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Abstract

The remarkable success in face forgery techniques has

received considerable attention in computer vision due to

security concerns. We observe that up-sampling is a nec-

essary step of most face forgery techniques, and cumula-

tive up-sampling will result in obvious changes in the fre-

quency domain, especially in the phase spectrum. Accord-

ing to the property of natural images, the phase spectrum

preserves abundant frequency components that provide ex-

tra information and complement the loss of the amplitude

spectrum. To this end, we present a novel Spatial-Phase

Shallow Learning (SPSL) method, which combines spa-

tial image and phase spectrum to capture the up-sampling

artifacts of face forgery to improve the transferability, for

face forgery detection. And we also theoretically analyze

the validity of utilizing the phase spectrum. Moreover, we

notice that local texture information is more crucial than

high-level semantic information for the face forgery detec-

tion task. So we reduce the receptive fields by shallowing

the network to suppress high-level features and focus on the

local region. Extensive experiments show that SPSL can

achieve the state-of-the-art performance on cross-datasets

evaluation as well as multi-class classification and obtain

comparable results on single dataset evaluation.

1. Introduction

Benefiting from the tremendous success of generative

techniques, such as Variational Autoencoders (VAE) [35]

and Generative Adversarial Networks (GANs) [16], face
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Figure 1: The variation analysis in the frequency do-

main. The curve shows the average value of pixel differ-

ence (mean and variance) of the phase spectrum between

1000 origin and up-sampling samples increase dramatically

with the increase of the number of up-sampling.

forgery has become an emerging hot research topic in very

recent years. The face forgery techniques are able to syn-

thesize realistic faces that are indistinguishable for human

eyes. However, these forgery techniques are likely to be

abused for malicious purposes, causing serious security and

ethical issues (e.g. celebrity pornography and political per-

secution). Therefore, it is of paramount importance to de-

velop more general and practical methods for face forgery

detection.

To alleviate the risks brought by malicious usage of face

forgery, various methods [51, 26, 1, 49, 2, 39, 38, 13, 23,

36, 29, 8, 24] have been proposed. Most of these meth-

ods detect face forgery in a supervised fashion with prior

knowledge of face manipulation methods [1, 6, 24]. Un-

der this setting, these approaches achieve excellent perfor-

mance on some public datasets [49, 21, 38, 27, 46]. How-
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Figure 2: The frequency domain analysis of the origin

and up-sampling face. The residual images show that

the differences of phase spectrum between origin and up-

sampling are bigger than the amplitude spectrum with the

up-sampling. Best viewed in color. (Darker color indicates

smaller pixel values).

ever, these detection methods tend to suffer from overfit-

ting thus their effectiveness is limited to the datasets which

they are specifically trained on. Moreover, in real-world

detection, it is inevitable to face a source/target mismatch

problem when handling unseen samples, which is extremely

challenging for deepfake detection task. Therefore, it is

necessary to enhance the generalization and transferabil-

ity of forgery detection techniques. Recently, some ap-

proaches [11, 23, 29, 47] have made attempts to improve

the transferability, there are still deficiencies. For exam-

ple, two-branch [29] achieves the state-of-the-art perfor-

mance of cross-dataset detection at the expense of frame-

level detection accuracy. Face X-ray [23] starts from a

novel perspective that aims at detecting the blending bound-

ary artifacts and obtains perfect performances in detect-

ing unseen forgery method for raw videos, which signif-

icantly improves transferability of different manipulation

methods [9, 44, 14, 43]. However, since only focus on the

information extracted from the spatial domain, it is easily

to be influenced by video compression. Thus, we need to

concern about the more common artifacts in the generation

of forgery images from various domains.

We obverse that up-sampling is a non-negligible step in

generative models(e.g. VAE [35], GANs [16]), from which

the generated part are then used to synthesize fake faces.

This operation usually leaves a trace in the frequency do-

main, which provides cues for separating synthesized faces

from real ones. Though [12] also tried to detect these arti-

facts with the amplitude spectrum, the performance is lim-

ited due to the information loss.

