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Abstract

Weakly supervised instance segmentation reduces the

cost of annotations required to train models. However,

existing approaches which rely only on image-level class

labels predominantly suffer from errors due to (a) par-

tial segmentation of objects and (b) missing object predic-

tions. We show that these issues can be better addressed

by training with weakly labeled videos instead of images.

In videos, motion and temporal consistency of predictions

across frames provide complementary signals which can

help segmentation. We are the first to explore the use of

these video signals to tackle weakly supervised instance

segmentation. We propose two ways to leverage this in-

formation in our model. First, we adapt inter-pixel rela-

tion network (IRN) [1] to effectively incorporate motion

information during training. Second, we introduce a new

MaskConsist module, which addresses the problem of miss-

ing object instances by transferring stable predictions be-

tween neighboring frames during training. We demonstrate

that both approaches together improve the instance seg-

mentation metric AP50 on video frames of two datasets:

Youtube-VIS and Cityscapes by 5% and 3% respectively.

1. Introduction

Instance segmentation is a challenging task, where all

object instances in an image have to be detected and

segmented. This task has seen rapid progress in recent

years [13, 28, 5], partly due to the availability of large

datasets like COCO [26]. However, it can be forbiddingly

expensive to build datasets at this scale for a new domain of

images or videos, since segmentation boundaries have to be

annotated for every object in an image.

Alternatively, weak labels like classification labels can

be used to train instance segmentation models [54, 7, 55, 1,
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Figure 1. Two types of error for IRN [1] trained with still images:

(a) partial segmentation and (b) missing instance. We observe opti-

cal flow is able to capture pixels of the same instance better (circles

in (a)) and we propose flowIRN to model this information. In (b),

a fish is missed on one frame. We propose MaskConsist to lever-

age temporal consistency and transfer stable mask predictions to

neighboring frames during training.

21, 12, 37, 2]. While weak labels are significantly cheaper

to annotate, training weakly supervised models can be far

more challenging. They typically suffer from two sources

of error: (a) partial instance segmentation and (b) miss-

ing object instances, as shown in Fig. 1. Weakly super-

vised methods often identify only the most discriminative

object regions that help predict the class label. This results

in partial segmentation of objects, as shown in Fig. 1(a).

For instance, the recent work on weakly supervised in-

stance segmentation IRN [1] relies on class activation maps

(CAMs) [53], which suffer from this issue as also observed

in other works [20, 48, 52]. Further, CAMs do not differ-

entiate between overlapping instances of the same class. It

can also miss object instances when multiple instances are

present in an image, as shown in Fig. 1(b). In particular, an

instance could be segmented in one image but not in another

image where it is occluded or its pose alters.

Interestingly, these issues are less severe in videos,

where object motion provides an additional signal for in-
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stance segmentation. As shown in Fig. 1, optical flow in a

video is tightly coupled with instance segmentation masks.

This is unsurprising since pixels belonging to the same

(rigid) object move together and have similar flow vectors.

We incorporate such video signals to train weakly super-

vised instance segmentation models, in contrast to existing

methods [1, 21, 37, 2] only targeted at images.

Typical weakly supervised approaches involve two steps:

(a) generating pseudo-labels, comprising noisy instance

segmentation masks consistent with the weak class labels,

and (b) training a supervised model like Mask R-CNN

based on these pseudo-labels. We leverage video informa-

tion in both stages. In the first step, we modify IRN to as-

sign similar labels to pixels with similar motion. This helps

in addressing the problem of partial segmentation. We refer

to the modified IRN as flowIRN. In the second step, we in-

troduce a new module called MaskConsist, which counters

the problem of missing instances by leveraging temporal

consistency between objects across consecutive frames. It

matches prediction between neighboring frames and trans-

fers the stable predictions to obtain additional pseudo-labels

missed by flowIRN during training. This is a generic mod-

ule that can be used in combination with any weakly super-

vised segmentation methods as we show in our experiments.

To the best of our knowledge, we are the first work to uti-

lize temporal consistency between frames to train a weakly

supervised instance segmentation model for videos. We

show that this leads to more than 5% and 3% improve-

ment in average precision compared to image-centric meth-

ods, like IRN, on video frames from two challenging video

datasets: Youtube-VIS (YTVIS) [51] and Cityscapes [8],

respectively. We also observe similar gains on the recently

introduced video instance segmentation task [51] in YTVIS.

