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Abstract

Video-based person re-identification aims to match

pedestrians from video sequences across non-overlapping

camera views. The key factor for video person re-

identification is to effectively exploit both spatial and tem-

poral clues from video sequences. In this work, we propose

a novel Spatial-Temporal Correlation and Topology Learn-

ing framework (CTL) to pursue discriminative and robust

representation by modeling cross-scale spatial-temporal

correlation. Specifically, CTL utilizes a CNN backbone and

a key-points estimator to extract semantic local features

from human body at multiple granularities as graph nodes.

It explores a context-reinforced topology to construct multi-

scale graphs by considering both global contextual infor-

mation and physical connections of human body. Moreover,

a 3D graph convolution and a cross-scale graph convolu-

tion are designed, which facilitate direct cross-spacetime

and cross-scale information propagation for capturing hi-

erarchical spatial-temporal dependencies and structural in-

formation. By jointly performing the two convolutions, CTL

effectively mines comprehensive clues that are complemen-

tary with appearance information to enhance representa-

tional capacity. Extensive experiments on two video bench-

marks have demonstrated the effectiveness of the proposed

method and the state-of-the-art performance.

1. Introduction

Person re-identification (Re-ID) is an important technol-

ogy to retrieve a person-of-interest across non-overlapping

cameras. It has drawn increasing attention during the past

few years, owing to its broad application in many realistic

scenarios, such as video surveillance [11, 47] and behavior

analysis [43] etc. However, this task remains challenging

due to the variations in illumination, viewpoint and pose, as

well as the influence of background clutter and occlusion.

Existing person Re-ID approaches are mainly divided
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Figure 1. Three example video sequences on MARS and iLIDS-

VID datasets with partial occlusions, inaccurate detection and

viewpoint variation.

into two categories: image-based methods [39, 33, 41, 25]

and video-based methods [36, 26, 22]. The former ex-

ploits static images without temporal information to retrieve

pedestrians. It has achieved impressive advances with the

surge of deep learning technique in recent years [18]. How-

ever, image-based person Re-ID heavily relies on the qual-

ity of static images, which are sensitive to noise, occlusion

and viewpoint variation, etc. Different from static images

with limited content, video sequences contain rich spatial-

temporal information across a long span of time, which can

provide clean and informative clues against these problem

[22, 8]. Thus, video-based person Re-ID has the potential

to solve the restrictions in image-based person Re-ID.

A typical video-based person Re-ID pipeline extracts

and aggregates spatial and temporal clues from video se-

quences to generate discriminative representations. Some

preliminary methods [29, 10, 13, 52] extract appearance

features from each frame independently, and aggregate

them into video-level representation by temporal pooling

layer or recurrent neural network (RNN). In presence of

partial occlusions, inaccurate detection and viewpoint vari-
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ation, the learned features are often corrupted, result in sig-

nificant performance degradation. Figure 1 illustrates some

video sequences of pedestrians on MARS [52] and iLIDS-

VID [42] datasets with these issues. Recent works attempt

to address them by dividing video frames into horizon-

tal rigid stripes [8, 6, 43] or utilizing attention mechanism

[22, 21, 36, 31, 14] to discover distinctive partial regions for

extracting local appearance features. However, much back-

ground noise is blended in their located partial regions, thus

they can not learn precise aligned part features from videos

[53]. Considering that, a few works [3, 19, 9, 51] employ

pose estimation model [30] to adaptively locate key-points

of pedestrians for extracting aligned part features. How-

ever, drastic viewpoint and pose variations as well as occlu-

sion within videos affect the reliability of pose estimation

model. Meanwhile, these methods only extract local fea-

tures with fixed semantics from one-granularity partition,

which can not cover all discriminative clues. Further, all

the aforementioned methods only model the temporal rela-

tion across different frames, while neglecting complicated

spatial-temporal dependencies and structural information of

different body parts within a frame or across frames, re-

stricting the capability of pedestrian representation.