To this end, we propose Spatial-Phase Shallow Learn-

ing (SPSL) for face forgery detection, which leverages the

phase spectrum for detecting the common artifacts. The

pivotal thought is that the phase spectrum is more hyper-

sensitive to up-sampling than the amplitude spectrum. As

shown in Figure 1, with more times of up-sampling oper-

ations are performed, the average pixel differences of the

phase spectrum get much greater than that of the amplitude

spectrum. A visualization comparison can also be found in

Figure 2.

Moreover, [5] used the patch-based classification to gen-

eralize the image forensics. Thus, we hold the opinion that

local texture information is more important than high-level

semantic information even high-level semantic information

should be suppressed in the specific task of forged face de-

tection. For this purpose, SPSL drops many convolutional

layers to reduce the receptive field [3] and forces CNNs to

pay more attention to local regions which are abundant in

textures and lack high-level semantic information.

As a result, SPSL focuses on the common step in the

forged faces generation and pays more attention to textures

leading to a performance improvement of the cross-datasets

evaluation. At the same time, the performance on multi-

class classification also improves due to the specific traces

of different categories manipulation are left in the phase

spectrum.

Extensive experiments demonstrate that SPSL signifi-

cantly improved the transferability and achieved the state-

of-the-art over cross-dataset evaluation.

The major contributions in this paper are summarized as

follows:

• We firstly leverage the phase spectrum to detect forged

face images and demonstrate that CNNs can capture

extra implicit features of the phase spectrum which are

beneficial to face forgery detection with precise math-

ematical derivation.

• Aiming at the specific problem of forged face detec-

tion, we assume that high-level semantic information

should be appropriately suppressed. And we experi-

mentally validate the hypothesis by decreasing the re-

ceptive field of CNNs with shallow network learning.

• We verify that our approach achieves the state-of-the-

art performance of forged face detection over cross-

dataset evaluation.

2. Related work

Since face manipulation is a classical research topic [44,

34, 33, 22, 18, 43] in computer vision, verifying its authen-

ticity is not a new problem. However, recent remarkable

successes of deep learning make face manipulation easier

and more realistic which poses a significant challenge of

forged face detection. In this section, we briefly review the

current face forgery detection methods that are representa-

tive and related to our work.
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2.1. Spatialbased Face forgery Detection

With the development of face forgery, a wide variety of

methods have been proposed to detect forged face. The ma-

jority of them exploit artifacts based on the spatial domain,

especially in RGB. Some methods for deepfake detection

focus on hand-crafted facial features from the video, such

as eye blinking [25], inconsistent head poses [49], facial

expression change [2]. Recent methods [1, 32, 38] cap-

ture high-level features from the spatial domain by using

deep neural networks and show impressive performance.

Nguyen et al. proposed a method [32] which leveraging

capsule network [40] to detect face manipulation. Rossler et

al. [38] show the best performance on many kinds of forgery

algorithms with the efficient XceptionNet [6] at that time.

Face X-ray [23] mainly focuses on the blending step which

exists in most face forgery and thus achieved state-of-the-

art performance on transferability in raw videos. However,

it still has some limitations that the performance of Face

X-ray will sharply drop when encounter low-resolution im-

ages, and it may not work with entirely synthesized im-

ages. Almost all of these CNN-based methods only use

spatial domain information and therefore the performance is

quite sensitive to the quality or data distribution of datasets.

In our work, we combine the spatial domain with the fre-

quency domain to take advantage of both.

2.2. Frequencybased Face forgery Detection

Besides focusing on the spatial domain, some methods

pay attention to the frequency domain for capturing arti-

facts of the forgery. In fact, frequency analysis is a com-

mon and important way in digital image processing and

has been widely applied to various tasks in computer vi-

sion [45, 48, 42, 19]. Most of them use either Discrete

Fourier Transform (DFT) or Wavelet Transform (WT), or

Discrete Cosine Transform (DCT) to convert the spatial im-

age to the frequency domain. Durall et al. [13] first pro-

posed that averaging the amplitude of each frequency band

with DFT can mine abnormal information of forgery in face

manipulation detection. F3-Net [36] extracted frequency-

domain information using DCT and analyzed the statistic

features for face forgery detection. F3-Net achieved state-

of-the-art performance on highly compressed videos, but

the performance on cross-dataset evaluation drops greatly.