2. Related Work

Different types of weak supervision have been used in

the past for semantic segmentation: bounding boxes [9, 33,

19, 39], scribbles [25, 44, 41], and image-level class la-

bels [20, 18, 15, 49, 17, 22, 38, 40]. Similarly, for instance

segmentation, image-level [54, 7, 55, 1, 21, 12, 37, 2] and

bounding box supervision [19, 6] have been explored. In

this work, we focus on only using class labels for weakly

supervised instance segmentation.

Weakly supervised semantic segmentation: Most

weakly supervised semantic segmentation approaches rely

on class attention maps (CAMs) [53] to provide noisy

pseudo-labels as supervision [20, 17, 38, 40]. Sun et al. [40]

used co-attention maps generated from image pairs to train

the semantic segmentation network. Another line of work

leverages motion and temporal consistency in videos [43,

42, 36, 14, 23, 47] to learn more robust representation. For

instance, frame-to-frame (F2F) [23] used optical flow to

warp CAMs from neighboring frames and aggregated the

warped CAMs to obtain more robust pseudo-labels.

Weakly supervised instance segmentation: For train-

ing instance segmentation models with bounding box su-

pervision, Hsu et al. [6] proposed a bounding box tight-

ness constraint and multiple instance learning (MIL) based

objective. Another line of work that only uses class la-

bels extracts semantic responses from CAMs or other at-

tention maps and then combines them with object pro-

posals [35, 34] to generate instance segmentation masks

[54, 7, 55, 21, 37]. However, these methods’ performance

heavily depends on the quality of proposals used, which are

mostly pre-trained on other datasets. Shen et al. [37] ex-

tracted attention maps from a detection network and then

jointly learn the detection and segmentation networks in a

cyclic manner. Arun et al. [2] proposed a conditional net-

work to model the noise in weak supervision and combined

it with object proposals to generate instance masks. The

first end-to-end network (IRN) [1] was proposed by Ahn et

al. to directly predict instance offset and semantic bound-

ary which were combined with CAMs to generate instance

mask predictions. Our method adapts [1] for the first step of

training and combines it with a novel MaskConsist module.

However, other weakly supervised can also be integrated

into our framework if code is available.

Segmentation in videos: A series of approaches have

emerged for segmentation in videos [4, 16, 3, 32, 24]. Some

works proposed to leverage the video consistency [45, 46,

30, 31]. Recently, Yang et al. [51] extended the traditional

instance segmentation task from images to videos and pro-

posed Video Instance Segmentation task (VIS). VIS aims

to simultaneously segment and track all object instances in

the video. Every pixel is labeled with a class label and an

instance track-ID. MaskTrack [51] added a tracking-head to

Mask R-CNN [13] to build a new model for this task. Berta-

sius et al. [4] improved MaskTrack by proposing a mask

propagation head. This head propagated instance features

across frames in a clip to get more stable predictions. To

the best of our knowledge, there has been no work that has

explored weakly supervised learning for the video instance

segmentation task. We evaluate our method on this task by

combining it with a simple tracking approach.

3. Approach

We first introduce preliminaries of inter-pixel relation

network (IRN) [1] and extend it to incorporate video

information, resulting in flowIRN. Next, we introduce

MaskConsist which enforces temporal consistency in pre-

dictions across successive frames. Our framework has a 2-

stage training process: (1) train flowIRN and (2) use masks

generated by flowIRN on the training frames as supervision

to train the MaskConsist model, as shown in Fig. 2.

3.1. Preliminaries of IRN

IRN [1] extracts inter-pixel relations from Class Atten-

tion Maps (CAMs) and uses it to infer instance locations
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Figure 2. Our pipeline mainly consists of two modules: flowIRN and MaskConsist. FlowIRN adapts IRN [1] by incorporating optical

flow to modify CAMs (f-CAMs), as well as introducing a new loss function: flow-boundary loss (f-Bound loss). MaskConsist matches

the predictions from two successive frames and transfers high-quality predictions from one frame as pseudo-labels to another. It has three

components: intra-frame matching, inter-frame matching and temporally consistent labels, shown in orange, green and blue, respectively.

First, flowIRN is trained with frame-level class labels. Next, MaskConsist is trained with the pseudo-labels generated by flowIRN.

and class boundaries. For a given image, CAMs provide

pixel-level scores for each class that are then converted to

class labels. Every pixel is assigned the label correspond-

ing to the highest class activation score at the pixel, if this

score is above a foreground threshold. Otherwise, it is as-

signed the background label.

IRN is a network with two branches that predict (a) a per-

pixel displacement vector pointing towards the center of the

instance containing the pixel and (b) a per-pixel boundary

likelihood indicating if a pixel lies on the boundary of an

object or not. Since the model is weakly supervised, nei-

ther displacement nor boundary labels are available during

training. Instead, IRN introduces losses that enforce con-

straints on displacement and boundary predictions based on

the foreground/background labels inferred from CAMs.

