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Abstract

Model quantization is a promising approach to compress

deep neural networks and accelerate inference, making it

possible to be deployed on mobile and edge devices. To

retain the high performance of full-precision models, most

existing quantization methods focus on fine-tuning quantized

model by assuming training datasets are accessible. How-

ever, this assumption sometimes is not satisfied in real situa-

tions due to data privacy and security issues, thereby mak-

ing these quantization methods not applicable. To achieve

zero-short model quantization without accessing training

data, a tiny number of quantization methods adopt either

post-training quantization or batch normalization statistics-

guided data generation for fine-tuning. However, both of

them inevitably suffer from low performance, since the for-

mer is a little too empirical and lacks training support for

ultra-low precision quantization, while the latter could not

fully restore the peculiarities of original data and is often low

efficient for diverse data generation. To address the above is-

sues, we propose a zero-shot adversarial quantization (ZAQ)

framework, facilitating effective discrepancy estimation and

knowledge transfer from a full-precision model to its quan-

tized model. This is achieved by a novel two-level discrep-

ancy modeling to drive a generator to synthesize informative

and diverse data examples to optimize the quantized model in

an adversarial learning fashion. We conduct extensive exper-

iments on three fundamental vision tasks, demonstrating the

superiority of ZAQ over the strong zero-shot baselines and

validating the effectiveness of its main components. Code is

available at https://git.io/Jqc0y.

1. Introduction

Although deep neural networks (DNNs), especially deep

convolutional networks (DCNs), have achieved remark-

able performance in a broad range of computer vision

tasks [20, 40, 24, 34], their ever-growing complexities —

a large number of model parameters — inhibit the appli-
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Figure 1. Overview of our framework. The methods based on

sample reconstruction are shown as part (a), and part (b) is the

overview of our framework. BNS is short for batch normalization

statistics stored in the BN layers.

cations on cloud and edge devices. As a consequence,

model quantization, converting high-precision parameters

to low-precision ones, becomes one of the main paradigms

in model compression and acceleration [10]. To mitigate

the performance degradation issue due to model quantiza-

tion, quantization-aware fine-tuning approaches have been

extensively studied to optimize quantized models on the full

training datasets [41, 16, 38]. However, in real situations,

original training data is sometimes inaccessible due to pri-

vacy and security issues. For instance, electronic health

records usually contain patients’ private information. As

such, the quantization-aware fine-tuning methods are no

longer applicable.

Post-training quantization methods [2, 30, 47] therefore

emerge to quantize weights and activations in DNNs through

correction strategies, without fine-tuning. However, there

is a negligible gap between the strategies and the goals of

target tasks, causing the quantized models to suffer from

performance degradation. This issue is even amplified for

the ultra-low precision situation. To address this, batch nor-

malization statistics (BNS)-guided data generation is lever-

aged by recent methods [4, 42]. They aim at synthesizing

data samples that match the real-data statistics encoded in

the batch normalization layers of full-precision deep mod-

els. The synthetic data is further leveraged to fine-tune the
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quantized models by directly optimizing on target tasks su-

pervised by its full-precision model, as shown in Figure 1(a).

Although the performance of ultra-low precision models is

boosted to some extent, thanks to fine-tuning, data generated

by batch normalization statistics is hard to fully recover the

peculiarities of training data and the generation process itself

is time-consuming due to data redundancy. These issues

make the results still far from satisfactory.

This paper seeks to promote the development of data-free

model quantization by addressing the above-mentioned is-

sues. We, therefore, present a novel learning framework

named Zero-shot Adversarial Quantization (ZAQ) to per-

form model quantization without utilizing any sample from

training data. Specifically, we devise a two-level discrepancy

modeling strategy for ZAQ to measure the gap between a

quantized model and its corresponding full-precision model.

