are seamlessly integrated in the framework.

The extensive experimental results on numerous benchmark

datasets highlight the effectiveness of our framework against

the existing UDA approaches relying on source data.

1. Introduction

Semantic segmentation has been a critical computer vi-

sion task, which aims to segment and parse a scene im-

age into different image regions associated with semantic

categories. It is critical for precisely understanding the vi-

sual scene and can be applied to numerous potential ap-

plications, such as autonomous driving [7], visual ground-

ing [20, 45, 39], and image editing [31]. But the success

of current segmentation techniques depends on large-scale

densely-labeled datasets that are prohibitively expensive to

be collected in reality. For instance, it takes about 90 min-

utes to manually annotate a Cityscapes image. An intuitive

method to address this issue is transferring knowledge from
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Figure 1. Overview of source-free UDA for segmentation.

existing models trained on source datasets to the unlabeled

target domain. However, it tends to be hindered by the issue

of domain shift which is caused by various data distributions

in source and target domains.

Unsupervised domain adaptation (UDA) [13, 54, 19, 6]

for semantic segmentation has been proposed to address this

issue and generalize the well-trained models on an unlabeled

target domain, avoiding expensive data annotation. All the

methods suppose that both the well-trained source models

and labeled source datasets are available. This is because

source data plays a vital role in retaining valuable source

knowledge during adaptation training and reducing the cross-

domain discrepancy iteratively. However, in some crucial

areas like autonomous driving, the source datasets may be

private and commercial, making only the source models

and unlabeled target datasets available. Due to the lack of

supervision of the source domain and the uncertainty of

target pseudo-labels, none of these UDA methods can work

in such source-free scenarios.

With these insights, we formulate a new but important

problem — source-free domain adaptation for semantic seg-

mentation, in which only a well-trained source model and

an unlabeled target domain dataset are available for adap-

tation. Recently, a tiny number of source-free UDA meth-

ods [25, 24, 27, 38, 22, 26] have been developed to tackle a

similar issue on image classification. However, the image-

level computer vision task just associates the label with a

whole image, which is fundamentally different from image
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segmentation that belongs to a pixel-level task with each

pixel associated with a semantic label. As shown in Fig-

ure 1, the pseudo-labels of one target image contains mul-

tiple classes shifting on diverse distributions. As such, it

is nontrivial for the above methods to leverage clustering

for each class adaptation. Since considering that the source

domain knowledge cannot be preserved and utilized without

source data, so we attempt to recover and transfer the source

domain knowledge by introduced data-free knowledge distil-

lation approaches [29, 3, 30, 11, 48] that are originally for

model compression.

In this work, we propose a novel source-free unsupervised

domain adaptation framework for segmentation, namely

SFDA. Our framework alternatively works in two stages:

knowledge transfer and model adaptation. Due to unavail-

able source data and uncertain target pseudo-labels, recover-

ing and preserving the source knowledge learned by a source

model is vital during adaptation training. This is because

the uncertain supervision information in target pseudo-labels

will tend to deviate the target model from the working do-

main. As such, in the knowledge transfer stage, we leverage

a generator to estimate the source domain (working domain)

and synthesize fake samples similar to the real source data in

distribution, which can be used to transfer the domain knowl-

edge from a well-trained source model to a target model.

The key to semantic segmentation networks lies in captur-

ing contextual feature relationships. With this intuition, a

dual attention distillation (DAD) mechanism is introduced

to help the generator synthesize samples with meaningful

semantic context, which is beneficial to efficient pixel-level

domain knowledge transfer. Moreover, the source model

could work well on partial target domain and predict correct

labels. Therefore we propose an entropy-based intra-domain

patch-level self-supervision module (IPSM) to leverage the

correctly segmented patches as self-supervision during the

model adaptation stage.

Our main contributions can be summarized as follows:

• We propose the novel SFDA framework that combines

knowledge transfer and model adaptation without re-

quiring any source data and target labels. To our best

knowledge, this is the first attempt to address the prob-

lem of source-free UDA for semantic segmentation.

• A novel dual attention distillation mechanism is de-

signed specifically for segmentation to transfer and re-

tain the contextual information, and the intra-domain

patch-level self-supervision module is introduced to

exploit patch-level knowledge in target domain.

