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Abstract

We introduce a new dataset for the emotional artificial

intelligence research: identity-free video dataset for Micro-

Gesture Understanding and Emotion analysis (iMiGUE).

Different from existing public datasets, iMiGUE focuses on

nonverbal body gestures without using any identity infor-

mation, while the predominant researches of emotion anal-

ysis concern sensitive biometric data, like face and speech.

Most importantly, iMiGUE focuses on micro-gestures, i.e.,

unintentional behaviors driven by inner feelings, which are

different from ordinary scope of gestures from other gesture

datasets which are mostly intentionally performed for illus-

trative purposes. Furthermore, iMiGUE is designed to eval-

uate the ability of models to analyze the emotional states by

integrating information of recognized micro-gesture, rather

than just recognizing prototypes in the sequences separate-

ly (or isolatedly). This is because the real need for emo-

tion AI is to understand the emotional states behind ges-

tures in a holistic way. Moreover, to counter for the chal-

lenge of imbalanced sample distribution of this dataset, an

unsupervised learning method is proposed to capture laten-

t representations from the micro-gesture sequences them-

selves. We systematically investigate representative meth-

ods on this dataset, and comprehensive experimental result-

s reveal several interesting insights from the iMiGUE, e.g.,

micro-gesture-based analysis can promote emotion under-

standing. We confirm that the new iMiGUE dataset could

advance studies of micro-gesture and emotion AI.

1. Introduction

Emotional artificial intelligence (emotion AI) is using

machine learning methods to enable computers to under-
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dation, and National Natural Science Foundation of China.

Figure 1. Three frames (cropped) from a post-match press confer-

ence video to illustrate the identity-free micro-gestures, such as

“cover face”, “fold arms”, and “cross fingers”. Could machine

recognize these micro-gestures, and understand emotional states

of the player in a holistic way, and further identify if the player

has won or lost the match (positive or negative emotional states)?

stand human emotions. It plays a vital role in human-

computer interaction since emotions are on all the time, p-

resented in all kinds of human activities, thinking, and de-

cision makings. According to psychological studies, body

language is an essential part for understanding human emo-

tions. Every day, we respond to thousands of such nonver-

bal behaviors including facial expressions, eye movements

or gaze, tone of voices, gestures, touches, and the use of

space. Body language-based emotion understanding has at-

tracted extensive attention in the communities of computer

vision and affective computing, and a considerable number

of datasets have been proposed, e.g., posed facial expres-

sions [30, 56, 92, 82, 25, 96], spontaneous facial behav-

iors [1, 47, 4, 51, 12, 35], micro-expressions [91, 41, 11],

voice/speech [65, 66, 51, 61], social signals [28, 29], and

multi-modal datasets with facial expressions and physio-

logical signals [73, 34, 51, 61]. Although computational

methodologies were proposed correspondingly and consec-

utively to improve the performance on these datasets, there

are still significant gaps between current studies and the

needs of real applications. Major limitations include:

1) Intentional behavioral-based gestures. Previous

gesture studies mostly focused on illustrative (or iconic)

gestures [84], e.g., waving hands as “hello” or “goodbye”,

which are intentionally performed for conveying certain
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meanings or feelings during interactions. However, in many

occasions people would suppress or hide their feelings (e-

specially negative ones) rather than expressing them. Pre-

vious studies [2, 3, 6] showed that there is a special group

of gestures, the micro-gestures (MGs), which are helpful to

understand such suppressed or hidden emotions. The ma-

jor difference between MGs and illustrative gestures is that

MGs are unintentional behaviors elicited by people’s inner

feelings, e.g., rubbing hands due to stress, and the function

of MGs is for relieving or protecting oneself from negative

feelings rather than presenting for others. Thus, being able

to automatically recognize MGs would allow emotion un-

derstanding at a better level. To the best of our knowledge,

there is no publicly available dataset for this emotional MGs

research in the field of computer vision.