During inference, a two-step procedure is used to ob-

tain instance segmentation masks. First, all pixels with dis-

placement vectors pointing towards the same centroid are

grouped together to obtain per-pixel instance labels. How-

ever, these predictions tend to be noisy. In the second step,

the predictions are refined using a pairwise affinity term α.

For two pixels i and j,

αi,j = 1− max
k∈Πi,j

B(k), (1)

where B(k) is the boundary likelihood predicted by IRN

for pixel k, and Πi,j is the set of pixels lying on the line

connecting i and j. If two pixels are separated by an ob-

ject boundary, at least one pixel on the line connecting them

should belong to this boundary. This results in low affinity

between the two pixels. Conversely, the affinity would be

high for pixels which are part of the same instance. In IRN,

the affinity term is used to define the transition probability

for a random walk algorithm that smooths the final per-pixel

instance and class label assignments.

3.2. FlowIRN Module

We introduce flowIRN which improves IRN by incorpo-

rating optical flow information in two components, flow-

amplified CAMs and flow-boundary loss.

Flow-Amplified CAMs: We observed that CAMs iden-

tify only the discriminative regions of an object (like the

face of an animal) but often miss other regions correspond-

ing to the object. This has been noted in previous works as

well [20, 48, 52]. Since the objects of interest in a video are

usually moving foreground objects, we address this issue by

first amplifying CAMs in regions where large motion is ob-

served. More specifically, given the estimated optical flow

F ∈ R
H×W×2 for the current frame, we replace CAMs

used in IRN with:

f-CAMc(x) = CAMc(x)×AI(||F(x)||2>T ), (2)

where A is an amplification coefficient and T is a flow mag-

nitude threshold. This operation is applied to CAMs of

all classes equally, preserving the relative ordering of class

scores. Class labels obtained from CAMs are not flipped;

only foreground and background assignments are affected.

Flow-boundary loss: In IRN, boundary prediction is su-

pervised by the pseudo segmentation labels from CAMs,

which does not distinguish instances of the same class, par-

ticularly overlapping instances. However, in videos, optical

flow could disambiguate such instances, since pixels of the

same rigid object move together and have consistent mo-

tion. Hence, we use spatial gradient of optical flow to iden-

tify if two pixels are from the same object instance or not.

Points from the same object can be from different depths

relative to the camera, and might not have the same optical

flow. In practice, we observed that the gradient is more ro-

bust to this depth change. We explain this in detail in the

appendix. We use the affinity term from Eq. 1 to define a

new flow-boundary loss:

LB
F =

∑

j∈Ni

||F ′(i)−F ′(j)||αi,j + λ|1− αi,j |, (3)

where F ′(i) is a two-dimensional vector denoting the gra-

dient of the optical flow at a pixel i with respect to its spatial

co-ordinates (xi, yi) respective. Ni is a small pixel neigh-

borhood around i as defined in IRN, and λ is the regulariza-

tion parameter. The first term implies that pixels with simi-

lar flow-gradients could have high-affinity (belonging to the

same instance), while pixels with different flow-gradients
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should have low-affinity (belonging to different instances).

The second term is used to regularize the loss and pre-

vent the trivial solution of α being 0 constantly. We train

flowIRN with the above loss and the original losses in IRN.

3.3. MaskConsist

Original predictions Union of masks

+ Expanded predictions𝒫!"#
$

(a) Intra-frame matching

frame t frame t+𝛿

Expanded predictions

Matching edge 𝑒%,'
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Figure 3. Three steps of MaskConsist module. (a) Intra-frame

matching expands the original predictions of current Mask R-CNN

by merging highly overlapping predictions. (b) Inter-frame match-

ing identifies one-to-one matching between predictions across

frames. (c) Temporally consistent labels transfer matched predic-

tions from one frame to another after warping with optical flow.

The instance-level masks generated by flowIRN can now

be used as pseudo-labels to train a fully supervised instance

segmentation model, like Mask R-CNN. In practice, this

yields better performance on the validation set than the orig-

inal flowIRN model. However, the pseudo-labels generated

by flowIRN can miss object instances on some frames if

both CAMs and optical-flow couldn’t identify them.

MaskConsist solves this by transferring “high-quality”

mask predictions from a neighboring frame as new pseudo-

labels to the current frame while training a Mask R-CNN.