• We demonstrate the effectiveness of our framework on

synthetic-to-real and cross-city segmentation scenarios.

In particular, it can even achieve competitive results

with the state-of-the-art source-driven UDA approaches

under the source-free setting.

2. Related Work

UDA for Semantic Segmentation. Existing UDA meth-

ods for segmentation can be mainly divided into three cate-

gories. To reduce the cross-domain discrepancy, numerous

UDA methods [19, 42, 43, 34] focus on distribution con-

sistency by introducing adversarial learning. Inspired by

image-to-image translation [21, 54], a category of UDA

methods has been proposed to generate target images condi-

tioned on source data [19, 18]. In addition, self-supervision

with target pseudo-labels is a relatively simple but efficient

approach [6, 55], but it requires source data for supervision.

In summary, all the above UDA methods for segmentation

assume that the densely-annotated source dataset is available

during adaptation, ignoring the data privacy and inaccessi-

bility issues in practice. To the best of our knowledge, we

are the first to consider the source-free unsupervised domain

adaptation issue for image segmentation.

Knowledge Distillation (KD). Knowledge distillation is

originally developed to transfer knowledge from a large

teacher network to a compact student network [17]. Since

then, a variety of KD methods has been presented for model

compression [28, 2, 50, 32], domain adaptation [52, 53], and

multi-modal learning [51, 14, 10]. More recently, data-free

knowledge distillation [29, 3] has drawn surging attention,

due to the inevitable data privacy issue. In [29, 33], activa-

tion records are used to reconstruct training samples for train-

ing a compact student model. Analogously, Batch Normal-

ization Statistics (BNS) stored in Batch Normalization (BN)

layers can be used to reconstruct training samples [48, 15] as

well. Most of the data-free KD methods based on generative

adversarial networks [3, 49, 30, 11, 47]. They all focus on

generating fake samples for transferring knowledge from

teacher to student networks without original training data

mainly on classification tasks. In this work, we extend the

data-free knowledge distillation methods to segmentation

and tackle the source-free domain adaptation challenge.

3. Methodology

Target Unavailabe
Source

Estimated 
Source

Class A

Class B

Decision Boundary

Training Flow

Transfer

Adapt

Optimization Direction

Figure 2. Overview of the training procedure for the proposed

framework. Due to the unavailable source domain (marked as red

dotted ellipse), we adopt a generator to estimate it by synthesizing

fake samples (marked as green ellipse).
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3.1. Notations and Motivation

For exiting source-driven UDA methods, an annotated

source dataset Ds = {(xs, ys)|xs ∈ R
H×W×3, ys ∈

R
H×W }, an unlabeled target dataset Dt = {xt|xt ∈

R
H×W×3} and a well-trained source model S are given.

Note that xs and xt corresponds to the source and target

sample, respectively, and ys is the label for the correspond-

ing source image. H and W are the height and width of the

images. The target model T generally shares parameters

with the source model, but takes target data as input during

adaptation. The source-driven UDA methods are commonly

formulated by:

LDA = LSEG(xs, ys) + LTAR(xt) , (1)

where LSEG is the supervised training loss for preserving

source domain knowledge, usually cross-entropy or focal

loss. And LTAR is the self-supervision loss for the target

domain based on pseudo-labels, such as entropy minimiza-

tion [43], maximum square loss (MaxSquare) [6], etc. In this

work, we adopt the maximum square loss as an assistance

during adaptation, which is defined as:

LTAR(xt) = −
1

HW

HW
∑

h,w

C
∑

c

(ph,w,c
t )2 , (2)

where ph,w,c
t is the probability of category c for one target

image pixel and C is the number of semantic categories.

In source-free scenarios, the annotated source dataset is

unavailable, so the supervised learning process to preserv-

ing source knowledge will abort. Fortunately, the source

domain knowledge has been permanently retained in the

source model. We can consider source-free UDA as a knowl-

edge transfer and adaptation problem, shown in Figure 2.

The orange or blue ellipse areas represent the feature space

of the source and target domain. Due to the learning bias,

the source model can only work well in the source domain,

making it necessary to estimate the source domain (marked

as green ellipse) and transfer the knowledge to target model

during adaptation. Following the above principle analysis, a

source-free UDA framework combining knowledge transfer

and adaptation is proposed for semantic segmentation.

