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Abstract

Video-based person re-identification (Re-ID) aims to au-

tomatically retrieve video sequences of the same person

under non-overlapping cameras. To achieve this goal, it

is the key to fully utilize abundant spatial and temporal

cues in videos. Existing methods usually focus on the most

conspicuous image regions, thus they may easily miss out

fine-grained clues due to the person varieties in image se-

quences. To address above issues, in this paper, we propose

a novel Global-guided Reciprocal Learning (GRL) frame-

work for video-based person Re-ID. Specifically, we first

propose a Global-guided Correlation Estimation (GCE)

to generate feature correlation maps of local features and

global features, which help to localize the high- and low-

correlation regions for identifying the same person. Af-

ter that, the discriminative features are disentangled into

high-correlation features and low-correlation features un-

der the guidance of the global representations. Moreover,

a novel Temporal Reciprocal Learning (TRL) mechanism

is designed to sequentially enhance the high-correlation

semantic information and accumulate the low-correlation

sub-critical clues. Extensive experiments are conducted on

three public benchmarks. The experimental results indi-

cate that our approach can achieve better performance than

other state-of-the-art approaches. The code is released at

https://github.com/flysnowtiger/GRL.

1. Introduction

Person re-identification (Re-ID) aims to retrieve specific

pedestrians cross different cameras at different times and

places. Recently, this task has become a hot research topic

due to its importance in advanced applications, such as safe
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community, intelligent surveillance and criminal investiga-

tion. Compared with other related Re-ID tasks, video-based

person Re-ID provides a video as the input to retrieve rather

than a single image. Although videos can provide compre-

hensive appearance information, motion cues, pose varia-

tions in temporal, at the same time, they bring more illumi-

nation changes, complicated backgrounds and person oc-

clusions in a clip. Thus, there are still many challenges for

researches to handle in video-based person Re-ID.

Previous methods [30, 28, 17] can be coarsely summa-

rized into two steps: spatial feature extraction and temporal

feature aggregation. First, Convolutional Neural Networks

(CNNs) are utilized to extract frame-level spatial features

from each single image. Then, frame-level spatial features

are temporally aggregated into a feature vector as the video

representation to compute the similarity scores. Naturally,

how to fully explore the discriminative spatial-temporal

cues from multiple frames is seen as the key to tackle video-

based person Re-ID. Generally speaking, the average pool-

ing for spatial-temporal features can directly focus on main

targets, but it has some obvious drawbacks, such as the in-

ability to tackle the misalignment in temporal, the pollu-

tion of background noises, and the difficulty of capturing

small but meaningful subjects in videos. To address these

drawbacks, in recent years, researchers have proposed some

rigid-partition-based methods or soft-attention-based meth-

ods to instead the direct average operation. These methods

are beneficial to learn more discriminative and diverse lo-

cal features, resulting in higher performance of video-based

person Re-ID. However, previous methods generally ignore

the role of the global features in whole person recognition

while strengthening the local features. Based on this con-

sideration, Zhang et al. [33] utilize the local affinities with

respect to inference global features to help assign differ-

ent weights to local features. Although effective, it tends

to ignore inconspicuous yet fine-grained clues. Different
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from [33], we correlate the global feature with the pixel-

level local features in a frame to generate two correlation

maps, which are utilized to disentangle generic features into

high- and low-correlation features. Intuitively, features with

high correlation mean they appear frequently in temporal

and are spatially conspicuous. Features with low correlation

mean they are inconspicuous and discontinuous yet mean-

ingful. We further explore suitable strategies for disentan-

gled features in temporal and fully mine fine-grained cues.