At each training iteration, we train the network with a pair

of neighboring frames t and t + δ in the video. In addi-

tion to the pseudo-labels from flowIRN, a subset of pre-

dictions by the current Mask R-CNN on t + δ are used as

additional pseudo-labels for t and vice-versa. Predictions

are transferred only if (a) they are temporally stable and

(b) overlap with existing pseudo-labels form flowIRN. This

avoids false-negatives by MaskConsist. MaskConsist con-

tains three steps: intra-frame matching, inter-frame match-

ing, and temporally consistent label assignment. These

steps are explained next and visualized in Fig. 3.

Intra-frame matching: At each training iteration, we

first generate a large set of candidate masks that can be

transferred to neighboring frames. The pseudo-labels from

flowIRN might be incomplete, but we expect the predic-

tions from the Mask R-CNN to become more robust as

training proceeds. Hence, high-confidence predictions from

the model at a given iteration can be used as the candidate

set. However, we empirically observed that during early

stages of training, masks predicted by Mask R-CNN can

be fragmented. We overcome this by also considering the

union of all mask predictions which have good overlap with

a flowIRN pseudo-label of the same class. The candidate

set of predictions after this step includes the original pre-

dictions (in practice, we use top 100 predictions) for the

frame, as well as the new predictions obtained by combin-

ing overlapping predictions, as shown in Fig. 3(a). For a

frame at time t, we refer to the original set of predictions

from the model as Pt, and this expanded set as Pt
exp. Each

prediction pti ∈ Pt
exp corresponds to a triplet: mask, bound-

ing box and the class with highest score for the box, denoted

by (mt
i, b

t
i, c

t
i) respectively.

Inter-frame matching: Next, we wish to transfer some

predictions from the current frame t as pseudo-labels to the

neighboring frame t + δ and vice-versa. We only transfer

a prediction if it is stably predicted by the current model

on both frames. To do this, we first create a bipartite graph

between the two frames. The nodes from each frame cor-

respond to the expanded prediction set Pt
exp and Pt+δ

exp re-

spectively as shown in Fig. 3(b). The edge weight e
t,t+δ
ij

between prediction pti and pt+δ
j is defined as:

e
t,t+δ
ij = I(cti = ct+δ

j ) · IoU(Wt→t+δ(p
t
i), p

t+δ
j ),

where Wt→t+δ is a bi-linear warping function that warps

the prediction from one frame to another based on the op-

tical flow between them (explained in the appendix). The

edge weight is non-zero only if the two predictions share

the same class. The weight is high if the warped mask from

frame t has high overlap with the mask in t+ δ.

The correspondence between predictions of both frames

is then obtained by solving the bipartite graph-matching

problem with these edge weights, using the Hungarian al-

gorithm. This results in a one-to-one matching between a

subset of predictions from Pt
exp and Pt+δ

exp . We denote the

matching result as Mt,t+δ = {(pti, p
t+δ
j )}, containing pairs

of matched predictions from both frames. This comprises

pairs of predictions that are temporally stable.

Temporally consistent labels: We use the predictions

from frame t which are matched to some predictions in

t + δ in the previous step to define new pseudo-labels for

frame t + δ as shown in Fig. 3(c). Since there can be a lot

of spuriously matched predictions, we only transfer high-

quality predictions that have some overlap with the original

pseudo-labels in frame t. As the process presented in Alg. 1,

let Pt
fIRN be the original set of pseudo-labels obtained from

flowIRN for frame t and Mt,t+δ be the matched prediction

pairs between two frames. We transfer only those masks

from t which have an overlap greater than 0.5 with any of
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the original masks in Pt
fIRN of the same class. Further, when

transferring to t + δ, we (a) warp the mask using optical

flow and (b) merge it with the matched prediction in t + δ

as shown in Fig. 3(c) to ensure that the mask is not par-

tially transferred. This new set of labels transferred from t

to t + δ are denoted by Pt+δ
maskCon. The steps are explained

below. Here, Merge(·) simply takes the union of masks

from two predictions to form a new prediction.