We consider not only the output discrepancy from models’

top layers, just similar as existing data-free model quantiza-

tion methods, but also fuses a new intermediate inter-channel

discrepancy based on feature maps. A generator in ZAQ

is responsible for generating informative and diverse data

examples in an adversarial learning manner [15] — opti-

mization based on a minimax game — to enable effective

discrepancy estimation and knowledge transfer, as depicted

Figure 1(b). In addition, activation regularization is adopted

to facilitate the generator to obtain examples more sensitive

to the network. To sum up, our contributions are as follows:

• We propose a zero-shot adversarial quantization frame-

work to support effective data generation and knowl-

edge transfer. To our best knowledge, it represents the

first effort to apply adversarial learning to data-free

model quantization.

• A novel two-level discrepancy modeling strategy is

devised to measure the discrepancy between a quantized

model and its full-precision model, thereby guiding the

training of the quantized model and generator.

• We conduct extensive experiments on image classifica-

tion, segmentation, and object detection tasks, showing

our ZAQ framework achieves state-of-the-art results in

data-free situation, works well for ultra-low precision

scenarios, and is efficient compared to the approaches

of BNS-guided data generation for model quantization.

2. Related Work

Model quantization is a promising model compression

methods aiming to store parameters with fewer bits so that

computation can be executed on integer-arithmetic units

rather than on power-hungry floating-point ones [16]. An

important challenge with quantization is that it can lead to

significant performance degradation, especially in ultra-low

precision settings. To cope with this, PACT [7] used an acti-

vation clipping parameter to find the right quantization scale.

Zhu et al. [49] built a flexible and unified INT8 training

framework for vision tasks. Flexpoint [18], MPT [28] and

DFP [9] all use 16-bit floating-point to train DNNs with accu-

racy comparable to full-precision model. And there are some

approaches to decrease induced degradation by quantization-

aware training [1, 16, 26] or reducing the dynamic range

of activations by clipping outliers [47, 29, 2]. Instead of

focusing on improving the quantization process itself, [27]

explored an equivalent weight arrangement that make the net

less sensitive to quantization. However, all above quantiza-

tion methods generally require access to the entire training

data which is not always available as aforementioned.

Data-free model compression has been a hot topic and

draw more and more attention in recent years, which is a

challenge to compress model without training data. Srini-

vas and Babu [39], the pioneers in data-free compression,

introduced a channel pruning method without original train-

ing data. Since then, more and more kinds of data-free

or zero-shot compression methods were proposed, includ-

ing quantization [2, 4, 42], weight factorization [30] and

knowledge distillation (KD) [25, 5, 13, 43, 23]. DFQ [30]

and ACIQ [2] are both post-training quantization methods

relying on weight equalization or bias correction without

fine-tuning on the entire dataset. But when applied to ultra-

low precision (i.e., lower than 6-bit) model, these kinds of

quantization methods cannot prevent quantization models

from performance degradation. Most of the data-free KD

methods attempt to reconstruct the original data from pre-

trained teacher model utilizing prior information about the

underlying data distribution, such as BNS [44], Dirichlet

distribution [31] and category information [5]. However,

they ignore the intermediate features to guide the student

network learning.

Two recent data-free quantization studies [4, 42] quantize

and fine-tune models without needing original data. Their

core idea is to reconstruct some samples from full-precision

models to fine-tune quantized models. To be specific, Ze-

roQ [4] directly reconstructs samples by optimizing from

random noises according to BNS of full-precision models.

GDFQ [42] further adopts a generator to reconstruct samples

guided by BNS and extra category label information, which

limits its application to classification tasks. To sum up, there

is still a large gap between the data generated based on BNS

and original training data after a time-consuming generation

process. Moreover, both ZeroQ and GDFQ poorly support

high-level vision tasks due to the lack of considering infor-

mation from intermediate layers of full-precision models.

3. The Computational Framework

Framework Overview: Figure 2 depicts the basic frame-

work of ZAQ. It contains pretrained full-precision model P ,
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Figure 2. Framework of ZAQ.

quantized model Q, and generator G. G is responsible for

generating informative and diverse data examples, which

are used by a two-level discrepancy function to compute

the discrepancy between P and Q. The discrepancy func-

tion is composed of output discrepancy Do and intermediate

inter-channel discrepancy Df . Consequently, Q and G are

optimized through a minimax game, where the adversarial

learning of the two-level discrepancy modeling is conducted.

