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Abstract

A useful application of event sensing is visual odometry,

especially in settings that require high-temporal resolution.

The state-of-the-art method of contrast maximisation recov-

ers the motion from a batch of events by maximising the

contrast of the image of warped events. However, the cost

scales with image resolution and the temporal resolution

can be limited by the need for large batch sizes to yield suf-

ficient structure in the contrast image1. In this work, we pro-

pose spatiotemporal registration as a compelling technique

for event-based rotational motion estimation. We theoreti-

cally justify the approach and establish its fundamental and

practical advantages over contrast maximisation. In par-

ticular, spatiotemporal registration also produces feature

tracks as a by-product, which directly supports an efficient

visual odometry pipeline with graph-based optimisation for

motion averaging. The simplicity of our visual odometry

pipeline allows it to process more than 1 M events/second.

We also contribute a new event dataset for visual odometry,

where motion sequences with large velocity variations were

acquired using a high-precision robot arm2.

1. Introduction

Due to their ability to asynchronously detect intensity

changes, event sensors are well suited for conducting visual

odometry (VO) in applications that require high temporal

resolution [16, 28, 43, 26, 41], e.g., high-agility robotic ma-

nipulation, fast manoeuvring aerial vehicles. However, to

fully reap the benefits of event sensing for VO, efficient al-

gorithms are required to process event streams with low-

latency to accurately recover the experienced motion.

An event sensor produces an event stream S = {e},
where each e = (u, t, p) is a tuple containing the 2D image

coordinates u, time stamp t and polarity p associated with

a brightness change that exceeded the preset threshold. In

scenarios where the event camera (i.e., event sensor plus op-

tics and other components) moves in a static environment,

1See supplementary material for demonstration program.
2Dataset: https://github.com/liudaqikk/RobotEvt
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Figure 1. Conceptual difference between contrast maximisation

and spatiotemporal registration for event-based motion estimation.

the events are triggered mainly by the camera motion. The

goal of VO is to recover the camera motion from S .

Many event-based VO methods [47, 35, 20, 34] conduct

“batching”, where small subsets of S are processed incre-

mentally. Each batch E = {ei}
N
i=1 ⊂ S is acquired over

a time window T = [α, β], where each ei = (ui, ti, pi) is

associated with a 3D point in the camera FOV that triggered

ei at time ti ∈ T . The core task is to estimate the relative

motionM between α and β from E . The estimatedM is

then subject to the broader VO pipeline (more in Sec. 2).

1.1. Contrast maximisation

A state-of-the-art approach to estimateM from E is con-

trast maximisation (CM) [19]. ParametrisingM by a vector

ω ∈ Ω and letting D = {xj}
P
j=1 be the image domain (the

set of pixel coordinates) of the event sensor, each candidate

ω yields the image of warped events (IWE)

H(xj ;ω) =

N∑

i=1

κδ(xj − f(ui, ti; ω)), (1)
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where f warps ui to a position in H by reversing the motion

ω from ti to the start of T . The form of f depends on the

type of motionM(see [19] for details). The warped events

are aggregated by a kernel κδ with bandwidth δ, e.g.,

κδ(x) = exp(‖x‖2/2δ
2). (2)

The contrast of H is given by

C(ω) =
1

P

P∑

j=1

(H(xj ;ω)− µ(ω))2, (3)

where µ(ω) is the mean intensity of H the image. Both C
and µ are functions of ω since H is dependent on ω. CM

estimates ω by maximising C(ω), the intuition being that

the correct ω will yield a sharp image H; see Fig. 1.

Previous studies found CM effective in a number of

event-based VO tasks [19], especially where M is a rota-

tion, i.e., Ω = SO(3). However, there are a couple of fun-

damental weaknesses in CM, as described in the following.

Computational cost Maximising C(ω) can be done us-

ing conjugate gradient [19] and branch-and-bound [25].

Note that the cost to compute (3) depends on both

• the number of pixels P ; and

• the number of events N in the batch E .

While P is a constant of the event sensor, N depends on the

motion speed and scene complexity. A higher P increases

the FOV and hence tends to increase N , however, the cost

of C(ω) will increase with P even if N is constant.