Masi et al. [29] leverage a Laplacian of Gaussian (LoG)

to make frequency enhancement for purpose of suppress-

ing the image content present in the low-level feature maps.

However, most of these related works mainly depend on

low-level statistical features rather than high-level features

extracted by CNNs, and therefore the frequency informa-

tion was inadequately utilized. In our work, given the pow-

erful capabilities of feature extraction of CNNs, we make

use of the phase spectrum in DFT and explicitly prove the

validity with theory analysis while we integrate it into the

Most of methods focusing on 

forged face.

Our SPSL focusing on both  

up-sampling and forged face.

Figure 3: Overview of typical face manipulation pipeline.

Most of the previous works only focus on forged faces,

while we focus on both up-sampling and forged faces.

whole learning process of CNNs.

3. SPSL for Face Forgery Detection

In this section, we start by introducing the key observa-

tion of face forgery generation. Then we propose spatial-

phase shallow learning to detect the observed common ar-

tifacts for face forgery detection. Finally, Making the net-

work shallow can focus on the local region to further boost

the improvement of transferability.

3.1. Motivation

As shown in Figure 3, a typical facial manipulation

method consists of three stages [9]: 1) encoding source

face; 2) swapping face in latent space; 3) decoding target

face.

Up-sampling is a vital step for decoding the target face,

based on either AutoEncoders [35] or GANs [16]. Thus, we

leverage the phase information to detect up-sampling arti-

facts. For applying phase information to CNNs, we recon-

struct the spatial domain representation of the phase spec-

trum from the frequency domain (i.e. IDFT with the fre-

quency spectrum without amplitude). Finally, we concate-

nate the spatial domain representation of the phase spec-

trum with the RGB image in the channel, which results in

an RGBP 4-channel image.

3.2. Capturing upsampling artifacts via phase
spectrum in face forgery

To detect the observed common artifacts, namely up-

sampling, we analyze it in the frequency domain.

Up-sampling will lead to the emergence of new fre-

quency components. And we make a claim as follows

Claim 1. Phase spectrum is more sensitive to up-sampling

artifacts and therefore helps face forgery detection.
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To simplify the calculation, we make all the mathemat-

ical derivation based on the 1D signal. We first set up the

basic notations used in this paper: x(n) and X(u) denote a

1D discrete signal and its Discrete Fourier Transform(DFT),

where n is the spatial location of the signal and u represents

the frequency. A(u) is the amplitude spectrum and P(u) is

the phase spectrum. And we use c(n) and C(n) to denote

the convolution kernel and its DFT representation. And we

use ∗ to denote convolutional operation.

Proof. The increase of spatial resolution in 2D corresponds

to the extension of the time domain in 1D. Assume that the

input x(n) is up-sampled by factor 2, then

x̂(n) =

{

x( 12n), n = 2k

0, n = 2k + 1
(1)

where k = 0, 1, 2, · · · , N − 1, and

X̂(u) =
1

2N

2N−1∑

n=0

x̂(n)e−j 2πun

2N

=
1

2N

N−1∑

n=0

x̂(2n)e−j 2πu2n
2N

=
1

2N

N−1∑

n=0

x(n)e−j 2π2un

N

(2)

The we have x̂(n) = x( 12n) ⇔ X̂(u) = X(2u) with

the Eq. 2, which leads to the conclusion that the increase

of spatial resolution will result in the compression in the

frequency domain which is consistent with the property of

Fourier Transform (FT). In fact, the essence of DFT is the

principle value interval of Discrete Fourier Series (DFS)

and thus new frequency components are the duplicate of

origin frequency components.

Base on our inference that phase spectrum will keep

more frequency components that tend to zero in amplitude

spectrum, which is detailedly proved in the Appendix 1.1.