In addition, activation regularization La encourages G to

generate more informative and diverse examples.

In what follows, we first introduce the preliminary of the

quantization function used in this paper. Then we detail the

proposed framework.

3.1. Preliminary

A common practise in training a neural network with

low-precision weights and activations is to introduce a quan-

tization function. Considering the general case of k-bit quan-

tization [48], we define the uniform quantization function

q(·) as:

q(v) = round
(

S · (v − Z)
)

, (1)

where v denotes the full-precision (float32) value, S is the

scaling factor, and Z is the zero point in float32. According

to whether the parameter Z is zero, uniform quantization

can be divided into two categories: symmetric quantization

and asymmetric quantization. Here we use symmetric quan-

tization and set Z = 0. Consequently, S is formulated as:

S =
2k−1 − 1

max(|xf |)
, (2)

where xf is any one of float32-point numbers.

The key of model quantization is to reduce the discrep-

ancy D between full-precision model P and low-precision

model Q through optimizing Q, which can be expressed as:

Q∗ = min
Q
D(P,Q) . (3)
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Figure 3. Illustration of obtaining channel relation map.

3.2. Two­level Discrepancy Modeling

As aforementioned, the framework ZAQ leverages a novel

two-level discrepancy function to model the discrepancy be-

tween full-precision and quantized models. First, we assume

there is a data example xg generated by G, i.e., xg = G(z)
where z is random noise. We denote the corresponding pre-

diction outputs for full-precision model P and quantized

model Q as P (xg) and Q(xg), respectively. There are some

distance metrics that can be used to measure the discrepancy,

such as Kullback-Leibler (KL) divergence. KL divergence is

efficient in data-driven knowledge transfer or distillation, but

it is insufficient to maximize the discrepancy when training

generator G. This is because some unexpected samples may

be similar in prediction, making the negative KLD too small

to optimize. Instead, we adopt L1 loss to measure the output

discrepancy Do in a more direct way:

Do(P,Q;G) = Exg

[

1

N
‖P (xg)−Q(xg)‖1

]

, (4)

where N is element number in the outputs, for instance, class

number for classification and label map size for segmenta-

tion.

Inspired by the idea of harnessing intermediate feature

maps to improve performance in knowledge distillation [45,

32], we further propose Channel Relation Map (CRM) to

gain intermediate inter-channel discrepancy. Noting that

although there are a few studies [32, 22] modeling relations

between data instances, we are the first to consider similarity

relations between different channels of feature maps, which

are introduced later.

Specifically, we define intermediate inter-channel discrep-

ancy as below:

Df (P,Q;G) = Exg

[

L
∑

l

ω(l)

C(l)2

∥

∥

∥
R

(l)
P (xg)−R

(l)
Q (xg)

∥

∥

∥

1

]

,

(5)

where L is the total number of layers exploited for ZAQ,

R
(l)
P (·) and R

(l)
Q (·) represent CRM extracted from the l-th

layer of P and Q, respectively. ω(l) is the adaptive weight
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allocated to the l-th layer, and C(l) is the output channel

number of the l-th layer. Actually, we usually select the last

layer in each group or block for residual neural networks,

and the layer number is 3 ∼ 4 for VGG in our experiments.