The basic analysis above indicates that the cost of CM

(regardless of the algorithm) will also scale with both P
and N . Fig. 2 plots the runtime of CM (using conjugate

gradient) on input instances with increasing P and constant

N , which shows a clear uptrend. While early event sensors

have low resolutions (e.g., 240 × 180 on iniVation Davis

240C), current sensors can have up to 1 Megapixels (e.g.,

1280× 720 on Prophesee 720P CD, 1280× 800 on CeleX-

V). Following industry trends, event sensors will likely con-

tinue to increase in resolution. To maintain the efficiency of

CM on high-resolution sensors, a separate heuristic to re-

duce the “image resolution” is needed (note that this is dif-

ferent sparsifying E by reducing the number of events N ).

Temporal resolution Intuitively the accuracy of estimat-

ingM depends on capturing sufficient “structure” in E . For

a fixed scene and motion rate, the amount of structure in E
increases with the duration |T | = β − α [27]. Conversely

to achieve VO with high temporal resolution, |T | should be

as small as possible to minimise batching effects. The con-

flicting demands indicate a maximum temporal resolution

achievable by an event-based motion estimation technique.

Fig. 3 shows the motion estimation accuracy of CM

on batches E of different durations |T | from sequence

(a) Original scene.
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Figure 2. Using the image in panel (a) as input to ESIM [33], we

generated synthetic event batches as outputs of event sensors of

varying resolution, from P = 240 × 180 to P = 1920 × 1440
pixels. By tuning the duration |T |, the batch size N was fixed at

15, 000. Panel (b) illustrates the average runtime of CM and STR

on the generated data as a function of resolution.
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(a) Error vs batch duration |T |.

1 1.5 2 2.5 3

Batch Size 10
4

10

15

20

25

30

35

CM

STR

(b) Runtime vs batch size N .

Figure 3. Motion estimation error and runtime of CM and STR.

PureRot Mid Off of our event dataset (Sec. 3.3). Un-

like the experiment in Fig. 2, the number of events N were

varied according to |T |. Note the degradation in accuracy

as |T | decreases (i.e., N decreases), which indicates a lower

temporal resolution of CM (more results in Sec. 3.4).

1.2. Our contributions

We propose spatiotemporal registration (STR) as a co-

gent alternative to CM; see Fig. 1 on the concept of STR.

Despite the relative simplicity of STR, it has not been

thoroughly investigated for event-based motion estimation.

Specifically, we will justify STR by examining the condi-

tions in which it is valid (Sec. 3) and demonstrate that it is

generally as accurate for rotational motion estimation but

does not suffer from the fundamental weaknesses of CM

demonstrated in Sec. 1.1 (more results in Sec. 3.4).

Further, unlike CM, STR produces feature correspon-

dences as a by-product (see Fig. 1). This directly enables

a novel event-based VO pipeline (Sec. 4) that conducts fea-

ture tracking and motion averaging. To support our exper-

iments, we build a new event dataset for VO using a high-

precision robot arm (Sec. 3.3 and our dateset website).

2. Related works

The CM framework has been improved in several direc-

tions. Stoffregen et al. [38] adjusted the contrast objec-
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tive by introducing “sparsity” to improve the accuracy of

motion estimation. They later integrated CM into the seg-

mentation task [37]. Globally optimal CM was proposed

in [25, 32], where [25] further accelerated the algorithm

by integer quadratic programming relaxation. Seok and

Lim [36] dropped the constant velocity assumption and re-

placed linear interpolation by Bezier curve. In general, the

improvements above tend to increase cost, which discour-

age real-time applications.

Closer to our work is Nunes and Demiris [31] who pro-

posed an entropy minimisation framework (EM) for event-

based motion estimation. Their approach maximises the

similarity (minimising the entropy) between the feature vec-

tor of events. Like our proposed STR method, EM also

obviates the need to compute the image of warped events.

However, although a truncated kernel was used to accelerate

their algorithm, EM is still too expensive for online appli-

cation, as results in Sec. 3.4 will show.

The techniques surveyed above can be considered “direct

methods” since all events are utilised in the computation.