Algorithm 1: Temporally consistent assignment

Input:Mt,t+δ, Pt
fIRN

Output: Pt+δ
maskCon

1 Pt+δ
maskCon ← {}

2 for (pti, p
t+δ
j ) ∈Mt,t+δ do

3 for ptfIRN ∈ P
t
fIRN do

4 if IoU(bti, b
t
fIRN) > 0.5, cti = ctfIRN then

5 pt+δ
m ← Merge(Wt→t+δ(p

t
i), p

t+δ
j )

6 Pt+δ
maskCon ← P

t+δ
maskCon ∪ {p

t+δ
m }

7 break

8 end

9 end

10 return Pt+δ
maskCon

Simultaneously, new pseudo-labels Pt
maskCon are ob-

tained for t by transferring predictions from t+ δ in a sim-

ilar fashion. We combine them with the original pseudo-

labels from flowIRN to obtain the final set of pseudo-labels

PmaskCon ∪ PfIRN. We also note that while combining these

two sets of labels, it is important to suppress smaller masks

that are contained within the others. Concretely, we ap-

ply non-maximal suppression (NMS) based on an Intersec-

tion over Minimum (IoM) threshold. IoM is calculated be-

tween two masks as the intersection area over the area of

the smaller mask. This avoids label redundancy and helps

improve performance as we demonstrate later in ablation

experiments. The merged pseudo-labels are used as super-

vision to train the Mask R-CNN model as shown in Fig. 2,

without altering the Mask R-CNN in any way.

Our overall MaskConsist approach does not require extra

forward or backward pass, and only adds a small overhead

to the original Mask R-CNN during training. During infer-

ence, the matching is unnecessary and MaskConsist works

similar to Mask R-CNN.

4. Experiments

Unless otherwise specified, models in this section are

trained only with frame-level class labels and do not use

bounding-box or segmentation labels. We evaluate our

model on two tasks: frame-level instance segmentation and

video-level instance segmentation. We report performances

on two popular video datasets.

4.1. Datasets

Youtube-VIS (YTVIS) [51] is a recently proposed

benchmark for the task of video instance segmentation. It

contains 2, 238 training, 302 validation, and 343 test videos

collected from YouTube, containing 40 categories. Every

5th frame in the training split is annotated with instance

segmentation mask. As the annotation of validation and

test splits are not released and only video-level instance

segmentation performance is available on the evaluation

server, we hold out a subset of videos from the original

training split by randomly selecting 10 videos from each

category. This results in a train val split of 390 videos

(there are videos belonging to multiple object categories)

to conduct frame-level and video-level instance segmenta-

tion evaluations. The remaining 1, 848 videos are used as

the train train split.

Cityscapes [8] contains high-quality pixel-level annota-

tions for 5, 000 frames collected in street scenes from 50
different cities. 19 object categories are annotated with se-

mantic segmentation masks and 8 of them are annotated

with instance segmentation masks. The standard 2, 975
training frames and their neighboring t−3 and t+3 frames

are used for training, and the 500 frames in validation split

are used for evaluation.

4.2. Implementation details

Optical flow network: We use the self-supervised

DDFlow [27] for optical flow extraction. The model is pre-

trained on “Flying Chairs” dataset [10] and then fine-tuned

on YTVIS or Cityscapes training videos in an unsupervised

way. The total training time is 120 hours on four P100

GPUs and the average inference time per frame is 280ms.

flowIRN: To get flow-amplified CAMs, we set the

amplification co-efficient A = 2 and threshold T =
Percentile0.8(||F(x)||2) for YTVIS, and A = 5 and T =
Percentile0.5(||F(x)||2) for Cityscapes. The optical flow

is extracted between two consecutive frames (frame t and

t + 1). The regularization weight λ is set to 2. We

train the network for 6 epochs. Other training and infer-

ence hyper-parameters are set the same as in [1]. Empir-

ically, we observe that IRN (and flowIRN) is limited by

lack of good CAMs when trained only on Cityscapes data.

Hence, for experiments on Cityscapes, we train the first-

stage of all weakly supervised models (before the Mask R-

CNN/MaskConsist stage) first on PASCAL VOC 2012 [11]

training-split and then fine-tune on Cityscapes.

MaskConsist: We use ResNet-50 as the backbone,

initialized with ImageNet pre-trained weights. For both

datasets, the bounding-box IoU threshold is set at 0.5 for

intra-frame matching, and IoM-NMS threshold at 0.5 for

label combining. The model is trained for 90K iterations

for YTVIS, and 75K iterations for Cityscapes, with base

learning rate lr = 0.002. SGD optimizer is used with step

schedule γ = 0.1, decay at 75% and 88% of total steps.

The temporal consistency is calculated between frame t and

t + 5 (δ = 5) for YTVIS, frame t and t + 3 (δ = 3) for

Cityscapes. Inference on one frame (short side 480px) takes
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Methods Video Info Supervision AP50

Mask R-CNN [13] ✗ Mask 78.24
WSIS-BBTP [6] ✗ Bbox 46.80

WISE [21] ✗ Class 24.54
F2F [23]+MCG [34] ✓ Class 26.31
IRN [1] ✗ Class 29.64
IRN [1]+F2F[23] ✓ Class 30.27

Ours ✓ Class 34.66
Ours (self-training) ✓ Class 36.00

Table 1. Frame-level instance segmentation performance (AP50)

on YTVIS train val split.