A conventional manner to measure the discrepancy of

intermediate layers relies on correlating feature maps of P

and Q, just as what KD commonly does [35, 45]. However,

since the numerical spans of P and Q are very different be-

cause of precision settings, the gap between feature maps in

P and Q is relatively large (verified in Table 4). Therefore,

we introduce CRM to address this issue. Gram matrix can

represent certain relationships between feature vectors to

reflect the characteristics of images, and is commonly used

in style transfer [14]. But it is unreliable to measure the

feature discrepancy between two networks by directly using

feature vectors with different precision. Here we extend

it to channel relation map to capture the relations towards

different channels in the same layer of one model. It can-

not only shield the influence of feature maps with different

numerical spans, but also represent the high-dimensional

features of samples. Figure 3 illustrates the procedures of

obtaining CRM, which are the same for both P and Q. Tak-

ing the feature map F̃ (l) ∈ R
C×H×W extracted from the

l-th layer of P (or Q) for clarification, it can be flattened

into F (l) ∈ R
C×HW , which is composited by C channel-

wise feature vectors:
[

f
(l)
1 f

(l)
2 · · · f

(l)
C

]⊤

. Then the

consine similarity between channel features f
(l)
i and f

(l)
j is

defined as below:

R
(l)
ij =

< f
(l)
i ,f

(l)
j >

∥

∥

∥
f
(l)
i

∥

∥

∥

2

∥

∥

∥
f
(l)
j

∥

∥

∥

2

. (6)

Based on R
(l)
ij (i, j ∈ {1, 2, . . . , C}), the corresponding

matricesR
(l)
P (xg) andR

(l)
Q (xg) can be obtained.

To adaptively determine ω(l) in Eq. 5, we use the discrep-
ancy calculated for the two models and define the following
computational equation:

ω
(l) =

exp
(

EMAT

(

Exg∈Bt

[
∥

∥

∥
R

(l)
P

(xg)−R
(l)
Q

(xg)
∥

∥

∥

1

]))

∑L
l′ exp

(

EMAT

(

Exg∈Bt

[
∥

∥

∥
R

(l′)
P

(xg)−R
(l′)
Q

(xg)
∥

∥

∥

1

])) ,

(7)

where EMAT denotes exponential moving averaging, T

is the training steps in an epoch, and L is the number of

layers exploited for ZAQ. By this way, more attention will

be paid to the model layer that has a larger difference in

CRMs. Besides, in order to avoid breaking the balance in

long-term training, ω(l) needs to be re-initialized by 1
L

when

a new epoch starts.

3.3. Adversarial Knowledge Transfer

Our ZAQ framework trains quantized model Q and gen-

erator G in an adversarial minimax game, which contains

discrepancy estimation and knowledge transfer stages. In

discrepancy estimation stage, the generator G aims at maxi-

mizing the two-level discrepancy between Q and P to search

for discrepancy represent space. The loss is defined as fol-

lows:

LDE = −Do(P,Q;G)− αDf (P,Q;G) , (8)

where α is a hyperparameter to balance Do and Df .

In knowledge transfer stage, quantized model Q is opti-

mized to minimize the two-level discrepancy to approximate

full-precision model P , denoted as:

LKT = Do(P,Q;G) + αDf (P,Q;G) . (9)

As a consequence, the knowledge is transferred from P to

Q progressively in the zero-shot situation.

3.4. Activation Regularization

Although the L1 loss function can relieve the model from

falling into some abnormal sample points in discrepancy

estimation, they exist all the time and interfere with the gen-

erator’s exploration of the original input domain. These

unexpected samples could make the prediction distributions

of the two networks consistent but they are not in the work-

ing domain of full-precision model. We assume the infinite

discrepancy space between model P and Q is Ω, in which

the generator G explore valuable samples for transfer learn-

ing. In fact, Ω consists of two subspaces ΩP and ΩU , which

means Ω = ΩP ∪ΩU . ΩP is the subspace that is equal to

the original training data domain, or the working domain of

pretrained model P . And ΩU is an infinite subspace outside

the working domain of P . The goal of the generator is to

synthesize samples distributed in the subspace ΩP , rather in

ΩU .