Unlike direct methods, “feature-based” methods achieve

VO by detecting and tracking simple structures in the event

data, such as circles [30] and lines [14]. To handle the more

complex scene, traditional frame-based feature detectors

are utilised on motion-compensated event images [34, 41],

frames [39, 24] and time surfaces (TS) [40, 26, 4] recently.

A TS [17] is a reconstructed image that each pixel records

the temporal information of the last event as “intensity” of

the image. Based on the detected features, Alzugarary et

al. [3] propose a descriptor and a tracker that employed the

descriptors for event data. Zhu et al. [48] present a feature

tracking based on Expectation Maximisation (EM). They

later propose visual-inertial odometry (VIO) [51] system by

fusing IMU and their feature trackers. On the other hand,

[34] utilises Kanade–Lucas–Tomasi feature tracker [6] on

the motion-compensated event images with the motion from

IMU. Note that all the feature-based methods highly rely

on a different heuristic for keypoint detection and tracking,

which can quickly lose track without IMU.

Learning-based method has gained more attention re-

cently, and there have been several works that solve the

event-based VO with unsupervised learning [50, 44], and

spiking network [21]. Both [50] and [44] follow the frame-

work and architecture from SfMLearner [46] and propose

some changes for event-based setting. However, Since lack

of training data, all learning-based methods cannot be gen-

eralised to different environments, which overfitting to the

training data. Moreover, [45, 8] show the limitations in

pure rotation motion of learning-based method.

3. Spatiotemporal registration

In this section, we describe the proposed event-based rel-

ative motion estimation technique, including its fundamen-

tal underpinnings and optimisation algorithm.

3.1. Motion model

For a batch of events E acquired over time duration T =
[α, β], we represent using

Mt =

[
Rt ct

0 1

]

(4)

the absolute pose of the event camera at time t ∈ T , where

Rt ∈ SO(3) and ct ∈ R
3 are respectively the absolute

orientation and position of the camera at the same time t.
Let a and b be two time instances in T , where

α ≤ a ≤ b ≤ β. (5)

The relative motion between a and b is given by

Ma,b = MbM
−1
a

=

[
RbR

T
a −RbR

T
a ca + cb

0 1

]

. (6)

We follow many previous works [25, 20, 32, 21] to fo-

cus on rotational odometry, which is useful for a number of

applications, e.g., video stabilisation [19], panorama con-

struction [23], star tracking [13, 5]. This allows to assume

pure rotational motion for Mt, where ct = 0 for all t and

the relative motion (6) reduces to the relative rotation

Ma,b =

[
RbR

T
a 0

0 1

]

. (7)

More succinctly, the relative rotation between a and b is

Ra,b := RbR
T
a , (8)

and setting a = α and b = β yields Rα,β , which is the

target relative motionM to be estimated from E .

The short duration of E (e.g., in the ms range) further

motivates to assume constant angular velocity in the period

T . Specifically, the absolute orientation can be written as

Rt = exp([tω]×) exp([θ0]×). (9)

for all t ∈ T , where exp is the exponential map. In more

detail, vector ω ∈ R
3 defines the angular velocity in period

T , where the direction ω̂ of ω provides the axis of rotation

and the length ‖ω‖2 of r specifies the rate of change of the

angle of the rotation about ω̂. The initial orientation at time

α is given by θ0, and tω is the rotational increment on θ0

from time a to time t.
Applying the BCH formula [1] on (8) yields

Ra,b = exp([bω]×) exp([−aω]×)

= exp([(b− a)ω]×), (10)

where terms involving θ0 cancel out, and [aω]× and [bω]×
commute and hence the Lie bracket [[aω]× , [bω]×] = 0.

The significance of this derivation is encapsulated in the fol-

lowing lemma.
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Lemma 1 Assuming that the camera undergoes pure rota-

tional motion with constant angular velocity (9) in the pe-

riod T , the relative rotation Ra,b between any a, b ∈ T
with a ≤ b depends only on the difference b− a and ω.

A straightforward corollary of Lemma 1 is as follows,

which is also illustrated in Fig. 4.

Corollary 1 Under the motion model assumed in Lemma 1,

Ra,b = Rc,d for all time instances a, b, c, d in the period T
such that a ≤ b, c ≤ d and b− a = d− c.