210ms. Nvidia Tesla P100 GPU is used in training and test.

All hyper-parameters for flowIRN and MaskConsist are se-

lected based on the performance on a small held-out valida-

tion split of the corresponding training set.

Experiment setup: On YTVIS, all methods are trained

using the training frames (every 5th frame) in train train

split. On Cityscapes, all methods are trained with training

frames (frame t) and their two neighboring frames (t−3 and

t + 3). Unless otherwise specified, our model is trained in

two-steps: first train flowIRN on training frames, then use

the pseudo-labels generated by the flowIRN on the train-

ing frames to train MaskConsist. For fair comparison, all

baseline methods are also trained in two steps: first train

the weakly supervised model (e.g., IRN) with frame-level

class labels, then use pseudo-labels obtained to train a Mask

R-CNN model. This is common practice in weakly super-

vised segmentation works [1, 21], and improves AP50 of all

models by at least 2% in our experiments. The same hyper-

parameters reported in the original work or published code

are retained for all baselines.

We also observe that a three-step training process, where

the masks generated by our MaskConsist model are used

to train another MaskConsist model, further improves per-

formance. We refer to this as ours self-training. Note that

unlike other baselines, this involves an additional round of

training. On other baseline methods, we also attempted self-

training: another round of training using pseudo-labels from

the trained Mask R-CNN. However, this either degraded or

did not improve performance on the validation set.

During frame-level inference, the trained MaskConsist

or Mask R-CNN (for other baselines) is applied on each

frame with score threshold of 0.05 and NMS threshold of

0.5 to obtain prediction masks. For video-level evaluation,

we apply an unsupervised tracking method [31] on per-

frame instance mask predictions to obtain instance mask

tracks, with the same hyper-parameters as the original work.

We will release our code after paper acceptance.

4.3. Frame instance segmentation

First, we compare frame-level performance with existing

instance segmentation models on YTVIS and Cityscapes.

Evaluation metrics: On both YTVIS and Cityscapes,

the average precision with mask intersection over union

(IoU) threshold at 0.5 (AP50) is used as the metric for in-

Methods Supervision Instance seg Semantic seg

Mask R-CNN [13] Mask 38.73 79.23

WISE [21] Class 10.51 35.82
F2F [23]+MCG [34] Class 10.73 33.26
IRN [1] Class 12.33 33.48
IRN [1]+F2F[23] Class 12.53 34.17

Ours Class 16.05 39.88
Ours (self-training) Class 16.82 41.31

Table 2. Frame-level instance segmentation (AP50) and semantic

segmentation (IoU) on Cityscapes validation split.

stance segmentation. Cityscapes is a popular benchmark

for semantic segmentation and we also report the semantic

segmentation performance using standard IoU metric.

Baselines: To the best of our knowledge, there is no ex-

isting weakly supervised instance segmentation model de-

signed for videos. Existing works are designed for still

images and report results on standard image benchmarks

like [11]. To compare with these models on video data, we

train them (where code is available) with independent video

frames of YTVIS or Cityscapes. We also extend existing

weakly supervised “video” semantic segmentation models

to perform instance segmentation. For upper-bound com-

parisons, we report results from Mask R-CNN [13] trained

with ground truth masks, and WSIS-BBTP [6] trained with

bounding box annotations. We list the baselines below and

more details can be found in the appendix:

• WISE [21]: train on independent frame with class label.

• IRN [1]: train on independent frame with class label.

• F2F [23] + MCG [34]: use videos with class labels to

train F2F to obtain semantic segmentation and combine

MCG proposals to obtain instance-level masks as in [54].

• F2F [23] + IRN [1]: use optical flow to aggregate CAMs

as in F2F to train IRN.

Results: Results on YTVIS are shown in Tab. 1. All

methods use two-step training as stated in the experiment

setup. WISE and F2F+MCG both use processed CAMs

as weak labels and combine results with object propos-

als (MCG) to distinguish instances. Comparing WISE and

F2F+MCG, F2F uses video information that boosts its per-

formance by around 1.8%. IRN+F2F is the closest compar-

ison to our approach, since it is also built on top of IRN and

uses video information. Our model outperforms IRN+F2F

by more than 4%, and can also benefit from an additional

round of self-training (Ours self-training). However, we do

not observe any gains when training the Mask R-CNN for

another round for other methods.