We first assume the amplitude spectrum XA(u) and the

phase spectrum XP(u) of original images x(n). It is

XA(u) = a0 + a1e
jθ1 + · · ·+ ake

jθk

︸ ︷︷ ︸

(k+1) items

XP (u) = p0 + p1e
jθ1 + · · ·+ pN−1e

jθN−1

︸ ︷︷ ︸

N items

(3)

and the corresponding up-sampling is

X
up
A (u)=a0+· · ·+ake

jθk

︸ ︷︷ ︸

(k+1) items

+aNejθN +· · ·+aN+ke
jθN+k

︸ ︷︷ ︸

(k+1) items

X
up
P (u) = p0 + p1e

jθ1 + · · ·+ p2N−1e
jθ2N−1

︸ ︷︷ ︸

2N items

(4)

We define that yA(n) is the output of a convolution

layer with an input x(n) and its frequency domain form is

YA(u). And we get

yA(n) = x(n) ∗ c(n)
m

YA(u) = XA(u) ·C(u)

(5)

According to the deduction that the phase spectrum helps

CNNs acquire and learn more abundant frequency compo-

nents which are ignored with convolution calculations of

amplitude spectrum proved in Appendix 1.2, we can de-

duce the frequency domain form is

YA(u) = f0 + f1e
jθ1 + · · ·+ fk+N−1e

jθk+N−1

︸ ︷︷ ︸

k+N items

(6)

Y
up
A (u) = f0 + f1e

jθ1 + · · ·+ f2N+k−1e
jθ2N+k−1

︸ ︷︷ ︸

2N items

(7)

In our work, we first take Inverse Discrete Fourier Trans-

form (IDFT) to phase spectrum and acquire the spatial do-

main form p(n) of phase. And we state a theorem named

the distributive law as follow,

Theorem 1. (f(·) + g(·)) ∗ h(·) = f(·) ∗ h(·) + g(·) ∗ h(·)
Then we consider that we directly concatenate x(n) and

p(n) in channel dimension based on theorem 1 and the out-

put YA+P (u) is

YA+P (u) = f0 + f1e
jθ1 + · · ·+ f2N−2e

jθ2N−2

︸ ︷︷ ︸

2N−1 items

(8)

Y
up
A+P (u) = f0 + f1e

jθ1 + · · ·+ f3N−2e
jθ3N−2

︸ ︷︷ ︸

3N−1 items

(9)

�

Intuitively, the number of learnable frequency compo-

nents is N when we leverage the original image and its

phase together, but the number just is N−k with the utiliza-

tion of the original image alone. Therefore, it is clear that

the difference between YA+P (u) and Y
up
A+P (u) is bigger

than YA(u) and Y
up
A (u). In particular, the value of k is usu-

ally small in nature images and thus our method observably

improves the performance on the detection of face forgery.

Thus, we conclude that the introduction of the phase spec-

trum helps capture more frequency artifacts caused by cu-

mulative up-sampling in deepfake video generation.

3.3. Suppressing the semantic information and fo
cusing on local region

We consider that the pivotal distinction between pristine

face and forged face is local low-level features(e.g. textures,

colors) instead of global high-level semantic features(e.g.
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Methods
HQ LQ

ACC AUC ACC AUC

Steg. Features [15] 70.97 - 55.98 -

Cozzolino et al. [7] 78.45 - 58.69 -

Bayer & Stamm [4] 82.97 - 66.84 -

Rahmouni et al. [37] 79.08 - 61.18 -

MesoNet [1] 83.10 - 70.47 -

Face X-ray [23] - 87.35 - 61.60

Xception [6] 92.39 94.86 80.32 81.76

SPSL(Xception) 91.50 95.32 81.57 82.82

Table 1: Quantitative results (ACC (%) and AUC (%)) on

FaceForensics++ dataset with high-quality (light compres-

sion) and low quality (heavy compression) settings. The

bold results are the best.

face, human). Because most of these semantic features are

shared in both pristine and forged faces, extensive high-

level semantic information more or less has a negative ef-

fect on forged face detection as it contains many common

characteristics of pristine and forged face images. For the

purpose of suppressing high-level semantic features and ex-

tracting more texture features, we straightforwardly shallow

the neural network by throwing away many convolutional

layers or blocks. Then we demonstrate that shallow net-

works are more transferable and efficient simultaneously.

4. Experiments

In this section, we first introduce the overall experimen-

tal settings and then present extensive experimental results

to demonstrate the superiority of our approach.

4.1. Experimental settings

Datasets. Following recent related works [36, 29, 23,

24] of face forgery detection, we conduct our experiments

on the three benchmark public deepfake datasets: Face-

Forensics++(FF++) [38], Celeb-DF [27] and DFDC [10].