Based on above considerations, we proposed a novel

Global-guided Reciprocal Learning (GRL) framework for

video-based person Re-ID. The whole framework mainly

consists of two key modules. To begin with, we proposed

a Global-guided Correlation Estimation (GCE) module to

estimate the correlation values of frame-level local features

under the global guidance. With GCE, each frame-level fea-

ture map will be disentangled into two kinds of discrimina-

tive features with distinct correlation degrees. The one with

high correlation, usually covers the most conspicuous and

continuous visual information. Another with inverse cor-

relation, as the supplement, is exploited to mine the fine-

grained and sub-critical cues. Besides, we propose a novel

Temporal Reciprocal Learning (TRL) module to fully ex-

ploit all the discriminative features in the forward and back-

ward process. More specifically, for high-correlation fea-

tures, we adopt a semantic enhancement strategy to mine

spatial conspicuous and temporal aligned information. For

low-correlation features, we introduce a temporal memory

strategy to accumulate the discontinuous but discriminative

cues frame by frame. In this way, our proposed method can

not only explore the most conspicuous information from the

high-correlation regions in a sequence, but also capture the

sub-critical information from the low-correlation regions.

Extensive experiments on public benchmarks demonstrate

that our framework delivers better results than other state-

of-the-art approaches.

In summary, our contributions are four folds:

• We propose a novel Global-guided Reciprocal Learn-

ing (GRL) framework for video-based person Re-ID.

• We propose a Global-guided Correlation Estimation

module to generate the correlation maps under the

guidance of video representations for disentanglement.

• We introduce a Temporal Reciprocal Learning (TRL)

module to effectively capture the conspicuous infor-

mation and the fine-grained clues in videos.

• Extensive experiments on public benchmarks demon-

strate that our framework synthetically attains a better

performance than several state-of-the-art methods.

2. Related Works

2.1. Video-based Person Re-identification

In recent years, with the rise of deep learning [6, 13], per-

son Re-ID has gained a great success and the performance

has been improved significantly. At the early stage of per-

son Re-ID, researchers pay more attention to image-based

person Re-ID. Recently, video-based person Re-ID is seen

as a generalization of image-based person Re-ID task, and

has drawn more and more researchers’ interests. Generally,

videos contain richer spatial and temporal information than

still images. Thus, on the one hand, some existing meth-

ods [16, 22, 23, 7] concentrate on extracting attentive spa-

tial features. On the other hand, some works [26, 20, 15] at-

tempt to capture temporal information to strength the video

representations. For example, Li et al. [16] employ a di-

verse set of spatial attention modules to consistently extract

similar local patches across multiple images. Fu et al. [7]

design an attention module to weight horizontal parts us-

ing a spatial-temporal map for more robust clip-level feature

representations . Zhao et al. [34] propose a attribute-driven

method for feature disentangling to learn various attribute-

aware features. Liu et al. [18] propose a soft-parsing atten-

tion network and joint utilize a spatial pyramid non-local

block to learn multiple semantic-aware aligned video rep-

resentations. Zhang et al. [33] utilize a representative set

of reference feature nodes for modeling the global rela-

tions and capturing the multi-granularity level semantics. In

this paper, we attempt to estimate the correlation values of

spatial features guided by the whole video representation,

which is beneficial to cover the conspicuous visual cues in

each frame. Besides, a novel temporal reciprocal learning

mechanism is proposed to explore more discriminative in-

formation for video-based person Re-ID.

2.2. Temporal Feature Learning

For video-related tasks, such as video-based person Re-

ID, action recognition, video segmentation [21] and so on,

the temporal feature learning is seen as the core module in

most algorithms. Typically, the temporal information mod-

eling methods encode temporal relations or utilize tempo-

ral cues for video representation learning. Most of exist-

ing video-based Re-ID methods exploit optical flow [4, 2],

Recurrent Neural Networks (RNN) [20, 10], or temporal

pooling [35] for temporal feature learning. For the action

recognition, Weng et al. [27] introduce a progressive en-

hancement module to sequentially excite the discriminative

channels of frames. For video-based person Re-ID task,

Mclaughlin et al. [20] introduce a recurrent architecture

to pass the feature message of each frame for aggregating

temporal information. Xu et al. [30] propose a joint spa-

tial CNN and temporal RNN model for video-based person

Re-ID. Zhang et al. [32] introduce a reinforcement learn-
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Figure 1. The overall structure of our proposed method. Given an image sequence, we firstly utilize ResNet-50 to extract frame-level feature

maps. Then, frame-level features are aggregated by TAP and GAP to generate a video-level feature. With the guidance of video-level

features, Global Correlation Estimation (GCE) is utilized to generate the correlation maps for disentanglement. Afterwards, the Temporal

Reciprocating Learning (TRL) is introduced to enhance and accumulate disentangled features in forward and backward directions.

ing method for pairwise decision making. Dai et al. [5]

design a temporal residual learning module to simultane-

ously extract the generic and specific features from consec-

utive frames. Liu et al. [19] design a refining recurrent unit

and spatial-temporal integration module to integrate abun-

dant spatial-temporal information. Compared with existing

methods, our method adopts temporal reciprocal learning

for bi-directional semantic feature enhancement and tempo-

ral information accumulation. Thus, the global-guided spa-

tial features could focus on complementary objects, such as

moving human body and key accessories.