According to several researches about interpretability of

DNNs [46, 11] or sample reconstruction [25, 5], the activa-

tion layer reflects the sensitivity of the neural network to the

input data, and higher activation means more correlation be-

tween synthetic samples and working domain of P . Hence,

we further leverage activation regularization to constraint the

generator to explore and synthesize valuable samples. We

denote the i-th channel activation map extracted by the last

convolution layer of network P as hP
i , i ∈ {1, 2, . . . ,M},

where M is the number of activation maps. Then, the activa-

tion regularization can be formulated as

La = −
1

M

M
∑

i

∥

∥hP
i

∥

∥

1
. (10)

With the intuition that high activation values mean a better

matching between a given input example and training data,

we incorporate La into Eq. 8 and minimize the following

loss to guide generator training.

LDE = −Do(P,Q;G)− αDf (P,Q;G) + βLa. (11)
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Finally, the detailed procedures of the proposed frame-

work ZAQ is summarized in Algorithm 1.

Algorithm 1: Zero-shot Adversarial Quantization

Input: A pretrained full-precision model P (x; θp),
quantization precision.

Output: Quantized model Q(x; θq)
1 Quantize the model P as Q by Eq. 3;

2 for number of epochs do

3 Initialize adaptive weights by 1
L

;

4 for number of training steps do

5 # Discrepancy Estimation

6 z ∼ N (0, I), xg ← G(z; θg);
7 Estimate LDE by Eq. 11;

8 Fix θq , update θg:

θg ← θg − η
∂LDE

∂θg

Update adaptive weights ω(l) by Eq. 7;

9 # Knowledge Transfer

10 z ∼ N (0, I), xg ← G(z; θg);
11 Calculate LKT by Eq. 9;

12 Fix θg , update θq:

θq ← θq − η
∂LKT

∂θq

13 end

14 decay η;

15 end

4. Experiments

4.1. Experimental Setup

4.1.1 Datasets

We evaluate our approach on the following six datasets:

CIFAR10, CIFAR100, and ImageNet for classification,

Cityscapes and CamVid for segmentation, and VOC2012 for

object detection.

CIFAR. CIFAR10 [19] and CIFAR100 consist of 32×32

color images with 10 and 100 classes, respectively. Both are

split into a 50,000-image train set and a 10,000-image test

set.

ImageNet. The 1,000-class dataset from ILSVRC

2012 [36] provides 1.2 million images for training, and

50,000 for validation.

Cityscapes. Cityscapes [8] is for urban scene understand-

ing and contains 30 classes with only 19 classes used for

evaluation. It provides 3,975 images with fine segmentation

annotations, including 2,975 images for training and 500

images for testing.

CamVid. CamVid [3] is an automotive dataset, contain-

ing 367 training and 233 testing images. We perform on the

commonly used 11 different classes.

VOC2012. A total of 11540 images are included in PAS-

CAL VOC2012 [12], where each image contains a set of

objects, out of 20 different classes.

4.1.2 Baselines

To evaluate the effectiveness and advantages of our proposed

method, we compared it with both data-free fine-tuning meth-

ods and post-training quantization methods. The baselines

are briefly described as follows.

FT. We use original training data to Fine-Tune (FT) a

quantized model.

RQ. Raw Quantization (RQ) method directly testing the

model after quantization without any fine-tuning.

DFQ [30]. A post-training quantization method uses

a weight equalization scheme to remove outliers in both

weights and activations.

ACIQ [2]. It analytically computes a clipping range,

as well as a per-channel bit allocation for neural networks

without any fine-tuning/training.

ZeroQ [4]. It retrains a quantized model by reconstructed

data instead of original data.

GDFQ [42]. It is also a fine-tuning method by recovering

fake data via a conditional generator. Yet it only supports

classification tasks.

4.1.3 Implementation Details

We implement all networks and quantization methods in

Pytorch. For all datasets, we adopt the same data augmenta-

tion procedure on pretraining as [37] for making fair com-

parisons. We adopt SGD with momentum 0.9 and weight

decay 5× 10−4 in both pretraining and fine-tuning. All the

models are pretrained for 200 epochs and the learning rates

are decayed by 0.1 for every 80 epochs on datasets, except

ImageNet, on which we directly use the official pretrained

models. We construct a generator following DCGAN [33]

with 256-dimension noise and is trained with Adam [17].