In this work, we propose a novel Spatial-Temporal

Correlation and Topology Learning framework (CTL) for

video-based person re-identification, which pursues dis-

criminative and robust representations. CTL extracts lo-

cal features at multi-granularity levels to capture diverse

discriminative semantics and alleviate unstable pose esti-

mation results, and learns the potential cross-scale spatial-

temporal dependencies and structure information among

body parts for enhancing feature representation. Specifi-

cally, CTL employs a CNN backbone and a key-points esti-

mator to extract semantic part features from human body

at three granularities as graph nodes. It then explores

a context-skeleton enriched topology to construct multi-

scale graphs by considering both global contextual infor-

mation and physical connections of human body, which ef-

fectively models the intrinsic spatial-temporal linkages be-

tween nodes. Moreover, a 3D graph convolution and a

cross-scale graph convolution are designed for these multi-

scale graphs, which facilitate direct cross-spacetime and

cross-scale information propagation for capturing hierar-

chical spatial-temporal dependencies and structural infor-

mation. By jointly performing the two convolutions, CTL

effectively mines comprehensive and discriminative clues

that are complementary with appearance information to en-

rich representation. Extensive experiments on two video

datasets, i.e., MARS and iLIDS-VID, have demonstrated

the effectiveness of the proposed approach.

Although graph modeling has been explored in person

Re-ID, most of them only construct a graph on image-level

[33, 1, 45, 23] without considering temporal relation. A few

of preliminary works [43, 44, 46] extend graph modeling

to video person Re-ID. However, they neglect the spatial

structural information within each frame [43, 44], or sim-

ply utilize factorized spatial and temporal graph modeling

[46], failing to capture complex spatial-temporal relation.

Further, all of them essentially belong to a local method.

They utilize pair-wise feature affinity to measure the link-

age between two nodes, while ignoring the impact of global

contextual information from all other nodes, which is sig-

nificance for learning reliable and useful graph topology.

The main contributions of this paper are as follow-

ing: (1) We propose a novel Spatial-Temporal Correlation

and Topology Learning framework (CTL) for person re-

identification in videos. (2) We learn a context-reinforced

topology to construct multi-scale graphs by considering

both global contextual information and physical connec-

tions of human body. (3) We develop a 3D graph convolu-

tion and a cross-scale graph convolution to model high-oder

spatial-temporal dependencies and structural information.

2. Related Work

Image-based Person Re-ID. It is extensively explored

in the literature. Existing methods mainly focus on three

categories: designing discriminative hand-crafted descrip-

tors [2], robust distance metric learning [24, 50] or deep

learning technique [27, 39, 18, 17, 16]. For example, Chen

et al. [5] introduced a cascaded feature suppression mecha-

nism that mines all potential salient features stage-by-stage

and integrates these discriminative salience features with

the global feature, producing the final pedestrian feature.

Video-based Person Re-ID. Compared with image-

based person Re-ID, video-based person Re-ID provides

richer spatial-temporal clues and is promising for precise

retrieval [37, 15, 48]. Some existing works [29, 10, 13] for-

mulate video-based person Re-ID as an extension of image-

based person Re-ID. They extract appearance representa-

tion from each frame, and aggregates the representations

of all frames by using temporal pooling layer or RNN. For

example, McLaughlin et al. [29] proposed a siamese net-

work, which captures features from each video, and then

employs a recurrent layer and a temporal pooling layer to

abstract video-level feature. In order to learn robust rep-

resentation against partial occlusions, inaccurate detection

and pose variation, rigid stripe partition [8, 6, 43] and atten-

tion mechanism [22, 21, 36, 31] methods attract more at-

tention recently. For example, Subramaniam et al. [36] for-

mulated a Co-segmentation Activation Module to enhance

common abstract features and suppress background features

by jointly exploring common features across frames. More-

over, a few works [3, 19, 9] utilize pose estimation model

to adaptively locate key-points of human body and learn

aligned semantic features. For example, Jones et al. [19]

proposed a pose-guided alignment framework, which mim-
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Figure 2. The overall architecture of the proposed CTL. It consists of a backbone network with a key-points estimator, a context block,

multiple 3D graph convolution layers (3D-GCLs), multiple cross-scale graph convolution layers (CS-GCLs) and a fusion block.

icked the top-down attention of the human visual cortex to

learn aligned features.