3. Proposed Method

In this section, we introduce the proposed Global-guided

Reciprocal Learning (GRL) framework. We first give an

overview of the proposed GRL. Then, we elaborate the key

modules in the following subsections.

3.1. Overview

The overall architecture of our proposed GRL is shown

in Fig. 1. Our approach consists of frame-level feature ex-

traction, global-guided feature disentanglement, temporal

reciprocal learning. Given a video, we first use the Re-

stricted Random Sampling (RRS) [16] to generate training

image frames. Then, we extract frame-level features by a

pre-trained backbone network (ResNet-50 [8] in our work).

After that, we adopt a Temporal Average Pooling (TAP)

and a Global Average Pooling (GAP) to generate a video-

level representation. With the guidance of the video-level

representation, we design a Global-guided Correlation Es-

timation (GCE) to generate the correlation maps and disen-

tangle the frame-level features to high- and low-correlation

features. Afterwards, the Temporal Reciprocating Learning

(TRL) is introduced to enhance and accumulate disentan-

gled features in forward and backward directions. Finally,

we introduce the Online Instance Matching (OIM) [29] loss

and verification loss to optimize the whole network. By the

GRL, our method can not only capture the conspicuous in-

formation but also mine meaningful fine-grained cues in se-

quences. In the test stage, the attentive pooled feature from

the enhanced high-correlation vectors at different time steps

and the accumulated low-correlation feature at the last time

step are concatenated for the retrieval list.

3.2. Global-guided Feature Disentanglement

The attention mechanism has been widely adopted to

tackle the misalignment in video-based person Re-ID. How-
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Figure 2. The proposed GCE module.

ever, existing attention-based methods lack global percep-

tions of the whole video and easily miss out fine-grained

clues. To relieve this issue, we propose the GCE module

to disentangle the spatial features into two complementary

features. One of them highlights the conspicuous informa-

tion in each frame, another keeps the fine-grained and sub-

critical cues. Fig. 2 shows the structure of the proposed

GCE module. Formally, given a video, we firstly sample

T frames ν = {I1, I2, ..., IT } as the inputs of our network.

The ResNet-50 is utilized as the feature extractor to obtain a

set of frame-level features χ = {Xt|, t = 1, 2, ..., T}, where

Xt ∈ RC×H×W , H,W,C represents the height, width and

the number of channels, respectively. Then, we utilize a

TAP and a GAP to obtain the video-level representation

Fg =

∑T,H,W

t,h,w=0
Xt,h,w

H ×W × T
(1)

Fg ∈ RC×1×1 can coarsely represent the whole video.

To obtain global information, the proposed GCE takes

both the frame-level features Xt and the video-level feature

vector Fg as inputs. To guide the feature learning, the Fg is

adhered with a linear projection and expanded to F̃
g
, which

has the same sizes to Xt. The expanded features are con-

catenated with Xt. Then, we integrate the global and local

features, and jointly infer the degree of correlations. The

correlation map Rt ∈ R1×H×W related to Xt under the

global guidance can be computed by

Rt = σ(Wr([F̃
g
,Xt])) (2)

where [·, ·] represents the concatenation operation. Wr is

learnable weight of two 1×1 convolutional layers inserted

by Batch Normalization (BN) and ReLU activation. σ rep-

resents the sigmoid activation function. By reversing the

obtained correlation map, we can obtained a low-correlation

map. Then, the correlation maps are multiplied with origi-

nal frame-level features Xt to activate distinct local regions.