Figure 4. Equivalent relative rotations (see Corollary 1) and their

spatiotemporally consistent event correspondences (see Defini-

tion 2). In the bottom example, the relative rotations are also

equivalent to R∆, where ∆ = 0.5(β − α).

3.2. Event­based relative motion estimation

We exploit the insights above to estimate M = Rα,β

from event batch E . First, we define the notion of spatiotem-

poral consistency and event correspondences.

Definition 1 (Spatiotemporal consistency) Under the

motion model assumed in Lemma 1, a relative rotation

Ra,b, with a, b ∈ T and a ≤ b, and a pair of events

e = (u, t, p) and e
′ = (u′, t′, p′), where t, t′ ∈ T and

t ≤ t′, are spatiotemporally consistent if

• t′ − t = b− a (temporal consistency); and

• û
′ = Ra,bû (geometric consistency),

where û is the backprojected ray (a unit vector)

û =
K

(1:2)
ũ

K(3)ũ
(11)

of the image point u, where ũ = [uT , 1]T and K
(1:2) and

K
(3) are respectively the first-2 rows and 3rd row of the

camera intrinsic matrix K ∈ R
3×3 [22] (similarly for u′).

Definition 2 (Event correspondence) An event corre-

spondence 〈e, e′〉 are a pair of two events e and e
′ that are

spatiotemporally consistent with a relative rotation.

Intuitively, an event correspondence is associated with

the same 3D scene point that was observed during T . Fig. 4

also shows valid event correspondences. In particular, Fig. 4

depicts event correspondences for the relative rotation

R∆ := Rα,α+(β−α)/2, (12)

where to simplify notation we also define

∆ = (β − α)/2. (13)

We approach the estimation of Rα,β by recovering R∆

from the noisy event batch E = {ei}
N
i=1 = {(ui, ti, pi)}

N
i=1

acquired over period T = [α, β]. To this end, we first sepa-

rate E into two mutually exclusive subsets

Eα = {ei ∈ E | α ≤ ti ≤ α+∆}, (14)

Eβ = {ei ∈ E | α+∆ < ti ≤ β}. (15)

Note that since the events in E are ordered in time by con-

struction, we can write

Eα = {e1, e2, . . . , eM}, (16)

Eβ = {eM+1, eM+2, . . . , eN}, (17)

where M is the largest index such that tM ≤ α+∆. To aid

subsequent notations, we define the index sets

Iα = {1, 2, . . . ,M}, (18)

Iβ = {M + 1,M + 2, . . . , N}. (19)

Define the temporal neighbours of each ej ∈ Eα as

Lj = {k ∈ Iβ | |tk − tj −∆| ≤ ǫT }, (20)

where ǫT is a user-determined threshold. Intuitively, Lj is

the subset of Eβ with a temporal gap of approximately ∆
with ej . The tolerance of ǫT allows for time-stamping noise

by the event sensor. Given a candidate R∆, define

rj(R∆) = min
k∈Lj

‖ûk −R∆ûj‖2 (21)

as the residual of event ej from Eα. The quantity

‖ûk −R∆ûj‖2 ∝ ∠(ûk,R∆ûj) (22)

measures the geometric misalignment between ej and ek ∈
Lj . Computing rj(R∆) implies searching for the “best”

spatiotemporally matching event from Eβ for ej under Rδ .

Our method simultaneously estimates R∆ and event cor-

respondences that are spatiotemporally consistent with R∆

(up to temporal and geometric noise) by solving

min
R∆

K∑

j=1

r(j)(R∆), (23)
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where K is a user-determined integer (1 ≤ K ≤ M ), and

r(j)(R∆) is the j-th item of the ordered set

{r(1)(R∆), r(2)(R∆), . . . , r(M)(R∆)}, (24)

i.e., for all j1 and j2 such that j1 < j2,

r(j1)(R∆) ≤ r(j2)(R∆). (25)

Fundamentally, solving (23) finds the maximum likelihood

estimate [7] of R∆ from E . The usage of a “trimming”

parameter K provides robustness against outliers [12], i.e.,

events in Eα and Eβ without valid corresponding events.