Graph Learning. Graphs are typically utilized to model

relationships between nodes. Graph convolutional network

(GCN) and its variant models [20] have achieved great suc-

cess in many computer vision tasks, e.g., object detection

[35], multi-label image recognition [7] and skeleton-based

action recognition [49, 28]. Similarity, some methods also

apply GCN to person Re-ID. Most of them [33, 1, 45, 23]

build the graph models on image-level by considering the

relations among images, which neglect the beneficial tem-

poral information. In addition, a few of recent works

[43, 44, 46] extent GCN to video person Re-ID by explor-

ing spatial and temporal relation, while they ignore the spa-

tial structural information of body parts within each frame

[43, 44] or only consider factorized spatial and temporal

relation modeling [46]. For example, Yang et al. [46]

proposed a Spatial-Temporal Graph Convolutional Network

(STGCN) which includes two GCN branches. The spatial

branch learns spatial relation of human body, and the tem-

poral branch mines discriminative temporal relation from

adjacent frames.

3. Method

To further enhance the capacity of representations, this

work explicitly explores spatial-temporal features across

multi-granularity levels. To this end, we propose a Spatial-

Temporal Correlation and Topology Learning framework,

which models high-order spatial-temporal correlation to

learn comprehensive representation. The overall architec-

ture is shown in Figure 2. It consists of a backbone network

with a key-points estimator, a context block, multiple 3D

graph convolution layers (3D-GCL), multiple cross-scale

graph convolution layers (CS-GCL) and a fusion block.

Figure 3. Three scales of body partition. In s1, we adopt 17 key-

points, In s2 and s3, we adopt 10 and 5 parts of body, respectively.

3.1. MultiScale Feature Extraction

Given a video sequence, we denote it as {It}
T
t=1, where

T is the sequence length. The backbone network takes

each frame as input to extract the initial feature map F =
{F t|F t ∈ R

H×W×C}Tt=1, where H , W and C denote

the height, width and channel size of the feature maps, re-

spectively. The backbone network is based on ResNet-50

model [12]. As part-based representations have shown ef-

fectiveness for person Re-ID [39], we adopt a key-points

estimator [38] to adaptively locate the key-points of hu-

man body, and extract aligned part features from these key-

points against partial occlusions, misalignment and view-

point variation. Although, key-points estimation models

have obtained high accuracy, they remain suffering from

unreliable performance under complex surveillance scenes,

leading to inaccurate key-points location and their confi-

dence. Thus, exploring multi-scale part features with their

spatial-temporal correlation is particularly important, which

can alleviate unreliable key-point estimation results and
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capture diverse discriminative semantics.

Based on human nature, we divide human body at three

granularities: the key-point scale (s1), the low-level-part

scale (s2) and the high-level-part scale (s3), as show in Fig-

ure 3. We merge spatially nearby key-points to each part in

coarser scales based on human prior. The heat maps m of

key-points are generated through the key-point estimator,

which are then normalized with a softmax function. The

group of semantic local feature V s1 ∈ R
T×Ns1

×C for the

granularity s1 and the global feature V g ∈ R
T×C are com-

puted as following:

V s1 = {vs1} = gGAP (F t ⊗mt
s1
)

V g = gGAP (F )
(1)

where ⊗ and gGAP refer to outer product and global av-

erage pooling operations, respectively. Ns is the number

of body parts (17, 10 and 5 parts for s1, s2, s3, respec-

tively). The part features V s2 and V s3 for the low-level-

part and high-level-part scales are computed by performing

average pooling operation on the features V s1 of the key-

points within each body part.

3.2. ContextReinforced Topology Graph

In order to excavate spatial-temporal information from

video frames, we employ advanced GCN to model hierar-

chical spatial-temporal dependencies and structural infor-

mation. Let G = {Gs}s∈{s1,s2,s3} be a set of constructed

multi-scale graphs of one video frame, where each graph

corresponds to a specific granularity level s. Specifically,

Gs(Vs, Es) includes Ns nodes vi ∈ Vs and a set of edges

eij = (vi,vj) ∈ Es. Each part of body within one video

frame is viewed as a graph node and the edges represent

the relationship between these body parts. The input node

feature of frame t is denoted as Xt
s = V t

s ∈ R
Ns×C .

As ∈ R
Ns×Ns is the corresponding frame-level adjacency

matrix, in which each element represents the linkage of two

arbitrary nodes. The topology of the graph is actually de-

cided by As. Existing GCN-based Re-ID methods predict

the relationship between two nodes independently by cal-

culating pair-wise feature affinity, which ignore the impact

of all other contextual nodes and only consider undirected

dependency, restricting the capacity and expressiveness of

the graph model.