2) Gap between behavior recognition and emotion

understanding. Most existing datasets only aim to eval-

uate approaches that can detect and recognize prototypes of

behaviors (including gestures). In fact, the actual need of e-

motion AI is not merely to recognize certain behaviors, but

to uncover the emotion underneath. Consider a post-match

interview scenario, a player is interviewed by reporters over

several question & answer rounds (see Fig. 1). Some MGs

could be observed, e.g., cross arms (defensive) and cover

face (upset or ashamed), but it is hoped that the machine can

understand (identify) if the player has a positive or negative

feeling (e.g., caused by winning or losing of the match).

3) Sensitive biometric data. Most of the existing

datasets involve sensitive biometric data. Actually, biomet-

ric data based identity recognition plays a critical role in a

variety of applications and has gained great success in the

past decade. While every coin has two sides, biometric in-

formation is so sensitive that is particularly prone to be (i-

dentity) stolen, misused, and unauthorized tracked. With

the concerns of privacy grows, more attention should be

paid to protect biometric data of individuals.

Psychological studies [16] showed that there are over

215 behaviors associated with psychological discomfort

and most of them are not in the face. MGs are subtle and

(some of them) short, mostly out of our awareness or no-

tice during live interactions [21]. It would be of great value

if we can develop computer vision methods to capture and

recognize these neglected clues for better emotion under-

standing. In this paper, we introduce a novel MGs dataset

to address afore mentioned limitations. The key contribu-

tions are summed up as follows:

1) Instead of using facial or vocal-expressions for emo-

tion understanding, the proposed dataset offers an approach

where the identity-free MGs are explored for hidden emo-

tion understanding, and privacy of the individuals could be

preserved. As far as we know, iMiGUE is the first public

benchmark focuses on emotional MGs. This is the first in-

vestigation of such gestures from the computer vision per-

spective. Moreover, to deal with the issue of imbalanced

classes distribution, an unsupervised model is proposed.

2) iMiGUE is not only for MG recognition, but also pro-

vides a hierarchy that allows exploration of the relationship

between MGs and emotion, i.e, associates the MGs holis-

tically for emotion understanding. As such, the data in

iMiGUE are annotated on two levels: the MG categories

were annotated on video clip-level, and the emotion cate-

gories were labeled on video-level.

3) Comprehensive experiments are conducted on the

iMiGUE to provide baseline results. In video clip-level,

the experimental results show that even fully supervised

learning SOTA models cannot yield satisfactory accuracy

on iMiGUE, which could verify that the challenges of rec-

ognizing such hardly noticeable MGs. The proposed un-

supervised method can achieve competitive performance

compared with many supervised models. In video-level,

we find micro-gesture is a vital factor for emotion under-

standing. We only employed a simple recurrent neural net-

work (RNN) network to achieve MGs analysis in a holistic

way, but its emotion understanding result can beat existing

action/gesture recognition-based models. The dataset and

findings will serve as a launch-pad for exploring identity-

free MG-based emotion AI.

2. Related Work

A person’s emotional state is often conveyed through

bodily expression. As such, analyzing body based activi-

ties, including action, gesture and posture are the popular

research topics [75, 36, 23, 62, 67, 71, 24, 53, 93] in the

community. However, these datasets focused on recogniz-

ing human activities (e.g., a man is jumping), rarely related

to the emotional states. We limit our review on the relat-

ed emotional gesture-based benchmarks. Then we review

related work of gesture/action recognition.

2.1. Emotional Gesture­based Datasets

Gesture is one of the key cues of social communication

which includes movements of hands, head and other parts

of human body that express various feelings, thoughts and

emotions [55]. Table 1 summarizes the attributes of wide-

ly used databases of emotional gestures. In this field, early

studies were mostly built on acted or posed gestures. The

Tilburg University Stimulus set [64] collected photographic

still images of 50 actors enacting different emotions. FABO

database [26] is one of the pioneer work which proposed

using video clips of posed prototype gestures to recognize

emotions. These videos were labelled with six basic emo-

tions, as well as four more states, namely, neutral, anxi-

ety, boredom, and uncertainty. Following that posed behav-

ior which was captured in controlled recording conditions,

researchers extended emotional gesture analysis into many

directions. In HUMAINE [14, 9], the researchers elicited
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Datasets
# Ge-

stures

# Em-

otions

#Subjects

(F/M)