We denote the estimated source dataset with labels as

D̃s = {(x̃s, ỹs)|x̃s ∈ R
H×W×3, ỹs ∈ R

H×W } (corre-

sponding to the green ellipse in Figure 2). Figure 3 shows our

SFDA framework, which includes a Knowledge Transfer

stage and a Model Adaptation stage. Note that, to preserve

and transfer the source domain knowledge retained in the

source model, we need to copy a source model S̃ and fix

its parameters in training. In the transfer stage, generator G
synthesizes fake samples for transferring the source knowl-

edge from the fixed source model S̃ to S. Moreover, an

intra-domain patch-level self-supervision module (IPSM) is
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Figure 3. Architecture of the proposed SFDA framework.

introduced to take advantage of information in patch-level

pseudo-labels and improve the utilization of target data. We

detail the two-stage SFDA in the following.

3.2. Source­Free Domain Knowledge Transfer

3.2.1 Source Domain Estimation

To estimate the unavailable source domain, a generator G is

designed to generate fake samples x̃s with random noises z
as input, drawn from a Gaussian distribution.

x̃s = G(z), z ∼ N (0,1) . (3)

Following BNS-guided data-free knowledge distilla-

tion [48], the feature distribution of estimated source samples

is supposed to satisfy the batch normalization statistics of

the source segmentation model. Hence, we apply a BNS

constraint on the generator:

LBNS =
∑

l

‖µl(x̃s)− µ̄l‖
2
2 +

∑

l

‖σ2
l (x̃s)− σ̄2

l ‖
2
2 , (4)

where x̃s is the synthetic data from the generator, µl(x̃s)
and σ2

l (x̃s) are the batch-wise mean and variance estimates

of feature maps at the l-th layer, and µ̄l and σ̄2
l are the

corresponding mean and variance parameters of the source

domain stored in the l-th BN layer of source model S̃ .

Different from [48], the generative approach for obtaining

fake samples in our framework is more efficient and flex-

ible, which avoids the time-consuming noise optimization

procedure thanks to the generative adversarial knowledge

transfer mechanism. Specifically, for segmentation tasks, we

construct a semantic-aware adversarial knowledge transfer
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mechanism, working based on the discrepancy between the

source and target models. To achieve this, we first formulate

three different discrepancy measures for three models. The

output space discrepancy between the fixed model S̃ and

the shared source model S is formulated as a mean absolute

error (MAE):

LMAE = Ex̃s

(

1

C
‖S(x̃s)− ỹs‖1

)

, (5)

where ỹs = S̃(x̃s) and S(x̃s) are the prediction outputs

from S̃ and S for synthetic data x̃s, respectively.

Moreover, semantic information or contextual relation-

ships performs a significant effect on segmentation. So the

contextual relationships captured by the source model are

supposed to be preserved and transferred. The discrepancy

of the contextual relationships between S̃ and S is calculated

by a dual attention distillation loss, which is given by:

Lss
DAD = Ex̃s

(

1

M
‖A(F̃s(x̃s))−A(F

s(x̃s))‖1

)

, (6)

where A(·) is the dual attention module (DAM) to calculate

the dual attention map of the corresponding features. M is

the size of the attention map. F̃s(x̃s) and Fs(x̃s) are the

backbone feature extractors of the segmentation models S̃
and S with synthetic data x̃s as input.

Analogously, we can define the discrepancy between the

source and target models as follows:

Lst
DAD = Ex̃s

[

DKL

(

S(F̃s(x̃s)), S(F
t(xt))

)]

+ Ex̃s

[

DKL

(

R(F̃s(x̃s)), R(F t(xt))
)]

,
(7)

in which F t(xt) obtains the feature map extracted from the

backbone of target model with the target data xt as input. S
and R are the spatial and channel attention maps extracted

from the feature maps, which will be defined at Sec 3.2.2.

The motivation behind this equation is that the data generated

by the generator is not enough to restore the contextual

relationships of the source data, due to the lack of necessary

prior information. Fortunately, the unlabeled target data

has a similar domain-agnostic semantic structure with the

real source data to a certain extent. This provides valuable

knowledge for the generator to synthesize fake images. So

we adopt Kullback-Leibler (KL) divergence to measure the

distribution distance of the dual attention maps of fake source

and target data, then minimize it in optimization.