But for CIFAR, we just reduce the channels of all layers in

the generator to a quarter and set the dimension of noise to

100, due to the smaller size of the samples. Moreover, the

learning rates of quantized models and generators are initial-

ized to 0.1 and 1× 10−3, respectively. The learning rates of

SGD and Adam are decayed by different steps in different

tasks. In training, we set the batch size to 256 for CIFAR,

64 for ImageNet and VOC2012, and 16 for segmentation

datasets. As for the hyperparameters, we set α = 0.1 and

β = 0.05 by default. More detailed implementation and

settings for different datasets are illustrated in the following

parts.
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Dataset Model size (MB) bit size (MB) float32 RQ ZeroQ GDFQ DFQ ACIQ ZAQ

CIFAR10
MobileNetV2 9.0 W6A6 1.7 92.39 78.90 89.90 91.27 85.43 91.04 92.15

VGG19 149 W4A8 25.1 93.49 92.42 92.69 92.84 92.66 92.48 93.06

CIFAR100
ResNet20 1.1 W5A5 0.2 69.58 49.54 65.7 66.12 59.42 60.19 67.94

ResNet18 43 W4A4 5.4 77.38 17.00 70.25 71.53 40.35 54.73 72.67

ImageNet

MobileNetV2 14 W8A8 3.5 71.88 67.09 70.88 70.17 70.58 68.92 71.43

ResNet50 98 W4A4 12.3 76.13 64.90 69.30 68.69 10.32 59.34 70.06

ResNet50 98 W2A2 6.1 76.13 11.25 63.12 64.96 1.48 3.25 65.52

Table 1. Results of image classification on three datasets.

RGB Ground Truth FT ZeroQ DFQ Ours

Figure 4. Visualization of segmentation results for Cityscapes (the

first two rows) and CamVid (the last two rows).

4.2. Experimental Results

4.2.1 Performance Test for Image Classification

For image classification, we take the top-1 accuracy (abbr.

Acc) as the metric. The number of fine-tuning epochs is

200 for CIFAR, while 300 for ImageNet. In each epoch, the

training steps are set to 40 for CIFAR and 50 for ImageNet.

The learning rates of SGD and Adam are decayed every 80

epochs for CIFAR and 100 for ImageNet. Besides, we use

“W-A-” to denote the quantization bits used for weights (W)

and activations (A), and “float32” as full-precision models.

Table 1 shows the classification results. First, we find

DFQ and ACIQ suffer from dramatic performance degra-

dation when taking ultra-low precision, especially for CI-

FAR100 and ImageNet. This verifies that due to the lack

of fine-tuning, post-training quantization methods do not

work well for ultra-low precision. Then we observe our

framework achieves the best performance on the three clas-

sification datasets, indicating its advantages over the other

quantization methods.

4.2.2 Performance Test for Image Segmentation

In this part, we mainly compare ZAQ with ZeroQ and DFQ

on Cityscapes and CamVid, the images of which are all

resized to 256. GDFQ requires labels as conditions to syn-

thesize data, so it does not naturally support high-level vision

tasks such as segmentation and detection. The ImageNet-

pretrained MobileNetV2 and ResNet50 models are used as

Dataset Method W8A8 W6A6 W4A4 W2A2

Cityscapes

(63.39)

FT 61.25 59.64 55.98 45.77

RQ 58.42 55.33 29.16 0.44

DFQ 57.34 55.29 19.06 3.13

ZeroQ 59.52 57.97 52.73 43.18

ZAQ 60.18 58.12 55.12 44.93

CamVid
(53.34)

FT 52.76 50.75 49.13 40.06

RQ 44.96 43.20 10.05 0.02

DFQ 51.02 46.13 11.78 2.33

ZeroQ 49.92 48.56 43.83 36.44

ZAQ 50.89 49.77 47.62 39.95

Table 2. Results on Cityscapes and CamVid (mIoU).

feature extractors within DeepLabv3 [6]. The hyperparam-

eters α = 0.5 and β = 0.1. We adopt mean IoU of all

classes (mIoU) as the evaluation metric for segmentation.