In Tab. 2, we report frame-level instance segmentation

and semantic segmentation results on Cityscapes. For in-

stance segmentation, our method outperforms WISE and

IRN by more than 3.7% under AP50. We convert the in-

stance segmentation results to semantic segmentation by

merging instance masks of the same class and assigning

labels based on scores. On semantic segmentation, our

method still outperforms IRN by a large margin.
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Methods
Train Val Split Validation Split

mAP AP50 AP75 AR1 AR10 mAP AP50 AP75 AR1 AR10

Fully supervised

learning methods

IoUTracker+ [51] - - - - - 23.6 39.2 25.5 26.2 30.9
DeepSORT [50] - - - - - 26.1 42.9 26.1 27.8 31.3
MaskTrack [51] - - - - - 30.3 51.1 32.6 31.0 35.5

Weakly supervised

learning methods

WISE [21] 8.7 22.1 5.5 9.8 10.7 6.3 17.5 3.5 7.1 7.8
IRN [1] 10.8 26.4 7.7 12.6 14.4 7.3 18.0 3.0 9.0 10.7
Ours 14.1 34.4 9.4 16.0 17.9 10.5 27.2 6.2 12.3 13.6

Table 3. Video instance segmentation results on Youtube-VIS dataset.

Figure 4. Example Video instance segmentation results from our method on Youtube-VIS dataset.

4.4. Video instance segmentation

Given per-frame instance segmentation predictions, we

apply the Forest Path Cutting algorithm [31] to obtain a

mask-track for each instance and report VIS results.

Evaluation metric: We use the same metrics as [51]:

mean average precision for IoU between [0.5, 0.9] (mAP ),

average precision with IoU threshold at 0.5 / 0.75 (AP50/

AP75), and average recall for top 1 / 10 (AR1 / AR10). As

each instance in a video contains a sequence of masks, the

computation of IoU uses the sum of intersections over the

sum of unions across all frames in a video. The evaluation

is carried out on YTVIS train val split using YTVIS code

(https://github.com/youtubevos) , and also on

YTVIS validation split using the official YTVIS server.

Baselines: Since there is no existing work on weakly

supervised video instance segmentation, we construct our

own baselines by combining the tracking algorithm in [31]

with two weakly supervised instance segmentation base-

lines: WISE [21] and IRN [1]. We also present published

results from fully supervised methods [51, 50] for reference.

As presented in Tab. 3, our model outperforms IRN and

WISE by a large margin. On the AP50 metric, there is

a boost of more than 8% on both train val and validation

splits. We also observe that the performance gap between

WISE and IRN decreases compared with frame-level re-

sults in Tab. 1, implying temporal consistency is impor-

tant to realize gains in video instance segmentation. Note

that the fully supervised methods are first trained on MS-

COCO [26] and then fine-tuned on YTVIS training split,

while ours is only trained on YTVIS data. Qualitative VIS

results from our method are shown in Fig. 4. Our method

generates temporally stable instance predictions and is able

to capture different overlapping instances. One failure case

YTVIS Cityscapes

IRN [1] 25.42 8.46
IRN+f-Bound 26.60 9.51
IRN+f-CAMs 27.47 10.55

flowIRN 28.45 10.75

Table 4. Ablation study of flowIRN components. Results are

reported on training data to evaluate pseudo-label quality. No

second-step Mask R-CNN or MaskConsist training is applied here.

is shown in the bottom row. As skateboard and person al-

ways appear and move together in YTVIS, our assumption

on different instances having different motion is not valid.

Thus, these two instances are not well distinguished.

4.5. Effect of modeling temporal information

Our framework explicitly models temporal information

in both flowIRN and MaskConsist modules. We explore the

effectiveness of each module in this section.

Ablation study of flowIRN: In Tab. 4, we present the

instance segmentation results (AP50) of different flowIRN

variants. All models are directly tested on the training data

to evaluate pseudo-label quality and no second-step training

is used in this experiment. Compared to original IRN[1],

both flow-amplified CAMs (f-CAMs) and flow-boundary

loss (f-Bound) incorporate optical flow information and im-

prove IRN performance. Combining the two leads to our

design of flowIRN, which improves by 3.03% on YTVIS

and 2.29% on Cityscapes compared to IRN.

In Fig. 5, we show two qualitative examples of incorpo-

rating f-CAMs and f-Bound. In the left example, the car (in

the circle) moves fast and is partially missed by IRN. Af-

ter applying f-CAMs, the whole object is well captured in

the segmentation mask. In the second example (right col-

umn), IRN fails to separate two overlapping persons while

the boundary is recognizable in optical flow. After applying

f-Bound loss, two instances are correctly predicted.
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IRN

w/ f-CAMs

Flow Magnitude

IRN

w/ f-Bound

Optical flow

Figure 5. Improvement introduced by f-CAMs and f-Bound. Top:

output of IRN. Middle: optical flow extracted for the input frame.