3.2.2 Dual Attention Module

In this section, we clarify the dual attention module. The

feature map extracted by backbone of segmentation network

with x as input is denoted as F = F(x), F ∈ R
H1×W1×C1 .

Note that H1,W1, C1 are the height, width and channel of

the feature map respectively only in this sub-section. The

dual attention module including spatial attention and channel

attention is shown in Figure 4. Different from [12, 46], we

feed the feature F into convolutional layers to generate new

features, because DAM just aims to capture the spatial and

channel-based long-range dependencies for distillation.



•



H
1 ×W

1 ×C
1

H1W1×C1

C1×H1W1

C1×H1W1

reshape

reshape
H1W1×H1W1

C1×C1

softmax

softmax

transpose

reshape

transpose

H1W1×C1

H1W1×C1

Figure 4. Dual attention module (DAM) for distillation. ‘⊗’ denotes

matrix multiplication, and ‘⊕’ is a concatenation operator.

To be specific, we first reshape F so that F ∈ R
N1×C1 ,

where N1 = H1 × W1 is the number of pixels. F⊤ is

the transpose of F . Consequently, we calculate the spatial

attention map S ∈ R
N1×N1 by:

sji =
exp(F[i:] · F

⊤
[:j])

∑N1

i exp(F[i:] · F
⊤
[:j])

, (8)

where sji measures the impact of the i-th position on the

j-th position.

Analogously, the channel attention map R ∈ R
C1×C1 can

be calculated by:

rji =
exp(F⊤

[i:] · F[:j])
∑C1

i exp(F⊤
[i:] · F[:j])

, (9)

where rji measures the impact of the i-th channel on the j-th

channel.

After obtaining the spatial and channel attention maps,

the dual attention map of sample x can be calculated by

concatenating the two attention maps:

A(x) = concat(F · S|R · F ) . (10)

To transform the spatial and channel attention maps to the

same shape, they are multiplied by the original feature F ,

respectively.

3.2.3 Objective Function

In this way, we have introduced all the necessary components

for source-free domain knowledge transfer (SFKT). The

generator in our framework aims to synthesize valuable fake

samples for transferring source knowledge from the source

model to the target model. First, it is supposed to make the

fake samples comply with the BNS constraints. Second, the
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generator explores the discrepancy space by maximizing the

discrepancy between the source and target models to drive

the search for new knowledge. In addition, it’s better to take

advantage of the prior attention information in the target

domain by minimizing Lst
DAD. Hence, the total objective

function of generator is formulated as:

min
G
LBNS − αLMAE − βLss

DAD + τLst
DAD , (11)

where α, β and τ are hyper-parameters for balancing the

MAE loss and the two DAD losses.

The target model learns from two aspects: the target

pseudo-labels and two-level knowledge from the source

model. We hope that while reducing the uncertainty of the

target domain, the target also preserves the source domain

information to guide adaptive learning by minimizing the

output and attention discrepancy (two-level) with the source

model. The objective function of target model in knowledge

transfer stage is as follows:

min
T ,S

αLMAE + βLss
DAD . (12)

3.3. Self­supervised Model Adaptation

Since it is hard for the generator to guarantee to contin-

uously restore and transfer the information precisely cover-

ing the source domain, we draw inspiration from the self-

supervision mechanism and consider taking advantage of the

valuable information output by target model for target data.

Through analyzing the prediction of the initial target model

on the target domain, we found that its prediction on most

patches are correct, in which there are useful supervision

information for learning on uncertain or error patches.

To take advantage of the pseudo-labels in UDA-based

segmentation, Pan et al. [34] proposed an unsupervised inter-

domain and intra-domain adaptation method, which first

separates the target domain into easy and hard splits using an

entropy-based ranking function, and then decreases the inter-

domain or intra-domain gap via an adversarial mechanism.

However, in reality, the gap between the source and the

target domain is too large, making it difficult to filter out

a sufficient number of easy splits in the target domain for

intra-domain supervision. What makes matters worse is that

the source domain is unavailable in our setting.

3.3.1 Patch-level Self-supervision Module

To cope with above issue, we present a novel entropy-based

intra-domain patch-level self-supervision module to take ad-

vantage of the target domain pseudo-labels in the model adap-

tation stage, shown in Figure 5. Considering in cityscapes

segmentation scenarios, there are generally similar patterns

or objects in the same areas of different street view images.