Before describing the algorithm to solve (23), let

R̃∆ = exp([r̃]×) (26)

be the solution of (23). Following the motion model (10),

we recover the angular velocity ω as

ω̃ =
2

(β − α)
r̃. (27)

Recall that our aim is to recoverM = Rα,β from E . Refer-

ring to (10) again, we obtain

R̃α,β = exp([2r̃]×). (28)

Sec. 3.4 will investigate the performance of our approach.

Method Algorithm 1 summarises a simple algorithm

based on trimmed iterative closest points (TICP) [12, 11] to

solve (23) up to local optimality. Given an initial R∆ = I,

the algorithm iterates two main steps to refine R∆:

• Nearest neighbour search (Step 11), which produces a set

of tentative event correspondences {〈ej , enj
〉}Mj=1 that

are spatiotemporally consistent with the current R∆.

• Parameter update (Step 15), which solves Wahba’s prob-

lem [42] on the K-most promising correspondences.

Given the short duration T , the angular separation of rays

from events in Eα and Eβ are not significant and such a

scheme is sufficient; as we will demonstrate in Sec. 3.4.

To analyse Algorithm 1, we assume for simplicity

|Iα| = |Iβ | = M =
1

2
N ≡ O(N). (29)

A major task is to find the temporal neighbours in Step 6.

A naive approach is to compare each tj with tk, which is

O(M2). A more efficient technique is to index the intervals

{[tk −∆, tk +∆]}k∈Iβ
(30)

in an interval tree [15], which takesO(M logM) time, then

query the tree with each tj to find intervals that overlap with

Algorithm 1 Spatiotemporal registration for event-based

relative rotation estimation.

Require: Event batch E = {ei}
N
i=1 = {(ui, ti, pi)}

N
i=1 ac-

quired over period T = [α, β], camera intrinsic matrix

K, temporal threshold ǫT , trimming parameter K.

1: ∆← 0.5(β − α).
2: M ← maxi∈{1,...,N} i such that ti ≤ α+∆.

3: Iα ← {1, . . . ,M}.
4: Iβ ← {M + 1, . . . , N}.
5: for j ∈ Iα do

6: Lj ← {k ∈ Iβ | |tk − tj −∆| ≤ ǫT }.
7: end for

8: R∆ ← I

9: while not converged do

10: for j ∈ Iα do

11: nj ← argmink∈Lj
‖ûk −R∆ûj‖2.

12: rj ←
∥
∥ûnj

−R∆ûj

∥
∥
2
.

13: end for

14: {(1), . . . , (M)} ← Index of sorting {r1, . . . , rM}.

15: R∆ ← argmin
R

∑K
j=1

∥
∥ûn(j)

−R∆û(j)

∥
∥
2
.

16: end while

17: return R̃∆ = R∆ and {〈e(j), en(j)
〉}Kj=1.

it inO(logM +m), where m is the average size of Lj . As-

suming events are distributed uniformly in T , we can take

m ≈
∆

ǫT
M. (31)

By indexing each Lj in a kd-tree, which takes time

O(m logm), the nearest neighbour search in Step 11 can be

accomplished typically in time O(logm). The remaining

major operations are sorting the residuals (Step 14), which

can be done in O(M logM), and solving Wahba’s prob-

lem (Step 15), can be accomplished inO(M) using singular

value decomposition (SVD), which involves a matrix mul-

tiplication of 3×M and M × 3 and the 3× 3 matrix can be

solve constantly.

The total cost of the Algorithm 1 is thus

O(M logM)
︸ ︷︷ ︸

build interval tree

+ MO(logM +m)
︸ ︷︷ ︸

query interval tree M times

+MO(m logm)
︸ ︷︷ ︸

build M kd-trees

+ . . .

T (MO(logm) +O(M logM) + cO(M))
︸ ︷︷ ︸

iterate Steps 9 to 16 T times

.

From our experiments, the algorithm typically takes T = 10
iterations to converge. Secs. 3.4 and 4.1 will report the run-

times of our method. Note also that the cost of Algorithm 1

does not depend on sensor resolution (number of pixels P ).