# Sam-

ples

#Vid-

eos
Duration

Con-

text

Expr-

ession
Resolution Modalities

Recog-

nition

FABO [26] - 10 23 (12/11) 206 23 6 Min C Posed 1024×768 F + G Isolated

HUMAINE [14] 8 8 10 (4/6) 240 240 5-180 Sec C Posed - F + G Isolated

GEMEP [22] - 18 10 (5/5) 7 000+ 1260 - C Posed 720×576 F + G Isolated

THEATER [32] - 8 - 258 - - U SP - G Isolated

EMILYA [19] 7 8 11 (6/5) 7 084 23 5.5 Sec C Posed 1280×720 G Isolated

LIRIS-ACCEDE [20] 6 6 64 (32/32) - - 1 Min C Posed - F + G Isolated

emoFBVP [60] 23 23 10 (-) 1 380 - 20-66 Sec C Posed 640×480 F + G + V Isolated

BoLD [48] - 26 - 13 239 9 876 - U SP - G Isolated

iMiGUE (Ours) 32 2 72 (36/36) 18 499 359 0.5-25.8 Min U SP 1280×720 IMG Holistic

Table 1. The attributes comparison of iMiGUE with other widely used datasets for recognizing gesture-based expression of emotion. F/M:

Female/Male, C: Controlled (in-the-lab), U: Uncontrolled (in-the-wild), SP: Spontaneous, F: Face, G: Gesture, V: Voice, IMG: Identity-free

Micro-Gesture.

emotions via interaction with computer avatar of its opera-

tor. The Geneva multi-modal emotion portrayals (GEMEP)

database [22] contains more than 7 000 audio-video portray-

als of 18 emotions portrayed by 10 actors. Also in a con-

trolled setting, the subset [20] of LIRIS-ACCEDE database

[5] collected upper body emotional gestures from 64 sub-

jects. Using a Kinect sensor, Saha et al. [63] collected 3D

skeleton gesture data of 10 subjects, which included five in-

duced emotions, i.e., anger, fear, happiness, sadness, and

relaxation. Psaltis et al. [59] collected skeletal gestural

expressions that frequently appear in a game-play scenari-

o. Similarly, the emoFBVP [60] dataset has a multi-modal

recordings of actors including body gestures with skeletal

tracking. Emilya [19] dataset captured 3D body movements

of posed emotions via a motion capture system.

Later studies focused more toward spontaneous emotion-

al gestures, which are more challenging than posed ones. In

the Theater [32] dataset, the emotional gesture video clip-

s were extracted from two movies, which are close to re-

al world scenes. In [33], gesture movements are recorded

while subjects were playing body movement based video

games. Luo et al. collected a large-scale bodily expression

dataset, the BoLD [48], in which the in-the-wild perceived

emotion data were segmented from movies and reality TV

shows. To date, few efforts were made on the fine-grained

micro visual of the body, i.e., the MG, which is important

clue for understanding suppressed or concealed emotions.

2.2. Methods for Gesture/Action Recognition

Early work of automatic modeling of emotional gestures

depends largely on hand-crafted features [26, 64, 33]. Re-

cently, numerous neural networks have been introduced for

gesture/action recognition. Among them, supervised learn-

ing is the predominate technique for which labeled data are

utilized to train the models. The earliest attempts utilized

a 2D convolutional neural network (CNN) [72, 18, 86, 98,

43, 94] to extract spatial features from the selected frames,

and the temporal aggregation is considered by an additional

stream of optical flow or the temporal pooling layers. The

3D CNNs [79, 8, 87, 81, 27, 88, 80] can jointly capture

spatial-temporal semantics, where the filters are designed in

a 3D manner. Compared to the 2D CNNs, 3D ones can pro-

cess the temporal information hierarchically throughout the

whole network. Also, some models like the Slow-fast [17]

considered a joint implementation of both two streams (fast

and slow) and 3D CNN. The RNN is also commonly used

for temporal integration. Specifically, the long short-term

memories (LSTMs) [13, 15, 83, 99, 50, 42, 44, 45] have

demonstrated their strength on learning sequential data. Re-

cently, the skeleton data is gaining increasingly popularity

because of their invariance to background dynamics. Cur-

rent work on skeleton based action recognition can mainly

be categorized into two types: one is RNN based methods

[15, 44, 74, 45, 95, 40] which directly process gesture skele-

tons as time series, and the other one is graph convolutional

network (GCN) [90, 38, 70, 69, 58, 10, 46] based methods

which reorganize the skeleton data as a graph.