Considering that, we explore a context-reinforced topol-

ogy to construct graph, which simultaneously encodes con-

textual information along the node, temporal and feature

dimensions, as well as physical structural information of

human body. The context-reinforced adjacency matrix As

consists of three components:

As = Ap
s +Am

s +Ac
s (2)

where Ap
s ∈ {0, 1}Ns×Ns denotes the physical connections

of human body with rich structural information, which is

Figure 4. Detailed network structure of (a) the context block; (b)

the advanced context block.

fixed during training. Am
s denotes a mask adjacency ma-

trix, which is utilized as the attention on the physical struc-

ture, inspired by [34]. Am
s improves the flexibility and

generality of static global graph structure Ap
s , and is ini-

tialized with zeros and optimized together with other pa-

rameters during training. Ac
s is a data-dependent individ-

ual adjacency matrix, which incorporates the global contex-

tual information of all nodes and learns a unique dynamic

topology graph for each sample. Ac
s is learned by a con-

text block, as shown in Figure 4(a). Given the node features

{Xt
s}

T
t=1 ∈ R

T×Ns×C , the context block firstly squeezes

the feature and temporal dimensions of each node by two

convolution layers with 1×1 kernel. Then, it utilizes an ad-

dition 1× 1 convolution layer to transfer the Ns-dimension

feature vector into the Ns × Ns adjacency matrix Ac
s. Af-

terwards, L2 normalization operation is applied to each row

of Ac
s for stable optimization. The context block adequately

considers the influence of all other nodes when measuring

the relationship between two arbitrary nodes.

3.3. 3D Graph Convolutional Layer

After obtaining the frame-level graphs for all frames,

we design a 3D graph convolution to effectively propa-

gate messages and update node features. 3D-GCL allows

direct cross-spacetime information propagation for captur-

ing complex spatial-temporal dependencies and structural

information in a spatial-temporal graph, as shown in Fig-

ure 5(a). Concretely, 3D-GCL first uses a temporal slid-

ing window with size of τ over the sequence of frame-level

graphs. At each sliding step, a spatial-temporal subgraph

G
(τ)
s = (V

(τ)
s , E

(τ)
s ), in which V

(τ)
s = V1

s ∪ ... ∪ Vτ
s de-

note the union set of all nodes across τ video frames in this

window. And the edge set E
(τ)
s is represented by a block
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Figure 5. (a) Cross-spacetime information propagation by 3D

graph convolution; (b) Cross-scale information propagation by

cross-scale graph convolution.

adjacency matrix A(τ)
s . It is computed as following:

A(τ)
s = A(τ),p

s +A(τ),m
s +A(τ),c

s

=







[A(τ)
s ]1,1 · · · [A(τ)

s ]1,τ
...

. . .
...

[A(τ)
s ]τ,1 · · · [A(τ)

s ]τ,τ






∈ R

τNs×τNs

(3)

where each submatrix [A(τ)
s ]i,j denotes the graph nodes of

Vi
s are connected to themselves and their temporal neigh-

boring nodes at frame j, by expanding the frame-level spa-

tial connection (corresponding to [A(τ)
s ]i,i) to the temporal

domain. A(τ)
s is still composed of three parts. The block

adjacency matrix A(τ),p
s is computed by tiling the static Ap

s

in each block. A(τ),m
s is obtained as the same way. A(τ),c

s

is learned by the advanced context block in Figure 4(b). Si-

multaneously, X(τ)
s ∈ R

T×τNs×C is obtained by employ-

ing the sliding temporal window over X0 = {Xt
s}

T
t=1 ∈

R
T×Ns×C with zero padding operation to build T windows,

which is the input of 3D-GCL.