Parameter setting The free parameters in Algorithm 1

and their typical values are as follows:

• temporal threshold ǫT = 0.02(β − α); and

• trimming parameter K = ⌊0.8M⌋.
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3.3. RobotEvt dataset

To objectively evaluate STR, we construct an event

dataset RobotEvt using an iniVation DAVIS 240C event

camera [9] and a UR-5 robot arm [2]; see Fig. 5 for our

setup. A number of event sequences were collected under

different motion models, speeds and brightness from a static

scene, specifically

• 4 motion models: PureRot - pure rotation; ParRot -

partial rotation; PureTranslate - pure translation and

FullMod - full rigid motion model.

• 3 speeds: Fast - maximum speed of the robot arm (1
m/s); Mid - 75% of the maximum speed and Slow - 50%

of the maximum speed.

• 2 brightness conditions: On and Off means bright and

dark conditions, respectively.

In total, there are 4 × 3 × 2 = 24 sequences, each of 60 s

duration and is named as a tuple of motion model, speed

and brightness, e.g., PureRot Fast On.

Ground truth camera poses were extracted from the joint

angles using the robot API in 125 Hz. Radial undistortion

for the event camera was also conducted prior to estimation.

Figure 5. UR5 robot arm with DAVIS 240C event camera, and

sample APS image and event image captured with our setup.

3.4. Results

We evaluate STR on the sequences with pure rotational

motions from RobotEvt and the UZH dataset [29] (specifi-

cally poster, boxes, dynamic and shapes). All se-

quences have 60 s duration with ground truth orientations.

From each sequence, we extract non-overlapping con-

secutive event batches E of size N = 10, 000 to 30, 000,

estimate the relative rotation R̃∆ from each batch and com-

pared it against the ground truth R
∗
∆ using

d∠(R̃∆,R
∗
∆) = ‖ log(R̃∆R

∗
∆

T )‖2. (32)

The angular error (32) is then normalised by dividing with

∆ to yield the angular velocity error (in deg/s).
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Figure 6. RMS error (deg/s) and Runtime over batch size on

boxes (top) and PureRot Mid On (bottom).

We compared STR with CM [19] and EM [31]. All

methods were implemented in C++ on a standard desktop

with 3.0 GHz Intel i5 and 16 GB RAM. However, EM3 was

at least two orders of magnitude slower than STR; given

the large number of batches to test (e.g., > 7000 batches in

Dynamic), we leave the comparison with EM to Sec. 4.1.

Figs. 3 and 6 show the RMS angular velocity error versus

batch duration |T | and runtime versus over batch size N for

PureRot Mid Off, boxes and PureRot Mid On (see

supplementary material for more plots). Table 1 records

the statistics on the remaining sequences of Uth (with the

exception of Shapes which we show in the supplemen-

tary material due to space constraints) and sequences of

RobotEvt (PureRot Off indicates all pure rotational se-

quences in dark conditions; similarly for PureRot On).

The results show that as the batch size (or equivalently

batch duration in this experiment) decreases, the accuracy

of CM also decreases. This trend was more pronounced

in RobotEvt, possibly due to the lower (but still substan-

tial) speeds. In contrast, STR was able to maintain accu-

racy throughout the event batches, which indicates a higher

temporal resolution than CM. Moreover, as demonstrated in

Fig. 2, STR will not suffer from increasing resolution.

3.5. Utilising depth information

If depth information is available (e.g., by using stereo

event cameras [49]), we show how our method can be ex-

tended to estimate full rigid (6 DoF) motion.

3https : / / github . com / ImperialCollegeLondon /

EventEMin
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PureRot Off

Method 10000

(66ms)

15000

(99ms)

20000

(133ms)

25000

(166ms)

30000

(199ms)

STR 2.11 1.98 1.91 1.91 2.03

CM [19] 3.93 2.24 1.98 1.96 2.22

PureRot On

Method 10000

(45ms)

15000

(68ms)

20000

(91ms)

25000

(113ms)

30000

(136ms)

STR 2.42 2.03 1.91 1.9 2.06

CM [19] 13.4 2.57 2.08 1.91 1.88

Dynamic

Method 10000

(8ms)

15000

(12ms)

20000

(16ms)

25000

(20ms)

30000

(24ms)

STR 15.56 13.46 12.29 11.69 11.33

CM [19] 17.46 14.24 12.91 11.72 11.23

Poster

Method 10000

(3ms)

15000

(5ms)

20000

(7ms)

25000

(8ms)

30000

(10ms)

STR 32.85 28.36 25.98 23.47 22.30

CM [19] 43.47 31.61 25.88 24.57 23.03

Table 1. RMS angular velocity error (deg/s) over all batches in

pure rotation sequences in RobotEvt, dynamic and poster.