Finally, under the guidance of global representation, we dis-

entangle frame-level features into the high-correlation fea-

tures Xh
t and the low-correlation features Xl

t by

Xh
t = Xt ⊙ Rt (3)

Xl
t = Xt ⊙ (1− Rt) (4)

x
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Figure 3. Enhancement and Memory Unit.

where ⊙ represents element-wise multiplication, and Xh
t ,

Xl
t ∈ RC×H×W . Based on above procedures, we disen-

tangle generic features into two distinct features, which are

different from previous methods on local feature extraction.

3.3. Temporal Reciprocal Learning

The temporal feature aggregation plays an important role

in video-based person Re-ID. The GCE can highlight the

informative regions in a global view. However, discontin-

uous fine-grained cues are easily missed out due to the vi-

sual varieties in a long sequence. To address this problem,

we propose a novel Temporal Reciprocal Learning (TRL)

mechanism to fully explore the discriminative information

from the disentangled high- and low-correlation features.

Considering the frame orders in videos, our TRL is de-

signed for both forward and backward directions. More

specifically, we introduce Enhancement and Memory Units

(EMUs) to enhance high-correlation features and accumu-

late low-correlation features. Finally, the features passed

through the forward and backward directions are integrated

as the outputs of our TRL.

Enhancement and Memory Unit. As illustrated in

Fig. 3, at the time step t, the EMU takes three inputs: the

high-correlation features Xh
t and the low-correlation fea-

tures Xl
t, and the accumulated features Mt−1 from previous

time steps. In the enhancement block, we perform subtrac-

tion between the high-correlation features Xh
t and the accu-

mulated features Mt−1 to model the difference in seman-

tics. Mathematically, the difference operation is defined as

Dt = (f2(Mt−1)− f1(X
h
t ))

2 (5)

where f1 and f2 represent two individual 1 × 1 convolu-

tion operations with ReLU activation, respectively. Then,

the difference maps Dt are aggregated by GAP to generate

an overall response for each channel, i.e., dt ∈ RC . We

introduce the channel attention for the feature selection, as

at = σ(Wc(dt)) (6)
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X
′h
t = (1 + at)⊙ Xh

t (7)

where Wc are the parameters for generating the channel

weights. To fully exploit low-correlation features, we de-

sign a memory block to accumulate the fine-grained cues.

Specifically, we first add low-correlation features Xl
t at t-th

frame to the accumulated features Mt−1 at t−1 step. Then,

a residual block [8] is utilized for the next EMU.

Mt = Res(Mt−1 + Xl
t) (8)

where Res is the residual block in [8]. In the first time step,

M0 is initialized with the mean of {Xl
t}

T
t=1

.

Bi-directional Information Integration. In TRL, we

design a bi-directional learning mechanism for assembling

more robust representations. The forward and backward di-

rections are relative. For better understanding, we define

the forward direction as the arranged order of video frames.

The backward direction is opposite to forward direction.

With the outputs of EMUs in forward and backward direc-

tions, we integrate them as the final video-level represen-

tation. Specifically, the enhanced features F
h,1
t , F

h,2
t , and

the accumulated features M1

T M2

T in forward and backward

are concatenated after GAP. Then, a fully connected layer is

utilized to integrate the concatenated robust representations,

Fh
t = Wh([F

h,1
t ,F

h,2
t ]) (9)

Fl
T = Wl([M

1

T ,M2

T ]). (10)

With the proposed temporal reciprocal learning mechanism,

our method is able to progressively enhance the conspicu-

ous features from high-correlation regions and adaptively

mine the sub-critical details from low-correlation regions.

3.4. Training Schemes

In our work, we adopt a binary cross entropy loss and the

Online Instance Matching loss (OIM) [29] to train the whole

network following [2]. For each probe-gallery video vector

pair {pj , gk} in the training mini-batch, a binary cross en-

tropy loss function can be utilized as

Lveri=−
1

J

J∑

n=1

yj log([pj , gk])+(1−yj)log(1−[pj , gk]) (11)

where J is the number of sampled sequence pairs, [·, ·]
denotes the similarity estimation function and [pj , gk] ∈
(0, 1). yj denotes the ground-truth label of pj and gk. Note

that yj = 1 if sequence pj and gk belong to the same per-

son, otherwise yj = 0.