Hence, we can leverage correct information at the patch
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I
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Figure 5. Intra-domain patch-level self-supervision module (IPSM).

level, which not only expands the samples but also alleviates

uncertainty in entire pseudo-labels. In order to alleviate the

difficulty of separating easy and hard samples caused by too

large domain gap [34], we divide each sample into K ×K

classes of sub-images or patches with a label k (k ∈ {RK2

})
according to their positions. In prediction, the patches with

lower entropy might have higher confidence and accuracy.

Hence the patches are split into easy and hard groups by

entropy-ranking.

We denote the height and width of each patch xt,k in

target data xt ∈ R
H×W×C as H2 = H/K and W2 =

W/K, and the corresponding prediction map output by the

target model is it,k ∈ R
H2×W2×C , C is both the number

of semantic categories and the channel of prediction maps.

The probability map pt,k of patch xt,k can be calculated by

a softmax function.

Then, the mean entropy score of each prediction map pt,k
for the target image xt is defined as:

E(xt,k) = −
1

H2W2

H2W2
∑

h,w

C
∑

c

ph,w,c
t,k log(ph,w,c

t,k ) . (13)

In a batch containing B (even number) target images

{xb
t,k|b ∈ {1, ..., B}}, entropy-ranking is executed on patch

entropy maps at the same position or class. The B/2 pre-

diction maps in each class with lower entropy are assigned

to the easy group I◦t,k = {iet,k|e ∈ {1, ..., B/2}} , while the

other B/2 are assigned to the hard group I•t,k = {idt,k|d ∈
{1, ..., B/2}}. This process is given as follows:

I•t,k, I
◦
t,k ← Rank({E(xb

t,k)|b ∈ R
B}), k ∈ R

K2

. (14)

After obtaining the prediction maps of hard and easy

patches, we train a discriminator D. D aims to discriminates

easy and hard patches, while T is trained to fool D from the

side of hard patches to reduce the gap between patches. The

adversarial learning loss to optimize T and D is given by:

LADV (I
•
t , I

◦
t ) = −

K2

∑

k

B/2
∑

d,e

log
(

1−D(k, iet,k)
)

+ log
(

D(k, idt,k)
)

.

(15)
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MinEnt [43] ✗ 80.2 31.9 81.4 25.1 20.8 24.6 30.2 17.5 83.2 18.0 76.2 55.2 24.6 75.5 33.2 31.2 4.4 27.4 22.9 40.17

AdaptSegNet [41] ✗ 81.6 26.6 79.5 20.7 20.5 23.7 29.9 22.6 81.6 26.7 81.2 52.4 20.2 79.1 36.0 28.8 7.5 24.7 26.2 40.49

CBST [55] ✗ 84.8 41.5 80.4 19.5 22.4 24.7 30.2 20.4 83.5 29.6 82.3 54.7 25.3 79.2 34.5 32.3 6.8 29.0 34.9 42.94

MaxSquare [6] ✗ 85.8 33.6 82.4 25.3 25.0 26.5 33.3 18.7 83.2 32.9 79.8 57.8 22.2 81.0 32.1 32.6 5.2 29.8 32.4 43.12

SFDA (w/o IPSM) ✓ 83.5 33.9 81.4 24.8 22.4 23.6 30.1 19.8 81.4 28.7 80.9 56.8 20.4 78.6 35.0 28.9 3.6 26.4 25.5 41.35

SFDA ✓ 84.2 39.2 82.7 27.5 22.1 25.9 31.1 21.9 82.4 30.5 85.3 58.7 22.1 80.0 33.1 31.5 3.6 27.8 30.6 43.16
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48.9 17.2 76.4 6.7 12.5 22.8 12.6 4.8 77.2 15.1 74.2 47.2 7.2 57.7 20.3 10.2 1.0 2.2 1.1 27.13

MinEnt ✗ 79.8 31.7 78.8 20.2 18.4 23.9 14.7 4.9 80.6 17.9 78.4 48.9 5.2 77.6 21.7 17.1 12.7 10.5 2.6 33.97