The 3D graph convolution for the t-th temporal window

at l-th iteration is formulated as following:

[X(τ),l+1
s ]t = σ(D̃

− 1

2 Â
(τ)

s,t D̃
− 1

2 [X(τ),l
s ]tW

l) (4)

where (D̃)i,i =
∑

j(Â
(τ)

s,t )i,j denotes diagonal node degree

matrix [20], Â
(τ)

s,t = A
(τ)
s,t + IτNs

denotes the self-loop adja-

cency matrix. IτNs
denotes an identity matrix. W l refers

to the learnable parameter and σ represents a non-linear ac-

tivation function. After each 3D-GCL, a convolution layer

followed with a batch normalization (BN) layer and a rec-

tified linear units (ReLU) layer is employed to collapse the

window dimension τ and output the updated node feature

X l+1 ∈ R
T×Ns×C . In addition, shortcut connection

X l+1 = X l+1 + X l, 1 ≤ l ≤ L − 1 is adopted for ef-

fective and stable optimizing. The refined part features at

three granularities X̂s1 , X̂s2 , X̂s3 are finally obtained by

performing multiple 3D-GCLs.

Figure 6. The inference of the cross-scale adjacent matrix.

3.4. CrossScale Graph Convolutional Layer

Multi-scale part features obtained from different parti-

tions contain diverse discriminative semantics. To enable

information diffusion across scales and learn comprehen-

sive representation, we propose a cross-scale graph con-

volution, which propagates the informative clues of part

features from one scale to another, as shown in Figure

5(b). The cross-scale topology graph is a directed graph

that corresponds the nodes in one scale graph to the nodes

in another scale graph. For simplicity, we elaborate a

CS-GCL associated from s2 to s3. The adjacent matrix

As2,s3 ∈ R
Ns3

×Ns2 of the cross-scale graph predicts the

cross-scale relationship. As shown in Figure 6, the depen-

dency (As2,s3)i,m between i-th part in s2 and m-th part in

s3 is computed as following:

pi,s2
=

Ns2
∑

j=1

hs2([φ(xi,s2), ϕ(xj,s2 − xi,s2)])

ri,s2 = fs2([xi,s2 ,pi,s2
])

pm,s3
=

Ns3
∑

j=1

hs3([φ(xm,s3), ϕ(xj,s3 − xm,s3)])

rm,s3 = fs3([xm,s3 ,pm,s3
])

(As2,s3)i,m = softmax(r⊤m,s3
ri,s2)

(5)

where xi,s2 ∈ R
C denotes the i-th component of X̂s2 at

one specific frame. hs2 , fs2 , φ, ϕ are the embedding func-

tions implemented by a full connected layer with a BN layer

and a ReLU layer. pi,s2
and pm,s3

aggregate the global re-

lation information of all other part features to the i-th and

the m-th components at the two scales. ri,s2 and rm,s3 are

the augmented global relation features, which are then used

to calculate the dependency (As2,s3)i,m by inner product

operation and softmax function. Thus, As2,s3 constructs

the influence from the body in s2 to each part in s3.

Given the part feature X̂s2 at scale s2, the cross-scale

convolution for frame t is formulated as following:

[X̂s23 ]t = σ(At
s2,s3

[X̂s2 ]tW s23) (6)
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where W s23 denotes the parameter matrix, and X̂s23 is the

transformed part feature. Such feature adaptively absorbs

informative clues from the corresponding parts of body in

s2. Analogously, we also utilize another CS-GCL to trans-

fer the part feature X̂s1 from s1 to s3, and produce the

transformed part feature X̂s13 . Finally, the comprehensive

part feature V p with three-granularity information is ob-

tained as following:

V p = X̂s3 + α(X̂s13 + X̂s23) (7)

where α denotes the balance weight.

3.5. Model Optimizing

After obtaining the features V p ∈ R
T×Ns3

×C and

V g , they are fed into a fusion block to further incorpo-

rate the global and local information, and are finally op-

timized by loss function. The fusion block consists of

three branches. The first branch employs a temporal av-

erage pooling layer (gTAP ) for V g to generate the fea-

ture vector V
g
f = gTAP (V g). The second branch utilizes

the function gTAP ((
Ns3∑

n=1

[V p]:,n,:) + V g) to generate the fea-

ture vector V a
f . The third branch utilizes the function

gTAP ([gc([V p]:,1,:), ..., gc([V p]:,Ns3
,:)] + V g) to produce the

feature vector V c
f , where gc denotes a 1 × 1 convolution

layer for reducing the dimension. The third branch implic-

itly promotes the channel-wise semantic alignment between

the global and local features, which drives different channel

of the global feature to focus on different body parts for im-

proving the performance. Identification loss and triplet loss

are the widely-used losses for person re-identification, we

adopt triplet loss with hard mining strategy [46] and identi-

fication loss with label smoothing regularization [40] to op-

timize these three features V
g
f , V a

f and V c
f , respectively.