All of them are large-scale and contain pristine and manipu-

lated videos of human faces. FF++ consists of four kinds of

common face manipulation methods [9, 44, 14, 43]. Celeb-

DF is in general the most challenging to the current detec-

tion methods, and their overall performance on Celeb-DF

is lowest across all datasets. DFDC is the largest currently

and publicly-available face swap video dataset.

Evaluation metrics. In our experiments, we mainly

utilize the Accuracy rate (ACC) and the Area Under Re-

ceiver Operating Characteristic Curve (AUC) as our eval-

uation metrics. (1) ACC. Accuracy rate is the most intu-

itive metric in face forgery detection. It is also applied to

FF++ [38] and thus we use ACC as the major evaluation

metric in the experiment. (2) AUC. Following the Celeb-

DF [27] and DFDC [10], we use AUC as another evaluation

metric to evaluate the performance on cross-dataset. Be-

sides, we use the recall rate as our multi-class classification

evaluation metric.

Implementation and Hyper-Parameters. In our exper-

iments, we use Xception [6] as the backbone of our ap-

proach. For the purpose of reducing receptive fields, we just

retain the Xception Block 1-3 and Xception Block 12. The

final spatial form of our phase spectrum is the IDFT of the

absolute value of the pristine phase spectrum. We optimize

the networks by Adam optimizer [20]. The initial learning

rate lr = 2 × 10−3 and it drops to half of itself every time

the validation loss does not decrease after 5 full epochs.

4.2. Comparison with previous methods

In this section, we compare our method with previous

deepfake detection methods. We train all models on only

FF++ [38] and respectively evaluate them on FF++ in Sec-

tion 4.2.1, Celeb-DF and DFDC in Section 4.2.2.

4.2.1 Comparable results on FF++

In this section, we compare our method with previous deep-

fake detection methods on FF++ [38]. Although our pri-

mary purpose is to improve the generalization and trans-

ferability, we also obtain comparable results in FF++ [38].

We first evaluate our methods on different video compres-

sion settings including high quality (HQ (c23)) and low

quality (LQ (c40)). As the results shown in Table 1, the

proposed method outperforms or is on par with baseline in

both ACC and AUC with LQ settings. Low-quality videos

have been highly compressed and many frequency com-

ponents are weakened. The improvement of performance

mainly benefits from the extra phase information captured

by CNNs, which keeps more frequency components than

plain RGB-based images. At the same time, we also obtain

comparable results with HQ settings.

Furthermore, we also evaluate our approach on differ-

ent face manipulation methods in FF++ [38]. The results

are demonstrated in Table 2. We train and test our models

exactly on low-quality videos for each manipulation meth-

ods. We also reproduced the results of MesoNet [1] and

Xception [6], and other results are directly cited from [38].

In general, basic experiments also show comparable results

with previous methods though the transferability is the main

purpose of SPSL.

4.2.2 Cross-dataset evaluation

In this section, we evaluate the transferability of our method

given that it is trained on FF++ with multiple manipulations

but tested on Celeb-DF [27] and DFDC [10]. Table 3 and 4

show the AUC comparison with some recent methods for

face forgery detection. Our method obtains the state-of-the-

art AUC on Celeb-DF while still having a good performance
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Figure 4: Visualization of various manipulation methods and our spatial domain representations of the phase spectrum in

FF++ [38]. Each image and phase spectrum is the average of all frames of a video. Every manipulation method tends to be a

specific pattern in the phase spectrum while it is not obvious in the RGB domain. Best viewed in color.

Methods
DF [9] F2F [44] FS [14] NT [43]

ACC AUC ACC AUC ACC AUC ACC AUC

Steg. Features [15] 73.64 - 73.72 - 68.93 - 63.33 -

Cozzolino et al. [7] 85.45 - 67.88 - 73.79 - 78.00 -

Rahmouni et al. [37] 85.45 - 64.23 - 56.31 - 60.07 -

Bayar and Stamm [4] 84.55 - 73.72 - 82.52 - 70.67 -

MesoNet [1] 87.27 - 56.20 - 61.17 - 40.67 -

XceptionNet [6] 95.15 99.08 83.48 93.77 92.09 97.42 77.89 84.23

SPSL(Xception) 93.48 98.50 86.02 94.62 92.26 98.10 76.78 80.49

Table 2: Quantitative results (ACC (%) and AUC (%)) on FaceForensics++ dataset with four different manipulation meth-

ods, i.e. DeepFakes(DF) [9], Face2Face(F2F) [44], FaceSwap(FS) [14], NeuralTextures(NT) [43]. The bold results are best.