In fine-tuning, we set the size of the synthetic image as

128× 128, which is enough for representing model discrep-

ancy and transferring knowledge.

Table 2 shows the performance of quantized models fine-

tuned by different methods, from which we can see that our

method still exhibits superior performance, especially for

ultra-low precision situations. This observation is consistent

with what we find in image classification tasks.

Furthermore, we randomly select two real examples from

Cityscapes and CamVid, respectively, and visualize the seg-

mentation results of 4-bit DeeplabV3(MobileNetV2) learned

by different model quantization methods. The results are

shown in Figure 4, where the first two rows correspond to

Cityscapes and the last two rows correspond to CamVid.

Obviously, DFQ does not work properly for the examples in

4-bit quantization and thus it is hard to retain model perfor-

mance. By comparing ZAQ with ZeroQ, we find it exhibits

better qualitative results in complex details and small object

segmentation, as shown in the second row of the figure.

4.2.3 Performance Test for Object Detection

To demonstrate the application on object detection, we apply

ZAQ to the model MobileNetV2 SSD [21] and evaluate it on

VOC2012. Table 3 briefly demonstrates the advantages of
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Method W8A8 W4A8 W4A4 W2A2

FT 70.35 68.24 64.28 57.02

RQ 68.31 66.25 5.27 1.06

DFQ 69.16 64.57 13.15 2.65

ZeroQ 69.04 67.53 62.72 53.07

ZAQ 70.02 68.12 64.44 56.96

Table 3. Results of SSD(MobileNetV2) on VOC2012 (mAP).

our method compared to other quantization methods. In par-

ticular, ZAQ is comparable with FT that utilizes the original

training dataset.

Finally, we end up the introduction of the performance

tests for three image-based tasks with Figure 5, which pro-

vides an overview of how performance changes with differ-

ent bits. The curves of different quantization methods in the

figures reflect that ZAQ is consistently better and it gains

greater improvements in ultra-low precision situation.
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Figure 5. Performance change versus different quantization preci-

sion.

4.2.4 Ablation Study

In this part, we conduct an ablation study to validate the con-

tributions of the main components in ZAQ. First of all, Fig-

ure 6 presents the benefits of output discrepancy Do (‘a’), in-

termediate inter-channel discrepancyDf (‘b’), and activation

regularization La (‘c’) on ImageNet (using model ResNet18)

and Cityscapes (using model DeeplabV3(ResNet50)). Since

output discrepancy Do is directly associated with the final

model output, it should not be removed anytime. As we

can see, the intermediate inter-channel discrepancy could
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Figure 6. Effectiveness of different components of the proposed

ZAQ method. Noting that ‘a’:Do, ‘b’:Df , ‘c’:La.

bring 1 ∼ 2% performance improvement, while the activa-

tion regularization has a smaller contribution of about 0.5%

improvement. But it could prevent the generator from falling

into some abnormal samples that are not sensitive to the

full-precision models, which is also utilized in the previous

study for KD [5].

Dataset Model bit CRM Gram AT

CIFAR100 ResNet18 W4A4 72.67 45.32 61.80

Cityscapes DeeplabV3 W8A8 52.17 41.36 48.65

Table 4. Ablation study of CRM.

We further demonstrate the effectiveness of CRM in

model quantization by comparing it with two alternatives for

learning intermediate knowledge: (1) Gram which directly

uses Gram matrix in discrepancy modeling; (2) AT [45]

which directly aligns normalized feature maps in knowl-

edge transfer. Table 4 shows the performance of the above-

mentioned methods, from which we can see CRM is much

better than the other two methods. This verifies the neces-

sity of considering different numerical spans in designing

quantization-aware fine-tuning methods. In addition, we

choose CIFAR100 to visualize the computed CRMs by ZAQ.