The two losses are denoted as Ltri and Lide respectively.

Moreover, a diversity regularization loss is proposed to en-

courage the diversity of the local features and increase the

discrimination of the final video representation. This loss is

defined as following:

Ldiv = ‖V pV
T
p − I‖2F (8)

where ‖·‖F denotes Frobenius norm. V p is applied with

temporal average pooling and L2 normalization in advance

for this loss. Therefore, the total loss L for CTL is the com-

bination of the three losses:

L = λ1 · Ltri + λ2 · Lide + λ3 · Ldiv (9)

where λ1−3 are the balance weights of the three loss terms.

4. Experiments

4.1. Experimental Settings

Datasets. MARS dataset [52] is one of the existing

largest video benchmark, consisting of 1,261 identities and

20,715 video sequences. The training set contains 625 iden-

tities and the testing set contains 636 identities. iLIDS-VID

dataset [42] is a small-scale benchmark. It consists of 600

video sequences of 300 different identities, each of which

has two sequences captured by two non-overlapping cam-

eras. It is randomly split into a training set with 150 identi-

ties and a testing set with the remaining 150 identities.

Evaluation Metrics. We adopt the standard metrics,

i.e., Cumulative Matching Characteristic (CMC) curves and

mean average precision (mAP), to evaluate the performance

of different person Re-ID algorithms.

Implementation Details. We randomly sample T = 6
frames from a variable-length sequence as a input clip. Each

mini-batch has 8 identities and 4 video clips for each iden-

tity. We resize all video frames to 256 × 128 pixels, which

are normalized with 1.0/256. We then apply image-level

data augmentation to each video clip, including random hor-

izontal flipping and random erasing probability. ResNet-50

[12] pre-trained on ImageNet is used as the backbone net-

work. The last stride of ResNet-50 is set to 1. The Adam

optimizer is adopted with the initial learning rate lr of 3e−4

and the weight decay of 5e−4. We train our model for 240

epochs in total. The learning rate lr is decayed by 10 after

every 60 epochs. H , W and C are 16, 8 and 2048, respec-

tively. The numbers of 3D-GCLs is set to L = 2. α in

Eq. 7 is set to 0.3, and λ1−3 in Eq. 9 are all set to 1. During

inference, V a
f is used as the final video representation for

calculating the similar scores.

4.2. Comparison to StateoftheArts

Results on MARS. In Table 1, we compare the pro-

posed method with 13 state-of-the-art methods on MARS

dataset. The first two methods belong to the expansion

of image-based person Re-ID. We can observe that CTL

achieves 91.4% Rank-1 accuracy and 86.7% mAP, surpass-

ing the current state-of-the-art methods by a large margin.

It improves the 2nd best method AFA [4] by 1.2% Rank-1
accuracy and MGH [44] by 0.9% mAP, respectively. The

comparison clearly demonstrates the effectiveness and su-

periority of CTL for exploring hierarchical spatial-temporal

dependencies and structural information among body parts

from videos. Note that, compared with other graph-based

methods, including AGRL[43], STGCN [46] and MGH

[44], CTL obtains better results in terms of Rank-1 accu-

racy and mAP. The main reason for the boosting is two

aspects: 1) using context-reinforced topology to construct

graph instead of pair-wise feature affinity; 2) the advantage

of modeling high-order spatial-temporal correlation by 3D-
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Table 1. Performance comparison to the state-of-the-art methods

on MARS dataset.

Method Rank-1 Rank-5 Rank-20 mAP

CNN+XQDA [52] 68.3 82.6 89.4 49.3

TriNet [13] 79.8 91.36 - 67.7

STAL[3] 82.2 92.8 98.0 73.5

STAN [21] 82.3 - - 65.8

COSAM[37] 84.9 95.5 97.9 79.9

VRSTC [15] 88.5 96.5 97.4 82.3

RGSAT [22] 89.4 96.9 98.3 84.0

AGRL [43] 89.8 96.1 97.6 81.1

TCLNet [14] 89.8 - - 85.1

STGCN [46] 90.0 96.4 98.3 83.7

MGH [44] 90.0 96.7 98.5 85.8

AP3D[11] 90.1 - - 85.1

AFA [4] 90.2 96.6 - 82.9

CTL 91.4 96.8 98.5 86.7

Table 2. Performance comparison to the state-of-the-art methods

on iLIDS-VID dataset.