Meanwhile, in our work, we use a multi-level training

objective to deeply supervise our proposed modules, which

consists of the frame-level OIM loss and video-level OIM

loss. Instead of the conventional cross-entropy with a multi-

class softmax layer, the OIM loss function uses a lookup

table to store features of all identifies in the training set.

To learn informative and continuous features from differ-

ent frames, in the temporal reciprocal learning, the features

{Fh
t }

T
t=1

enhanced by the enhancement block at t-th time

step, are supervised by a frame-level OIM loss. The frame-

level OIM loss can be defined as:

Lf =−
1

N×T

N∑

n=1

T∑

t=1

I∑

i=1

yit,nlog(
eWiFh

t,n

∑I

j=1
eWjFh

t,n

) (12)

where Fh
t,n indicates the enhanced high-correlation feature

vector of the t-th image in n-th video. If the t-th image in

n-th video belongs to the i-th person, yit,n = 1, otherwise

yit,n = 0. Wi are the coefficients associated with the feature

embedding of the i-th person, which are online updated with

the frame-wise feature vectors of the i-th person. Mean-

while, the feature Fl
T accumulated by the memory block at

last time step, is supervised by video-level OIM loss, which

attempts to progressively collect all the sub-critical details

from the low-correlation regions.

Lv = −
1

N

N∑

n=1

I∑

i=1

yinlog(
eWiFl

T

∑I

j=1
eWjFl

T

) (13)

The total loss is a combination of the frame-level OIM

loss, the video-level OIM loss and the verification loss.

L = λ1Lf + λ2Lv + λ3Lveri (14)

4. Experiments

4.1. Datasets and Evaluation Protocols

To evaluate the performance of our proposed method, we

adopt three widely-used benchmarks, i.e., iLIDS-VID [26],

PRID-2011 [9] and MARS [35]. iLIDS-VID [26] dataset

is a small dataset, which consists of 600 video sequences

of 300 different identities. Two cameras are used to collect

images. Each video sequence contains 23 to 192 frames.

PRID-2011 [9] dataset consists of 400 image sequences for

200 identities from two non-overlapping cameras. The se-

quence lengths range from 5 to 675 frames, with an average

of 100. Following previous practice [26], we only utilize

the sequence pairs with more than 21 frames. MARS [35] is

one of large-scale datasets, and consists of 1,261 identities

around 18,000 video sequences. All the video sequences

are captured by at least 2 cameras.

For evaluation, we follow previous works and adopt the

Cumulative Matching Characteristic (CMC) table and mean

Average Precision (mAP) to evaluate the performance. In

terms of iLIDS-VID and PRID2011, we only report the cu-

mulative re-identification accuracy because that there only

contains a single correct match in the gallery set.
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Table 1. Comparison with state-of-the-art video-based person Re-ID methods on MARS, iLIDS-VID and PRID2011.

MARS iLIDS-VID PRID2011

Methods Source mAP Rank-1 Rank-5 Rank-20 Rank-1 Rank-5 Rank-20 Rank-1 Rank-5 Rank-20