Compared with the supervised methods, the task of be-

havior recognition with unsupervised approaches is much

more challenging, and only a few attempts have been re-

ported. Some methods focused on leveraging temporal in-

formation of videos to learn visual representation, such as

Shuffle & Learn [52], OPN [37], and [89, 78, 85, 31]. Oth-

er methods utilized the encoder-decoder-based video se-

quence/frame reconstruction, e.g., RGB-based [76, 49, 39],

and skeleton-based LongT GAN [97] and Predict & Cluster

(P&C) [77]. The problem is that P&C just used the recon-

struction loss in an element-wise manner without consider-

ing any informative constraint or prior. In addition, P&C

employed a fixed-length input scheme which is hard to en-

code the long-term motion dependencies since the down-

sampled sequences may lose essential information.

3. The iMiGUE dataset

3.1. Key Challenges

We hope to draw more attention on analyzing micro-

gestures starting with building and sharing a new MG

database. We need to solve several unprecedent challenges

to build the iMiGUE as it is different than previous gesture

dataset. 1) How to define and organize the categories of

MGs related to emotions? We take reference from psycho-
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C3: Touching hat C4: Touching or
scratching head

C5: Touching or
scratching forehead

C6: Covering face

C8: Touching or
scratching facial parts

C9: Touching ears
C7: Rubbing eyes

C10: Biting nails
C11: Touching jaw

C12: Touching or
scratching neck

C13: Playing or
adjusting hair

C14: Buckle botton,
pulling shirt collar,

adjusting tie
C15: Touching or

covering suprasternal
notch  

C17: Folding arms  
C18: Dustoffing clothes

C16: Scratching back 

C19: Putting arms
behind body  

C22: Scratching or
touching arms

C25: Minaret gestureC23: Rubbing or
holding hands  

C26: Playing or
manipulating objects   C30: Arms akimbo 

C24: Crossing
fingers  

C27: Hold back arms  

C1: Turtle neck

C28: Head up

C2: Bulging face, 
deep breath  

C29: Pressing lips   

C20: Moving torso  

C21: Siting
straightly  

C31: Shaking
shoulders  

C32: Illustrative BLs 

Head-HandBody-HandHandHeadBody

C1:Turtle neck

C4:Touching head C6:Cover face C7:Rubbing eyes

C9:Touching ears C10:Biting nails C11:Touching jaw

C12:Touching neck C13:Adjusting hair C14:Pulling collar C15:Suprasternal
notch

C16:Scratching 
back

C17:Folding arms

C22:Scratching
arms

C23:Rubbing hands C25:Minaret gesture

C26:Playing objects

C32:Illustrative BLs

(a) 

(c) 

Head-Hand
Body-Hand

Hand
Head
Body

(b) 
Figure 2. (a) Categories of MGs in iMiGUE dateset which refers to psychological studies [16, 57, 54]. (b) Sample percentages of each

category in iMiGUE dataset. (c) Examples (face masked) of micro-gesture categories in iMiGUE dataset.

logical studies [16, 57, 54] when considering the categories

of MGs, the focus is to clarify the boundary to differenti-

ate MGs from illustrative behaviors. 2) How to elicit or

collect the spontaneous MGs? The new dataset will defi-

nitely contain genuine expressions but not posed ones, and

we think it is good to start with selecting and collecting re-

al world videos that contain MG occasion, e.g., from the

online video-sharing platforms. Furthermore, as an impor-

tant goal of iMiGUE is to study the emotional states behind

MGs, we need to find and provide the root cause of these

(MGs) emotional outbursts. 3) How to annotate the data?