AdaptSegNet ✗ 82.1 29.2 79.4 21.1 17.9 24.1 11.0 7.1 82.0 26.6 74.9 46.5 6.7 73.5 26.0 18.0 10.5 9.3 3.2 34.16

MaxSquare ✗ 82.9 33.6 80.2 22.7 20.2 26.3 15.5 6.1 81.8 27.5 78.8 48.3 10.1 79.8 24.4 20.1 13.2 9.4 5.3 36.11

SFDA (w/o IPSM) ✓ 80.5 30.3 81.6 24.5 18.0 25.1 13.7 3.2 79.4 25.6 76.3 44.6 7.3 80.5 24.7 21.4 10.5 4.4 2.5 34.43

SFDA ✓ 81.8 35.4 82.3 21.6 20.2 25.3 17.8 4.7 80.7 24.6 80.4 50.5 9.2 78.4 26.3 19.8 11.1 6.7 4.3 35.86

Table 1. Results on GTA5 → Cityscapes. ‘SF’ represents whether the method is in source-free setting.

3.3.2 Objective Function

Upon this, we extend the objective function in Equation 12

by adding the adversarial loss w.r.t. IPSM and the self-

supervision loss. As a result, we define the following objec-

tive function to train the target and source models (i.e., T
and S) with shared weights:

min
T ,S

max
D
LTAR + αLMAE + βLss

DAD + γLADV , (16)

where γ is the hyper-parameter to control the adversarial

loss. The detailed training algorithm is presented in the

supplementary material.

4. Experiments

4.1. Experimental Settings

4.1.1 Datasets and Metrics

Datasets We evaluate our SFDA framework on semantic

segmentation under two different settings: synthetic-to-real

and cross-city. For the former setting, we follow previous

work [55, 41] by considering Cityscapes [8] as the target

domain, and GTA5 [36] or SYNTHIA [37] as the source

domain. For the latter setting, Cityscapes dataset is used as

the source domain and NTHU [44] dataset is as the target

domain.

Cityscapes [8] provides 3,975 images with fine-grained

segmentation annotations. The synthetic dataset GTA5 [36]

contains 24,966 annotated images with a resolution of

1,914×1,052 taken from the GTA5 game. SYNTHIA [37] is

used as another synthetic dataset, which contains 9,400 fully

annotated 1,280×760 RGB images. The NTHU dataset [44]

contains four different cities: Rio, Rome, Tokyo, and Taipei.

Metrics The semantic segmentation performance is evalu-

ated on every category using Intersection-over-Union (IoU)

ratio and Pixel-Accuracy (PA). For the whole test set, we

calculate Mean Intersection-over-Union (mIoU) and Mean

Pixel-Accuracy (mPA).

4.1.2 Implementation Details

Two kinds of segmentation networks are adopted in our ex-

periments. One is DeepLabV3 [5] with the ResNet-50 [16]

pre-trained on ImageNet [9], and the other is SegNet [1] with

the pre-trained VGG-16 [40] backbone. Considering SegNet

in an encoder-decoder architecture, the DAM is connected

behind the encoder. When calculating the dual attention

maps of target images, an adaptive pooling is applied before

DAM. For the generator G and the discriminator D, we use

an architecture similar to [35] but extend D to a conditional

version. The input channel of D is set to be consistent with

the output channel of prediction maps. The latent space di-

mension for G and label embedding dimension forD both are

256. The architectures of the generator and the discriminator

are detailed in the supplementary material.

We implement the proposed framework using the PyTorch

toolbox on two GTX 2080Ti GPUs. To train the segmenta-

tion networks, we use the Stochastic Gradient Descent (SGD)

optimizer with Nesterov acceleration where the momentum

is 0.9 and the weight decay is 10−4. The initial learning rate

is set to 2.5× 10−4 and is decreased using the polynomial

decay with a power of 0.9 as mentioned in [4]. For training

the generator and discriminator, Adam optimizer [23] with

an initial learning rate of 0.1 is adopted. Due to the difficulty

in generating high-resolution images, we resize the images

to 512×256 for all datasets. Thanks to full-convolutional

segmentation networks, we can set the resolution of syn-

thetic samples to 256×128, which is lower than target data

but enough for transferring knowledge. To get a high-quality

source model for adaptation, we pre-train the source models

for 30 epochs on Cityscapes while for 20 epochs on GTA5

or SYNTHIA. In source-free adaptation, the target model,

the generator, and the discriminator are jointly trained on a

target domain for 120 epochs with a batch size of 8.