SeeForest [36] CVPR17 50.7 70.6 90.0 97.6 55.2 86.5 97.0 79.4 94.4 99.3

ASTPN [30] ICCV17 - 44 70 81 62 86 98 77 95 99

Snippet [2] CVPR18 76.1 86.3 94.7 98.2 85.4 96.7 99.5 93.0 99.3 100

STAN [16] CVPR18 65.8 82.3 - - 80.2 - - 93.2 - -

STMP [19] AAAI19 72.7 84.4 93.2 96.3 84.3 96.8 99.5 92.7 98.8 99.8

M3D [15] AAAI19 74.0 84.3 93.8 97.7 74.0 94.3 - 94.4 100 -

STA [7] AAAI19 80.8 86.3 95.7 98.1 - - - - - -

Attribute [34] CVPR19 78.2 87.0 95.4 98.7 86.3 87.4 99.7 93.9 99.5 100

VRSTC [12] CVPR19 82.3 88.5 96.5 97.4 83.4 95.5 99.5 - - -

GLTR [14] ICCV19 78.5 87.0 95.8 98.2 86.0 98.0 - 95.5 100 -

COSAM [24] ICCV19 79.9 84.9 95.5 97.9 79.6 95.3 - - - -

MGRA [33] CVPR20 85.9 88.8 97.0 98.5 88.6 98.0 99.7 95.9 99.7 100

STGCN [31] CVPR20 83.7 89.9 - - - - - - - -

AFA [3] ECCV20 82.9 90.2 96.6 - 88.5 96.8 99.7 - - -

TCLNet [11] ECCV20 85.1 89.8 - - 86.6 - - - - -

Ours – 84.8 91.0 96.7 98.4 90.4 98.3 99.8 96.2 99.7 100

4.2. Implementation Details

We implement our framework based on the Pytorch1

toolbox. The experimental devices include an Intel i4790

CPU and two NVIDIA GTX 2080ti GPUs (12G memory).

To generate training sequences, we employ the RRS strat-

egy [7], and divide each video sequence into 8 chunks with

equal duration. Experimentally, we set the batchsize = 16

and T = 8. Each image in a sequence is resized to 256×128

and the input sequences are augmented by random crop-

ping, horizontal flipping and random erasing. To provide

a number of positive and negative sequence pairs in each

training mini-batch, we randomly sampled the half batch-

size sequences firstly. For one sampled sequences, we se-

lect another sequence with the same identify but under dif-

ferent cameras to fill the total batch. In this way, there is

at least one positive sample for any sequence in a mini-

batch. The ResNet-50 [8] pre-trained on the ImageNet

dataset [6] is used as our backbone network. Following pre-

vious works [25], we remove the last spatial down-sampling

operation to increase the feature resolution. During train-

ing, we train our network for 50 epochs combining with the

multi-level OIM losses and a binary cross-entropy loss. The

whole network is updated by stochastic gradient descent [1]

algorithm with an initial learning rate of 10−3, weight decay

of 5 × 10−4 and nesterov momentum of 0.9. The learning

rate is decayed by 10 at every 15 epochs.

4.3. Comparison with State-of-the-arts

In this section, we compare the proposed approach with

other state-of-the-art methods on three video-based person

Re-ID benchmarks. Experimental results are reported in

1https://pytorch.org/

Tab. 1. On MARS dataset, the mAP and Rank-1 accu-

racy of our proposed method are 84.8% and 91.0%, respec-

tively. Besides, our method achieves 90.4% and 96.2% of

the Rank-1 accuracy on iLIDS-VID dataset and PRID2011

dataset. The Rank-1 accuracy of our method outperforms

all the compared methods, showing significant improve-

ments over several state-of-the-art methods. We note that

the MGRA [33] also employs the global view for the video-

based person Re-ID task. It gains remarkable 85.9% mAP

on MARS dataset. Different from MGRA, our method uti-

lizes the global representations to estimate two correlation

maps for the feature disentanglement on spatial features.

With the reciprocal learning, our method could fully take

advantages of the disentangled features, and explore more

informative and fine-grained cues via the high-correlation

maps and low-correlation maps. Thereby, our method sur-

passes MGRA by 2.2%, 1.8% and 0.3 in terms of Rank-

1 accuracy on MARS, iLIDS-VID and PRID2011, respec-

tively. Meanwhile, it is worth noting that those methods,

ASTPN [20], STMP [19] and GLTR [14], explore the tem-

poral learning for video-based person Re-ID. ASTPN [20]

utilizes a temporal RNN to model the temporal informa-

tion for video representations. STMP [19] introduces a re-

fining recurrent unit to recover the missing parts by refer-

ring historical frames. GLTR [14] employs dilated tem-

poral convolutions to capture the multi-granular temporal

dependencies and aggregates short and long-term temporal

cues for global-local temporal representations. Compared

with these methods, our proposed method achieves better

results on three public datasets. More specifically, com-

pared with GLTR [14], our method improves the perfor-

mances by 6.3% and 4.0% in terms of mAP and Rank-1

accuracy on MARS dataset. In summary, compared with
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Table 2. Ablation results of key components on three benchmarks.