The quality of labeling will greatly influence the final re-

sults of model training and testing. We need to annotate the

data on two levels, first is the labels of all MG occasions

(clip-level), and second is the labels of corresponding emo-

tion (video-level). The MG labels are based on criteria from

related psychological studies. We consider “positive” and

“negative” as two emotional categories to start with, and the

labels are based on objective facts, i.e., winning (positive e-

motion) or losing (negative emotion) of a match. Consider-

ing the complexity and diversity of the MGs, a team trained

specifically for the annotation job has been hired. To further

make sure the high-quality annotation, an efficient mecha-

nism for quality control has been designed (see Sec. 3.2).

3.2. Dataset Construction

Data collection. Based on the above factors, we search and

collect videos containing scenarios of “post-match press

conferences” (see Fig. 1), in which a professional athlete

was interviewed by journalists and reporters over several

question & answer rounds after a tough match. The players

had no (or a little) time to prepare as the press conference

will be held right after the match, and he or she needs to re-

spond to the questions rapidly. Even though an experienced

person could respond with “witty” statements, the emotion-

related MGs may leak out unintentionally and unconscious-

ly, since “the subconscious mind acts automatically and in-

dependently of our verbal lie” [57]. The result of the match,

winning or losing is a natural emotion inducer leads to pos-

itive or negative emotion states of the interviewed player.

Accordingly, for the research purpose of emotion AI, these

identity-free MGs should be recognized and understood by

machines, and a real AI could use them holistically to un-

derstand emotional state of the player.

We choose the post-match press conferences of “Grand

Slam” (tennis) tournaments as the first data-source for

iMiGUE, because they have several merits: 1) There are

large numbers of openly accessed videos with high record-

ing quality, e.g., resolutions of at least 720P, so that even

subtle differences between MG instances are well pre-

served. 2) MG-centric instances without background inter-

ference. Unlike several datasets where the background is

either disturbing or distinguishable for different categories,

all post-match press conference videos were recorded with

the same static advertising wall background. 3) Diversi-

ty of cultures and nationalities. The players of tournaments
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come from almost every corner of the Earth (see statistics of

iMiGUE in Sec.3.3). 4) Good gender balance. Each Grand

Slam tournament has 128 male and 128 female players, so

it is easy to setup a gender-balanced dataset.

Data Annotation. The collected videos are annotated on

two levels: the MG categories, and the emotion categories.

The emotions are annotated on video level, i.e., one emo-

tion label for each press conference video. We consider t-

wo emotion categories: positive, i.e., corresponding to the

winning case, and negative, i.e., corresponding to the los-

ing cases. Then we search through the videos to spot and

exert all MG instances (clips) and assign MG category la-

bels for them. The work of MG annotation was very d-

ifficult and time consuming, and we took three measures

as follows to ensure the quality of annotation. 1) Clari-

fy the scope and categories of MGs. According to refer-

ence psychological studies [16, 57, 54], MGs could be clus-

ters as five major groups according to the motions’ loca-

tions and functions, i.e., “Head”, “Body”, “Hand”, “Body-

Hand”, and “Head-Hand”, and each major group contains

multiple fine-categories of MGs. The iMiGUE covers al-

together 31 categories of MGs plus one extra category of

non-MGs, i.e., illustrative gestures (see Fig. 2 (a) for detail-

s). 2) Multiple labelers and training for labeling. We have

five persons working together on MG annotation for two

reasons: the first is to speed up the process, and the second

is to reduce personal bias for more reliable annotation. Be-

fore the actual annotation, all five were trained to unify their

criteria for MG annotation. First, they went through the de-

scriptions and sample figure or video of the 32 categories

of iMiGUE to get understanding of the characteristics of

MGs, and primarily rules of instance durations (the starting

and ending points) were also discussed. Then, they went

through three rounds of labeling exercises, i.e., in each exer-

cise, every labeler first labeled two sample clips separately

and then compared their labels together, different opinions

were carefully discussed until agreements were reached by

all annotators. 3) Cross check for reliable annotations. The

task of annotating all video clips was divided for five per-

sons to ensure that every clip has two labelers. After all five

labelers finished labeling, a cross check of their annotations

were carried out following the Eq. 1

R =
2×MG(Li, Lj)

#All MG
, (1)

where MG(Li, Lj) is the number of MGs on which Labeler

i and Labeler j agreed, and #All MG is the total number

of MGs annotated by the two labelers. The average inter-

labeler reliability Ravg of iMiGUE is 0.81 which indicates

reliable annotations. For the inconsistent annotation cases,

the five labelers discussed them through and kept those with

unified opinions while the rest (still with diverse opinions)

were left out of the final label list.