on DFDC. The performance gains mainly benefit from the

extra appreciable frequency components of the phase spec-

trum, which are enhanced many times in the cumulative up-

sampling, and thus the differences of frequency components

perceptible by convolutional kernel between pristine images

and forgery become more striking. Therefore, the proposed

SPSL is capable of detecting general artifacts.

4.3. Multiclass classification evaluation

We furthermore evaluate the proposed SPSL on multi-

class classification with different face manipulation meth-

ods list in FF++ [38] in this section. The models are trained

and tested on FF++ with five types of labels, and multi-

class classification is more challenging and significant than

binary classification. The results are shown in Table 5 by

the way of recall rate. With all three kinds of compression

setting, the proposed SPSL completely surpasses the orig-

inal XceptionNet method. Furthermore, we also show the

t-SNE [28] feature spaces of data in FF++ high quality with

the multi-class classification task, by the Xception and our

SPSL, as shown in Figure 5. Xception is more likely to con-

fuse pristine faces with NeuralTextures-based fake faces be-

cause this manipulation method modifies very limited pixels

in the spatial domain, as shown in Figure 5(a). Conversely,

the proposed SPSL can split up all classes in the embedding

feature spaces, as shown in Figure 5(b). These improve-
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Method FF++ [38] Celeb-DF [27]

Two-stream [51] 70.10 53.80

Meso4 [1] 84.70 54.80

MesoInception4 [1] 83.00 53.60

HeadPose [49] 47.30 54.60

FWA [26] 80.10 56.90

VA-MLP [30] 66.40 55.00

Xception-c40 [38] 95.50 65.50

Multi-task [31] 76.30 54.30

Capsule [32] 96.60 57.50

DSP-FWA [26] 93.00 64.60

SMIL [24] 96.80 56.30

Two-branch [29] 93.20 73.40

F3-Net [36] 97.97 65.17

SPSL(Xception) 96.91 76.88

Table 3: Cross-dataset evaluation (AUC (%) ) on Celeb-

DF. Best competing methods on Celeb-DF are reported.

Our method obtains the state-of-the-art performance on

cross-dataset evaluation. At the same time, our method still

performs well when tested on just deepfake class(96.91%)

AUC on FF++. Results for some other methods are

from [27]. The bold results are the best while the blue re-

sults are the second best.

Method DFDC [10]

XceptionNet [38] 48.98

PCL [50] 67.52

SPSL(Xception) 66.16

Table 4: Cross-dataset evaluation (AUC (%) ) on DFDC.

The bold results are the best while the blue results are the

second best.

ments may benefit from the salient difference of phase spec-

trum among various manipulation methods and we show the

average phase spectrum in the spatial domain of every frame

of a video in Figure 4. For all four kinds of manipulation

methods in FF++ [38], the spatial images of the phase spec-

trum show distinguishing results for each method. In partic-

ular, NeuralTextures-based images, which just slightly tam-

pered with lip, are very similar to pristine images causing

almost indistinguishable in the RGB domain but the spatial

images of the phase spectrum are still separable.

5. Ablation Study

5.1. Effectiveness of Phase spectrum and Shallow
network

To evaluate the effectiveness of both Phase spectrum

and Shallow network, we first respectively evaluate one of

Methods DF F2F FS NT ORG

MesoIncep4 [1] 94.81 43.32 73.24 40.39 85.16

Xception-c0 [6] 97.84 96.68 96.84 87.67 98.03

SPSL
99.05 97.20 97.63 91.40 98.25

(Xception-c0)

Xception-c23 [6] 88.00 88.61 87.07 74.83 75.52

SPSL
94.18 93.59 95.62 81.72 88.72

(Xception-c23)

Xception-c40 [6] 86.61 78.88 83.16 52.94 75.55

SPSL
91.16 78.31 88.75 58.97 77.49

(Xception-c40)

Table 5: The recall rate (%) of origin and each manipulation

method with Raw (c0) , HQ (c23) and LQ (c40) settings in

our multi-class classification.