As for hyper-parameters, α and β are set to 1.0 and 0.5

by default, respectively. Notably we set τ = β to balance

two DAD losses. We set γ to 0.01 in all experiments if not

particularly indicated. The number of patches, i.e., K in

IPSM is reasonable to choose from {3, 4, 5}.
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Target Image Ground Truth Source Only MinEnt SFDA (w/o IPSM) SFDA

Figure 6. Qualitative results on GTA5 → Cityscapes.
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mIoU mIoU*

source only ✗ 55.5 21.0 75.8 2.2 0.1 19.9 0.2 6.9 74.5 81.5 37.1 8.7 45.1 18.2 2.5 19.8 29.31 34.36

MinEnt [43] ✗ 78.2 39.6 81.9 4.3 0.2 26.2 2.2 4.1 81.1 87.7 37.7 7.2 75.8 24.9 4.6 25.1 36.30 42.31

AdaptSegNet [41] ✗ 79.7 38.6 79.3 5.6 0.8 25.4 3.6 5.5 80.0 85.4 40.8 11.7 79.8 21.4 5.2 30.5 37.08 43.19

CBST [55] ✗ 81.4 44.2 80.4 7.9 0.7 25.6 5.2 12.4 81.4 89.5 39.7 10.6 82.1 21.9 6.3 32.9 38.88 45.23

MaxSquare [6] ✗ 81.0 39.8 82.6 8.7 0.5 23.2 6.6 12.4 85.3 90.1 39.9 8.4 84.7 19.4 10.2 33.4 39.12 45.65

SFDA(w/o IPSM) ✓ 81.5 43.5 80.6 1.4 0.7 19.9 4.2 7.1 83.1 87.6 36.8 9.5 81.3 22.7 8.6 31.7 37.50 44.47

SFDA ✓ 81.9 44.9 81.7 4.0 0.5 26.2 3.3 10.7 86.3 89.4 37.9 13.4 80.6 25.6 9.6 31.3 39.20 45.89

Table 2. Results of domain adaptation task SYNTHIA → Cityscapes. ‘mIoU’ and ‘mIoU*’ are calculated over 16 and 13 classes, respectively.

4.2. Comparison

Synthetic-to-Real Adaptation: (1) GTA5 → Cityscapes.

Figure 6 shows the qualitative results on GTA5 →
Cityscapes. In order to show the versatility of SFKT and

the contribution of IPSM, we remove the IPSM part in our

architecture, namely ‘SFDA (w/o IPSM)’. It is obvious that

even without source data, our method outperforms tradi-

tional MinEnt method. What’s more, with the enhancement

of IPSM, our full method can make up for errors in some

areas through self-supervision, shown in the yellow dashed

box. We present adaptation results in Table 1 with compar-

isons to the state-of-the-art source-driven domain adaptation

methods.

(2) SYNTHIA → Cityscapes. Following the evalua-

tion setting in [43, 55], we present the results of IoU and

mIoU w.r.t. 16-class and 13-class segmentation in Table 2,

respectively. Our architecture is used with DeepLabV3, and

even outperforms the source-driven UDA methods with the

assistance of IPSM. Besides, our method achieves competi-

tive performance for the small object segmentation, such as

traffic light, traffic sign, and motorbike.

Cross-City Adaptation: To show the effectiveness of our

methods for smaller domain shift, we conduct the experi-

ment on Cityscapes→ NTHU with DeepLabV3 architecture.

Table 3 shows the comparisons of our method with other

source-driven UDA methods. Compared to the best UDA

method MaxSquare, our method with IPSM achieves com-

petitive performance on four city datasets. In addition, we

distill source domain knowledge via SFKT from well-trained

source model into a new model and evaluate it on target do-

main without adaptation, shown as ‘transfer only’ in the

table. The results demonstrate that the knowledge we ob-

tained via SFKT is still valuable on the target, although the

effect is not as good as ‘source only’.