MARS iLIDS-VID PRID2011

Methods Feat. to test mAP Rank-1 Rank-1 Rank-5 Rank-1 Rank-5

Baseline F g 81.2 88.5 87.1 97.2 93.5 98.7

F l 81.9 88.9 88.3 97.4 93.9 99.0

+ GCE Fh 83.0 89.5 89.2 98.0 94.7 99.2

F l, Fh 83.3 90.1 89.5 97.9 95.0 99.5

F l 82.2 88.4 88.6 97.8 94.8 99.6

+ TRL Fh 84.0 90.4 90.5 97.9 95.4 99.6

Fh, F l 84.8 91.0 90.4 98.3 96.2 99.7

existing methods, our method utilizes the global informa-

tion to guide the feature disentanglement. In additional, we

adopt two strategies to mine richer cues for temporal learn-

ing, which can fully exploit the spatial-temporal informa-

tion for more discriminative video representations. These

experimental results validate the superiority of our method.

4.4. Ablation Study

In this subsection, we conduct experiments to verify

the effectiveness of the proposed methods. All the mod-

els are trained and evaluated on MARS, iLIDS-VID and

PRID2011 datasets. Results are shown in Tab. 1-5. In these

tables, “Baseline” represents the backbone trained only with

video-level OIM loss on the global branch, in which TAP

and GAP are applied on the frame-level features.

Effects of Key Components. The ablation results of

key components are reported in Tab. 2. In this table, F g

denotes the global feature vector without disentanglements.

F l denotes the final feature vector with disentangled low-

correlation features, and is supervised with a video-level

OIM loss. Fh denotes the final feature vector with dis-

entangled high-correlation features, and is supervised with

a frame-level OIM loss. “+GCE” means that we add the

global-guided correlation estimation to guide the disentan-

glement of spatial features. One can see that the per-

formance has a significant improvement after disentangle-

ment. The disentangled high-correlation features increase

the Rank-1 accuracy by 1.6%, 2.4% and 1.5% on MARS,

iLIDS-VID and PRID2011, respectively. Thus, it is bene-

ficial to guide the feature disentanglement under a global

view. “+TRL” means that the temporal reciprocal learn-

ing with bi-directions is used to enhance and accumulate

temporal information. Compared with the “+GCE” model,

our proposed TRL mechanism can further improve the mAP

by 1.5% and the Rank-1 accuracy by 0.9% on MARS. As

shown in Tab. 2, the combination of the low- and high-

correlation features can further boost the performance. The

above results clearly demonstrate the effectiveness of our

proposed GCE and TRL modules.

Effects of Enhancement and Memory Unit. We also

perform experiments to verify the effectiveness of EMU.

The results on MARS are shown in Tab. 3. “GRL” means

that our proposed GRL approach with complete EMUs. “-

Memory Block” denotes that the memory blocks in EMUs

Table 3. Ablation results of EMU on MARS.

Methods mAP Rank-1 Rank-5 Rank-20

Baseline 81.2 88.5 95.5 97.9

GRL 84.8 91.0 96.7 98.4

- Memory Block 84.2 90.2 96.3 98.2

- Enhancement Block 83.4 90.1 96.5 98.3

Table 4. Ablation results of the sequence length.

Methods Length mAP Rank-1 Rank-5 Rank-20

Baseline 8 81.2 88.5 95.5 97.9

GRL 4 83.0 89.4 96.1 98.2

6 83.5 90.1 96.7 98.4

8 84.8 91.0 96.7 98.4

10 83.9 90.2 96.5 98.4

Table 5. Ablation results of the direction order.

Methods Direction mAP Rank-1 Rank-5 Rank-20

Baseline 81.2 88.5 95.5 97.9

GRL Forward 84.0 89.9 96.5 98.3

Backward 83.7 90.0 96.5 98.3

Bi-direction 84.8 91.0 96.7 98.4

are removed. The results show that, there are slight de-

creases in terms of mAP and Rank-1 accuracy on MARS. “-

Enhancement Block” denotes that the enhancement blocks

in EMUs are removed, in which the high-correlation fea-

tures Xh
t are supervised by the frame-level OIM loss with-

out channel attention. The mAP and Rank-1 accuracy drop

with 1.4% and 0.9% on MARS. From the results, we can

find that both our enhancement block and memory block

are beneficial to learn more discriminative spatial features.