Method Rank-1 Rank-5 Rank-20

CNN+XQDA [52] 53.0 81.4 95.1

RCNet [29] 58 84.0 96.0

COSAM[37] 79.6 95.3 -

STAN [21] 80.2 - -

STAL[3] 82.8 95.3 98.8

VRSTC [15] 83.4 95.5 99.5

AGRL [43] 83.7 95.4 99.5

MGH [44] 85.6 97.1 99.5

RGSAT [22] 86.0 98.0 99.4

TCLNet [14] 86.6 - -

AP3D[11] 86.7 - -

FGRA [6] 88.0 96.7 99.3

AFA [4] 88.5 96.8 99.7

CTL 89.7 97.0 100.0

GCL and CS-GCL.

Results on iLIDS-VID. Table 2 reports the performance

of our approach with 13 state-of-the-art methods on iLIDS-

VID dataset. CNN+XQDA [52] and RCNet [29] are the

straightforward expansion method of image-based person

Re-ID. It can be seen that CTL obtains the best performance

of 89.7% Rank-1 accuracy and 100.0% Rank-20 accuracy.

It beats AFA [4] on Rank-1 and Rank-20 accuracy by 1.2%

and by 0.3%, respectively. The comparison demonstrates

the advantage of spatial-temporal feature learning by CTL,

and the applicability of CTL for a small-scale dataset.

4.3. Ablation Studies

Effectiveness of Components. Table 3 reports the ex-

perimental results of the ablation studies for CTL. Basel

denotes using the backbone network with the key-points

estimator to learn the global and multi-scale part fea-

tures. Basel+ContRe denotes using the context-reinforced

topology to structure multi-scale frame-wise graphs, and

applying original GCN to learn the refined multi-scale

part features and global feature. Basel+ContRe+3D refers

to CTL using addition operation to replace CS-GCL for

learning the fused part feature and the global feature.

Basel+ContRe+3D+CS refers to the whole framework of

CTL. Compared with Basel, Basel+ContRe boosts Rank-1
accuracy and mAP by 0.8% and 2.7%. This indicts that the

effectiveness of the context-reinforced topology to capture

the intrinsic relationship among body parts for enhancing

feature representation. Moreover, Basel+ContRe+3D im-

proves Basel+ContRe by 1.3% Rank-1 accuracy and 0.6%

mAP, which verifies the effectiveness of 3D-GCL for al-

lowing direct cross-spacetime information propagation to

enrich part features. By utilizing the cross-scale graph con-

volutional layer, Basel+ContRe+3D+CS achieves the best

performance. This demonstrates that CS-GCL effectively

capture diverse visual semantic across multiple scales to in-

tegrate them into a comprehensive representation.

Analysis of Context-Reinforced Topology. The re-

sults in Table 4 show the influence of different compo-

nents of the context-reinforced graph topology. CTL-Ap
s ,

CTL-Ap
sA

m
s , CTL-Ap

sA
m
s Ac

s, denote using Am
s , Ap

s+Am
s

and Ap
s + Am

s + Ac
s to measure the dependency between

two nodes, respectively. By comparing CTL-Ap
s and CTL-

Ap
sA

m
s , we can conclude that Am

s improves the flexibil-

ity of graph topology and captures more complex spatial-

temporal correlation. CTL-Ap
sA

m
s Ac

s achieves remarkable

performance improvement as compared to CTL-Ap
sA

m
s ,

which means Ac
s is complementary to physical topology,

and mines potential connections that are informative by

considering global contextual information of all nodes.