In Figure 7, (a) and (b) are CRMs from the 2-nd exploited

layer of full-precision and 4-bit ResNet18, respectively. By

comparison, we can find the two CRMs are consistent with

each other.

4.2.5 Efficiency Analysis

We conduct efficiency test on a single GPU (GTX 2080Ti)

for ZAQ and the data generation-based quantization meth-

ods, i.e., ZeroQ and GDFQ. The number of synthesized

images determined for each method is conditioned on its

performance convergence state following [4] and [42]. Due

to the poor diversity of synthetic images, ZeroQ and GDFQ

need to synthesize more samples in training. Besides, the im-

ages in Cityscapes have high resolution, making ZeroQ cost
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too much time in synthesizing procedure. So we conduct the

comparative experiment on Cityscapes with the same number

of samples approximate to the original dataset in each epoch.

Table 5 shows the results, where our method reduces GPU

time by 41.8% compared to GDFQ on CIFAR100, while

57.5% compared to ZeroQ on Cityscapes. The conclusion

is intuitive since ZeroQ needs 500 to 1500 iterations to gen-

erate per image and GDFQ is prone to generate redundant

images.

Dataset Method images GPU time

CIFAR100

ZeroQ 10000 5.5 h

GDFQ 12800 7.6 h

Ours 5120 3.2 h

Cityscpaes
ZeroQ 1280 12.7 h

Ours 1280 5.4 h

Table 5. Time cost comparison.

4.3. Case Study of Generated Images

This part conducts case studies on the generated data by

different model quantization methods. We take CIFAR and

CamVid for illustration. For CIFAR, the randomly selected

images are shown in Figure 8. The first row of the images

corresponds to CIFAR10 and the second row corresponds

to CIFAR100. The first column shows the original images.

The images in the middle three columns are gotten from

MobileNetV2 (quantized to 8 bits) and the last column is

from ResNet20 (quantized to 4 bits). By investigating the

image patterns generated by GDFQ and ZeroQ, we find there

is a big gap between them and those of the original images.

Although the image samples by ZAQ seem to be not rec-

ognizable by humans or be similar to the original data, their

goal is to represent the discrepancy between two models with

different precision. The comparison between the synthetic

images of ZQA and those of GDFQ and ZeroQ indicates that

ZQA could generate more diverse images, while GDFQ and

ZeroQ suffer from more repeated patterns in their generated

images. This empirically shows the efficiency of knowledge

transfer in ZAQ.

Furthermore, we visualize the semantic image samples

generated by ZAQ and ZeroQ in Figure 9. The observation

(a) full-precision model (b) quantization model

Figure 7. Visualization of CRMs on CIFAR100.

CIFAR GDFQ ZeroQ Ours(8-bit) Ours(4-bit)

Figure 8. Generated samples about CIFAR.

Generated by ZAQ Generated by ZeroQ

Figure 9. Sematic images about CamVid generated by ZAQ and

ZeroQ based on DeeplabV3(MobileNetV2).

is accordant with what we have observed in image classi-

fication datasets. That is, ZAQ tends to generate semantic

images with more diversity, while ZeroQ reconstructs se-

mantic images with some duplicated local patterns.

5. Conclusion and Future Work

In this paper, we have proposed ZAQ, a novel zero-shot

adversarial quantization framework without needing to ac-

cess any original training data. Its main innovations lie in

applying adversarial learning to data-free model quantiza-

tion through alternating two-level discrepancy estimation

and knowledge transfer. Our framework is welcomed for

its ability of modeling prediction discrepancy, as well as in-

termediate inter-channel discrepancy between full-precision

and quantized models. Extensive experiments on various

deep neural models for three common vision tasks demon-

strate the superiority of ZAQ, especially for ultra-low preci-

sion situations. In the future work, we consider applying the

proposed method to other domains such as BERT quantiza-

tion [38], and extending ZAQ to automatic mixed precision

quantization.
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