Assuming constant angular velocity ω and linear veloc-

ity v over T , the relative motion (6) between a, b ∈ T is

Ma,b =

[
Ra,b −aRa,bva,b + bva,b

0 1

]

. (33)

Given two corresponding (and noiseless) events e =
(u, d, t, p) and e

′ = (u′, d′, t′, p′) in T , where d and d′

are respectively the depths of the events, the equation for

geometric consistency in Definition 1 becomes

d′û′ + t′va,b = dRa,bû+ tRa,bva,b. (34)

See supplementary material for the justification of (34).

To estimate 6 DoF motion parameters (ω∆,v∆) from a

noisy event batch E = {ei}
N
i=1 = {(ui, zi, ti, pi)}

N
i=1 using

Algorithm 1, we modify the residual (21) to become

rj(R∆,v∆) = min
k∈Lj

‖dkûk − djR∆ûj + tjv∆ − tjRa,bv‖2 .

The resulting update problem in (Step 15 in Algorithm 1)

min
R∆,v∆

K∑

j=1

r(j)(R∆,v∆) (35)

can be solved using, e.g., gradient-based optimisation such

as Levenberg Marquardt. We will leave 6 DoF event-based

relative motion estimation as future work.

4. Event-based visual odometry

A fundamental advantage of our relative rotation esti-

mation method (Sec. 3) over previous techniques [19, 31,

38, 18] is that event correspondences are produced as a by-

product, specifically by Step 11 in Algorithm 1. We exploit

this characteristic to track features across the event stream

S to build a rotational VO pipeline; see Algorithm 2.

Given a fixed batch size N , Algorithm 2 accumulates

overlapping event batches with “stride” 0.5N , i.e., if E and

E ′ are overlapping event batches, where

T = [α, β] and T ′ = [α′, β′] (36)

are respectively the corresponding time windows, then

|E| = N , and E ′ = N , and the batches have in common

the set of events

F = E ∩ E ′ (37)

in the time window [α′, β], where |F| = 0.5N .

To conduct tracking, without loss of generality, let E be

the first batch. Executing Algorithm 1 (STR) on E , we ob-

tain the relative rotation and event correspondences

Rα,β and {〈ej , enj
〉}Kj=1. (38)

Let Ē be the subset

Ē = {ej , enj
}Kj=1 ∩ F , (39)

i.e., the subset of E that contains only events that make up

estimated correspondences that occurred in [α′, β]. Then,

STR is performed on the reduced batch

Ē ′ = Ē ∪ E ′ \ F (40)

to estimate Rα′,β′ and new event correspondences in T ′;

see an illustration of the process in the supplementary ma-

terial. By connecting the event correspondeces in T and T ′,

the process generates a set of K event feature tracks

ei ↔ ej ↔ ek (41)

in the time window [α, β′]. By applying the same step on

subsequent batches, the tracks can be extended (Step 12 in

Algorithm 2). This obviates a separate feature detection and

tracking heuristic [48, 4, 3, 34].

Different from Sec. 3 we set the trimming parameter

K = ⌊0.8|Ē |⌋, which decreases over batches. Since suf-

ficient features tracks are necessary to perform STR, a ”key

batch” threshold ǫk is set to prevent the deficiency. If

K < ǫk”, the current batch E ′ is designated a ey batch”

and perform STR directly on E ′ instead of Ē ′ and reset

K = ⌊0.4N⌋. See Sec. 4.1 for concrete settings for N and

ǫk.

Another crucial benefit of event feature tracking via Al-

gorithm 1 is enabling relative rotations to be computed be-

tween event batches, and allows the construction of a pose

graph G = (N ,W), where the set of nodes

N = {E(u)}Uu=1 (42)
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Algorithm 2 Event-based rotational VO with STR.