Analysis of 3D-GCL. We conduct the experiments to

analyze the influence of the number layer L and window

size τ for 3D-GCL. In Figure 7(a), we can observe that

the best Rank-1 accuracy of 91.4% and mAP of 86.7%

are obtained when L = 2. This implies that one-layer

3D-GCL has insufficient capability for capturing complex

spatial-temporal information, whilst three-layer 3D-GCLs

bring more training parameters, result in hard optimizing

and performance degradation. Thus, L is set to 2. In Fig-

ure 7(b), τ = 3 obtains superior performance as compared

to τ = 1 due to utilizing the temporal complementary in-

formation from local temporal neighborhood nodes, but the

gain diminishes when τ = 5 as the discriminative clues in

aggregated features are counteracted due to the over-sized

local temporal neighborhood nodes. Thus, τ is set to 3.
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Table 3. Evaluation of the effectiveness of each component of CTL

on MARS dataset.

Model Rank-1 Rank-5 Rank-20 mAP

Basel 88.6 96.1 97.9 82.7

Basel+ContRe 89.4 95.6 98.2 85.4

Basel+ContRe+3D 90.7 96.4 98.4 86.0

Basel+ContRe+3D+CS 91.4 96.8 98.5 86.7

Table 4. Evaluation of the influence of different components of the

context-reinforced topology on MARS dataset.

Model Rank-1 Rank-5 Rank-20 mAP

CTL-A p

s 90.4 96.4 98.5 86.1

CTL-A p

sA m

s
90.9 96.3 98.6 86.3

CTL-A p

sA m

s
A c

s
91.4 96.8 98.5 86.7

Table 5. Evaluation of the influence of CS-GCL with different set-

tings on MARS dataset.

Model Rank-1 Rank-5 Rank-20 mAP

CS-GCL(M = 1) 91.4 96.8 98.5 86.7

CS-GCL(M = 2) 90.1 96.5 98.3 85.5

CS-GCL-s 3 90.4 96.4 98.4 85.9

CS-GCL-s 3s 1 90.7 96.6 98.4 85.8

CS-GCL-s 3s 1s 2 91.4 96.8 98.5 86.7

Figure 7. Analysis on the influence of different hyperparameters

for 3D-GCL, (a) the number layer L; (b) windows size τ .

Analysis of CS-GCL. In Table 5, we investigate the

influence of the number M of CS-GCLs for transferring

each granularity-level part features from one scale to an-

other one, and analyze the performance of fusing different

scales of part features. We can observe that the two-layer

CS-GCLs (denotes using another CS-GCL after the first

3D-GCL) obtain performance degradation over one-layer

CS-GCL. It indicates that two-layer CS-GCLs tend to fuse

much redundant information, which weaken the representa-

tional capability. Moreover, CS-GCL-s3s1s2 achieves bet-

Figure 8. (a) Visualization of the learned feature maps; (b) Visual-

ization of some retrieval results by CTL.

ter results over CS-GCL-s3s1 and CS-GCL-s3 by combing

more granularity-level part features. The improvement veri-

fies CS-GCL can effectively mine the distinct patterns from

each scale and enhance feature representation by fusing the

complementary information among them.

Visualization Results. We visualize the learned feature

respond maps of one video sequence by Grad-CAM [32]. In

Figure 8(a), we can observe that the feature maps from dif-

ferent video frames of a pedestrian have stronger response

on the same discriminative regions, which verifies that CTL

can extract aligned discriminative clues by modeling cross-

scale spatial-temporal correlation. Figure 8(b) shows the

retrieval results of two pedestrians by CTL. We can ob-

serve that Rank-5 retrieval results by CTL are all match-

ing. This indicates CTL effectively alleviates the problem

of misalignment and occlusion, viewpoint variation, etc.

5. Conclusion

In this work, we propose a novel Spatial-Temporal

Correlation and Topology Learning framework (CTL) for

video-based person re-identification to learn discriminative

and robust representation. CTL utilizes a key-points esti-

mator to extract multi-scale part features as graph nodes.

A context-reinforced topology is then explored to structure

multi-scale graphs by considering global contextual infor-

mation and physical connection of human body. Moreover,

a 3D graph convolution and a cross-scale graph convolu-

tion are designed, and performed on the multi-scale graphs.

They facilitate direct cross-spacetime and cross-scale infor-

mation propagation among graph nodes, and model com-

plex relation and structural information to refine pedes-

trian representation. Extensive experiments on two video

datasets validate the effectiveness of the proposed method.
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