Method SF Rome Rio Tokyo Taipei

source only ✗ 46.44 45.06 44.05 44.07

MinEnt [43] ✗ 47.29 46.82 45.49 45.12

AdaptSegNet [41] ✗ 47.99 47.81 46.22 45.13

MaxSquare [6] ✗ 48.48 48.74 47.10 47.16

transfer only ✓ 45.87 44.03 43.96 43.55

SFDA (w/o IPSM) ✓ 47.38 47.75 45.18 45.38

SFDA ✓ 48.33 49.03 46.36 47.20

Table 3. Results on Cross-City adaptation.

4.3. Ablation Study

To show the detailed contributions of the components in

SFKT, we conduct ablation experiments on three datasets,

shown in Table 4. The results demonstrate that the DAD

losses in source-free domain knowledge transfer is more
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Dataset source model BNS DAD BNS+DAD

GTA5 [36] 61.8 49.8 55.4 58.3

Cityscapes [8] 73.6 60.6 65.5 70.8

SYNTHIA [37] 62.3 51.4 54.7 59.0

Table 4. Results for key components in SFKT.

effective than the commonly used BNS loss, and the fusion

of them could further improve the performance.

The visualization of semantic maps and fake samples syn-

thesized in the knowledge transfer stage are shown in Fig-

ure 7. The left two columns are the fake samples synthesized

by generator and corresponding semantic maps predicted

by DeepLabV3 pre-trained on Cityscapes. The right two

columns are several semantic maps predicted without DAD

or BNS loss. On one hand, the output semantic maps are

similar to the real-world street view structure without DAD,

but it is hard to pay attention to some small objects or refined

segmentation. On the other hand, the generator captures

the discrepancy between two models, but cannot preserve

the original semantic distribution of source domain without

BNS loss, which is vital for segmentation tasks. Although

the fake samples cannot be recognized by humans, they have

similar representations and outputs in convolutional neural

networks with the source domain data. Hence, the fake sam-

ples become the key to transfer source domain knowledge.

Fake Samples Semantic w/o DAD w/o BNS

Figure 7. Visualization of synthetic semantic maps.

4.4. Hyper­parameter Analysis

Firstly, we discuss the influence of α and β (τ = β), the

weights for the MAE loss and the DAD losses, respectively,

for DeepLabV3 on GTA5 → Cityscapes. Given β = 0.5,

we adjust α from 0.1 to 2.0, and show the results in Table 5.

Since the MAE loss LMAE of the source prediction out-

put is similar to the target segmentation loss LTAR when

supervised by target pseudo-labels, α should be close to

1.0. Otherwise, there will be disagreements with LMAE ,

resulting in bias during adaptation.

α 0.1 0.5 1.0 2.0

mIoU 41.33 42.70 43.16 42.47

Table 5. Influence of α given β = 0.5.

Analogously, given α = 1.0, we adjust β from 0.01 to

1.0, and the results are shown in Table 6. Different from α,

β controls the weights of the DAD losses in intermediate

layers, so they are supposed to be smaller than α. If too

many weights are allocated to the DAD losses, they will

limit the learning capacity of the intermediate layers.

β 0.01 0.1 0.5 1.0

mIoU 41.54 43.09 43.16 42.47

Table 6. Influence of β given α = 1.0.

We show the sensitivity analysis of parameters K ∈
{1, 2, · · · , 5} in Figure 8, from which we observe that too

large or too small K is not suitable for IPSM, and 3 to 5 is

reasonable. Note that when K = 1, it means IPSM is not

adopted in training.
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(b) Cityscapes → Rio

Figure 8. Influence of number of patches (i.e., K).

5. Conclusion

In this paper, we have presented a novel source-free do-

main adaptation framework (SFDA) for semantic segmen-

tation. It aims to preserve the source domain knowledge

from a fixed source model via knowledge transfer. Specif-

ically, a dual attention distillation method is designed to

capture and transfer pixel-level semantic information for

segmentation tasks. Moreover, during model adaptation,

an intra-domain patch-level self-supervision mechanism is

introduced to take advantage of valuable knowledge at patch-

level pseudo-labels in a target domain. We conduct extensive

experiments and ablation studies to validate the effectiveness

of the proposed framework on different segmentation tasks,

showing it performs favorably against existing source-driven

UDA methods. However, our approach does not support

high-resolution image segmentation tasks due to the limi-

tation of generative fake sample synthesis, which will be

tackled in future work.
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