Bottom: output after incorporating f-CAMs or f-Bound.

MaskConsist Components AP50

Intra-F Inter-F IoM-NMS YTVIS Cityscapes

✗ ✗ ✗ 31.43 14.66
✗ ✓ ✓ 33.75 14.92
✓ ✗ ✓ 31.08 14.43
✓ ✓ ✗ 33.65 15.27

✓ ✓ ✓ 34.66 16.05

Table 5. Ablation study of MaskConsist components. The num-

bers in this table are generated by models with two-step training.

Ablation study of MaskConsist: In Tab. 5, we explore

the contribution of different components of MaskConsist

by disabling one of the three components each time. We

observe that inter-frame matching plays the most impor-

tant role in MaskConsist. It enables the model to incor-

porate temporal consistency during training and achieves

the largest performance boost. IoM-NMS helps avoid false

positives corresponding to partial masks from inter-frame

matching and improves the performance on top of intra-

frame and inter-frame matching. Our best results on both

datasets are achieved by combining all three components.

In Tab. 6, we further explore the effectiveness of

MaskConsist module by combining it with other weakly su-

pervised instance segmentation methods: WISE [21] and

IRN [1]. Cross in the “w/ MC” column denotes the use

of Mask R-CNN instead of MaskConsist. The results show

that, by incorporating mask matching and consistency in the

second stage of training, MaskConsist module consistently

improves original weakly supervised methods by about 2%.

Combining flowIRN module with MaskConsist achieves

the best performance on both YTVIS and Cityscapes.

We also quantitatively evaluate how consistent the pre-

dictions of MaskConsist are on consecutive frames. As pre-

sented in the fifth column of Tab. 6, we report the temporal

consistency (TC) metric similar to [29]. This metric mea-

sures the AP50 between mask predictions and flow warped

masks on consecutive frames in YTVIS. We observe consis-

tent improvement in TC by adding MaskConsist to training.

In Fig. 6, we present two examples of Mask R-CNN and

MaskConsist predictions on YTVIS clips. Both models are

trained with flowIRN pseudo-labels. Mask R-CNN predic-

tions are more susceptible to noisy pseudo-labels and less

Methods w/ MC
AP50

TC
YTVIS Cityscapes

WISE [21]
✗ 24.54 10.51 72.08
✓ 27.03 12.26 76.27

IRN [1]
✗ 29.64 12.33 80.98
✓ 31.51 14.72 82.04

Ours
✗ 31.43 14.66 80.43
✓ 34.66 16.05 84.36

Table 6. MaskConsist works on top of different weakly supervised

instance segmentation methods and improves both AP50 and TC.

FlowIRN

Pseudo-label

Mask R-CNN

MaskConsist

tt-𝜹 t+𝜹

tt-𝜹 t+𝜹
FlowIRN

Pseudo-label

Mask R-CNN

MaskConsist

Figure 6. Comparison of Mask R-CNN and MaskConsist on

YTVIS. Both models are trained from flowIRN pseudo-label.

consistent across frames, while MaskConsist achieves more

stable segmentation results.

Further discussion: Regarding the two types of er-

rors presented in Fig. 1, we observe that our model has

larger relative improvement over IRN on more strict metric:

27.3% (12.06% vs. 9.47%) on AP75, compared with 16.9%
(34.66% vs. 29.64%) on AP50, indicating our model gen-

erates more accurate mask for high IoU metric. While our

method outperforms IRN on AP50, our method also pre-

dicts more instances per frame (avg. 1.81 instances for ours

vs. avg. 1.50 instances for IRN), indicating our method is

able to predict more instances with higher accuracy. These

demonstrate that the two problems of partial segmentation

and missing instance are both alleviated in our model.

5. Conclusion

We observed that image-centric weakly supervised in-

stance segmentation methods often segment an object in-

stance partially or miss an instance completely. We pro-

posed the use of temporal consistency between frames in

a video to address these issues when training models from

video frames. Our model (a) leveraged the constraint that

pixels from the same instance move together, and (b) trans-

ferred temporally stable predictions to neighboring frames

as pseudo-labels. We proved the efficacy of these two ap-

proaches through comprehensive experiments on two video

datasets of different scenes. Our model outperformed the

state-of-the-art approaches on both datasets.
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