Effects of Different Sequence Lengths. We train and

test our bi-directional global-guided reciprocal learning

with various sequence lengths T . The results are shown

in Tab. 4. From the results, we can see that increasing the

length of sequence gains better performance and the length

of 8 gets best performance. One possible reason is that our

temporal reciprocating learning could capture more fine-

grained cues with the increments of the sequence length.

However, too long sequences are not good for training the

temporal reciprocal learning module.

Effects of Temporal Directions. We perform additional

experiments to verify the effectiveness of temporal direc-

tions in GRL. As shown in Tab. 5, the proposed tempo-

ral learning with forward or backward direction gains sim-

ilar results. Besides, the bi-directional reciprocal learning

shows higher performances, which benefits from the com-

bination of forward and backward temporal learning. The

effectiveness indicates that the aggregated features by re-

ciprocating learning are more robust for identification.

Effects of Multi-level OIM Losses. The ablation results

of multi-level OIM losses on MARS are reported in Tab. 6.

The “F-OIM” denotes the frame-level OIM loss is deployed

for each frame. The “V-OIM” denotes the video-level OIM
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Figure 4. The visualization of the high-correlation maps and the accumulated low-correlation features at different time steps. The top

images are raw images in video sequences. The heat maps in the second row are high-correlation maps {Rt}
T=8

t=1 . The heat maps in the

third and fourth rows are channel activation maps of accumulated features, {M1

t }
T=8

t=1 and {M2

t }
T=8

t=1 in the forward and backward process.

Table 6. Ablation results of multi-level OIM losses on MARS.

Methods Losses mAP Rank-1 Rank-5 Rank-20

V-OIM 82.6 89.5 96.3 98.1

GRL F-OIM 83.5 90.1 96.4 98.3

V&F-OIM 84.8 91.0 96.7 98.4

loss is utilized for each video. As shown in Tab. 6, higher

performances are achieved when combining the frame-level

and video-level OIM losses. It demonstrates that multi-level

losses could better optimize our proposed GRL.

4.5. Visualization Analysis

We visualize the high-correlation maps and the accumu-

lated low-correlation features in Fig. 4. Generally, features

with high-correlations mean that they appear frequently in

temporal and are spatially conspicuous. Features with low-

correlations mean that they are inconspicuous and discon-

tinuous yet meaningful. As shown in Fig. 4, the second row

represents the high-correlation maps obtained from Equ.(2),

covering the main and conspicuous regions, e.g., human up-

per body. The third and forth rows show the accumulated

low-correlation features, covering discontinuous but fine-

grained cues, e.g., the bags or shoes. Compared with the

features learned from the high-correlation maps, the fea-

tures from low-correlation maps in forward or backward

process, could capture the incoherent and meaningful cues,

such as shoes or bags, with red bounding boxes. Mean-

while, we can find that, at the same time step, there are

some variations among the features from the forward and

backward process. Thus, it is useful to assemble more dis-

criminative information. The visual maps further validate

that our method could highlight the most conspicuous and

aligned information in temporal and capture the sub-critical

clues in spatial, simultaneously.

5. Conclusion

In this paper, we propose a novel global-guided recipro-

cal learning framework for video-based person Re-ID. We

design a GCE module to estimate the correlation maps of

spatial features under the global guidance. Then, spatial

features are disentangled into the high- and low-correlation

features. Besides, we propose a novel TRL module, in

which multiple enhancement and memory units are de-

signed for temporal learning. Based on the proposed mod-

ules, our approach could not only enhance the conspicuous

information from the high-correlation regions, but also ac-

cumulative fine-grained cues from the low-correlation fea-

tures. Extensive experiments on public benchmarks show

that our framework outperforms several state-of-the-arts.
Acknowledgements: This work was supported in part by

the National Key Research and Development Program of China

under Grant No. 2018AAA0102001, the National Natural Sci-

ence Foundation of China (NNSFC) under grant No. 61725202,

U1903215, 61829102, 91538201, 61771088,61751212, the Fun-

damental Research Funds for the Central Universities under Grant

No. DUT20RC(3)083 and Dalian Innovation Leader’s Support

Plan under Grant No. 2018RD07.

13341



References
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