(a) Baseline (b) SPSL

Figure 5: The t-SNE feature spaces visualization of the ba-

sic Xception (a) and SPSL (b) on FaceForensics++ [38]

high quality (HQ) in the multi-class classification task. Red

color dots represent pristine images, and rest colors respec-

tively indicate the different manipulation methods. Best

viewed in color.

them with baseline and combine them finally. All mod-

els are trained on FF++ [38] and tested on Celeb-DF [27].

The results are listed in Table 6. Compared with model

1(baseline Xception), model 2(Xception with phase spec-

trum) and model 3 (shallow Xception) improve the AUC

scores of Celeb-DF. The transferability has a great improve-

ment with both of them. When combining phase spectrum

and shallow network, SPSL gets the best performance and

the AUC score increase by about 13%. Furthermore, to

demonstrate the effectiveness of the proposed SPSL better,

we respectively visualize the Gradient-weighted Class Acti-

vation Mapping(Grad-CAM) [41] of the baseline and SPSL,
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DF Baseline SPSL FS Baseline SPSL Celeb-DF Baseline SPSL

Real

Fake

Figure 6: The Grad-CAM of the baseline Xception and the proposed SPSL, including two different manipulation methods in

FF++ [38] and another Celeb-DF [27] datasets. Best viewed in color.

as shown in Figure 6. The Grad-CAM indicates that the pro-

posed SPSL prefers to focus on more microcosmic regions

while the baseline model pays more attention to global in-

formation, and this phenomenon also accords with our mo-

tivation. Furthermore, we demonstrate the correlation anal-

ysis between the performance and the number of convolu-

tion layers of various backbone networks in Appendix 2.

ID Phase Shallow Celeb-DF [27]

1 - - 59.98

2
√

- 69.01

3 -
√

66.74

4
√ √

72.39

Table 6: Ablation study of the proposed SPSL. These mod-

els are trained on FF++ with high quality(HQ) settings and

tested on Celeb-DF (AUC (%) ). We compare SPSL and its

variants by removing phase spectrum and shallow operation

step by step.

5.2. Universality of SPSL with Various Backbones

All the above-mentioned experiments are based on

Xception [6], and thus we also evaluate the universality of

SPSL with two types of ResNet [17]. For both ResNet34

and ResNet50, we directly halve the residual block to shal-

low networks. The results listed in Table 7 demonstrate that

the SPSL is a general framework for various backbones.

6. Limitations

Our method depends on the existence of up-sampling in

forged face generation. Thus, the performance may drop

if the forgery face is not produced by methods based on

generative models. Besides, our method also suffers from a

transferability drop when encountering an entirely different

type of face forgery manipulation. This is expected since

manipulations from different categories can leave a specific

trace in the phase spectrum as shown in Figure 4.

Backbone
FF++ [38] Celeb-DF [27]

ACC AUC ACC AUC

ResNet-34 71.55 81.58 65.19 66.90

SPSL
83.24 89.26 66.79 71.78

(ResNet-34)

ResNet-50 81.83 83.51 69.40 70.05

SPSL
86.64 91.04 68.28 73.09

(ResNet-50)

Table 7: The results (ACC (%) and AUC (%) ) on FF++ [38]

and cross-dataset evaluation on Celeb-DF [27] of two differ-

ent backbones with the proposed SPSL.

7. Conclusion

In this work, we propose a novel face forgery detection

method, SPSL, which takes advantage of both spatial and

frequency information. The core competence of SPSL is

that phase spectrum contains more abundant appreciable

frequency components and these components will be dupli-

cated in the process of up-sampling which is the necessary

step of forged face generation. Besides, SPSL forces the

network to focus on the local microcosmic region and

suppress global semantic information for more robustness.

We perform a meticulous mathematical derivation to

prove the rationality of the proposed SPSL, and extensive

experiments demonstrate that the SPSL has an excellent

performance on the face forgery detection, especially in the

challenging cross-dataset evaluation task.
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