Require: Event stream S , camera intrinsic matrix K, tem-

poral threshold ǫT , batch size N and ”key batch”

threshold ǫk.

1: I ← 0 and let tf be the duration of the event stream S .

2: key ← true, N ← empty.

3: F ← {(ui, ti, pi)}
I+0.5N
i=I+1 .

4: while tI+0.5N < tf do

5: I ← I + 0.5N and K ← 0.4N .

6: Eβ = {(ui, ti, pi)}
I+0.5N
i=I+1 .

7: if key = true then E ← F ∪ Eβ and N ← F .

8: else E ← Ē ∪ Eβ and K ← 0.8|Ē |.
9: key ← false and F ← Eβ .

10: R∆, {〈ej , enj
〉}Kj=1 ← STR(E ,K,ǫT ,K).

11: Ē = {ej , enj
}Kj=1 ∩ F .

12: N ← N ∪ Ē .

13: if K > ǫk then continue.

14: {Ru,v}u,v∈U ← Est Rot(Eu, Ev).
15: {Ru}u∈U ← Rot Avg({Ru,v}u,v∈U ).
16: N ← empty and key ← true.

17: end while

18: return {Ru}.

are event batches that share common tracked events ob-

served thus far in the stream S . For any two E(u) and E(v)

with common feature tracks, we solve (23) to get the rela-

tive rotation Ru,v (see Step 14 in Algorithm 2). Given the

relative rotations {Ru,v}, a robust rotation averaging prob-

lem [10] is solved to obtain the absolute orientations {Ru}.

4.1. VO results

We benchmarked our VO technique against the follow-

ing approaches on the datasets employed in Sec. 3.4:

• VCM [19]: absolute orientations were computed by

chaining relative rotations from CM.

• VEM [31]: entropy maximisation method. Absolute ori-

entations were generated by chaining.

• ZHU [48]: probabilistic feature tracking method. It’s an

indirect approach (different to CM, EM and our STR),

which extract and track features frrm event stream. We

used the feature tracks to calculate the relative rotations,

and absolute orientations were generated by chaining.

For fair comparisons, we disabled the IMU input to ZHU.

We also tested our method with and without rotation av-

eraging (VSTRA and VSTRC). All methods operated on

event batches of size N = 30, 000 for all sequences and

ǫk = 2, 000 for VSTRC and VSTRA.

Fig. 7 plots the absolute orientation trajectories and abso-

lute orientation error for boxes and PureRot Fast On,

where the length of the graphs are optimised for visuali-

sation (see supplementary material for full results). Ta-
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Figure 7. Absolute orientation trajectories (plotted as Euler angles)

and absolute orientation error over time. Top: Poster. Bottom:

PureRot Fast On.

Sequences VSTRC VSTRA VCM VEM ZHU

PureRot On 5.11 5.13 34.46 16.64 44.54

PureRot Off 6.05 6.01 29.38 7.53 46.76

boxes 11.40 11.38 24.82 26.16 143.55

dynamic 21.75 21.78 26.68 6.36 125.69

poster 12.97 12.06 49.75 45.86 132.69

Runtime (s) 0.061 0.062 0.538 2.313 2.863

Table 2. Average absolute orientation error (deg) and average run-

time per batch over all instances in PureRot, boxes, dynamic

and poster sequences.

ble 2 depicts the average absolute orientation error (in

deg) of each 60 s sequence and average runtime of the

pipelines. VSTR achieved the best accuracy amongst most

sequences and was the fastest (Note that our STR can pro-

cess 1, 000, 000 events/s when N = 20, 000 without sac-

rificing accuracy.). VEM achieved comparable accuracy

but was much slower than VSTR, while VCM was slightly

worse in accuracy and runtime than VSTR. The high error

of ZHU indicated dependence on the IMU for tracking.

5. Conclusions

Accurate event-based motion estimation can be accom-

plished using much simpler techniques than CM, EM with

less computational resources. The theoretical justifica-

tion of our STR has been conducted, and the experiments

showed that fewer parameters tunning are needed for differ-

ent scenarios. Furthermore, the feature tracks generated by

the our STR can be incorporated in solving loop closure.
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