3.3. Dataset Statistics and Properties

iMiGUE collected 359 videos (258 wins and 101 losses)

of post match press conferences of Grand Slam tournaments

from online video sharing platforms, e.g., YouTube, of the

total length of 2 092 minutes. The videos’ duration varies

with an average length of 350 seconds. The videos’ reso-

lution is 1280×720, and their frame rate is 25 fps. A total

of 18 499 MG samples were labeled out and assigned with

32 category labels, i.e., about 51 MG samples each video on

average. The length of MG instances also varies, from 0.18s

(second) to 80.92s with an average duration of 2.55s. Ta-

ble 1 shows the key characteristics numbers of the iMiGUE

compares with other gesture datasets. Notice that the sam-

ple numbers of the 32 MG categories vary a lot (see Fig. 2

(b)), which is a common situation in many spontaneous e-

motion datasets [91, 41, 11] as it is not control-recorded da-

ta and the occurrence of different behaviors naturally varies.

The sample unbalance is one challenge for MG recognition,

which we will elaborate later in Sec. 4.

This iMiGUE dataset has some attracting properties that

distinguishes it from existing work. 1) Micro-gesture-

based dataset. To the best of our knowledge, this is the

first public dataset of micro-gestures, which is built to anal-

yse these very fine clues with computer vision methods for

recognizing and understanding suppressed or concealed e-

motions. 2) Identity-free. The sensitive biometric data,

such as the face and voice have been masked and removed.

3) Ethnic diversity. iMiGUE contains 72 players from

28 countries and regions (e.g., Argentina, Australia, Spain,

Canada, China, United States, and South Africa) covering

every continent which enables MGs analysis from diverse

cultures. 4) Gender-balanced. iMiGUE comprises 36 fe-

male and 36 male players whose ages are between 17 and

38. 5) Winning and losing as the natural and objective

reference for emotion categories. The iMiGUE is built not

only for MG recognition but more importantly for exploring

the relationship of MGs and the emotional states. As a new

dataset with many unestablished factors, instead of arbitrar-

ily assigned emotion labels which could be biased by sub-

jective judgments, the results of matches could serve as a

more objective reference of emotional states, i.e., to assume

that winning a match would lead to a more positive emotion

status than losing one. Because this dataset is to analyze

MGs and further recognize suppressed emotions without

using sensitive biometric data, we suggest the researchers

who work on estimating emotional states but concern the

privacy issues could use this dataset as a benchmark.

4. Unsupervised Learning for MG Recognition

After the dataset building, a challenging issue is discov-

ered and should be carefully discussed. Compared with the

controlled recording circumstance with the fixed or planed
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Input sequence

Re-generation

BLSTM BLSTM BLSTM

BLSTM BLSTM BLSTM

Encoder

Decoder
LSTM LSTM LSTM

Zero Zero
Re-generation and
KL-divergence loss

Figure 3. Framework of the proposed unsupervised encoder-

decoder network.

number of samples, the imbalanced data issue is hard to

avoid in the condition of an in-the-wild setting. In other

words, iMiGUE dataset has a long-tailed distribution with

class imbalance issue (see Fig. 2 (b)), which may raise a

challenge for fully-supervised learning models and cause a

significant performance drop under the extreme label bias.

As an intuitive substitution of a fully supervised method,

the unsupervised model is advantageous since it does not

require human-labeled data. In this paper, following the Se-

q2Seq unsupervised learning routine [76, 77], we introduce

an encoder-decoder model to learn discriminative informa-

tion of MG (pose or key-points-based) sequences without

using labelled data. There are a few key differences be-

tween our method and previous unsupervised models: 1)

We introduce the mutual information to control character-

istics of the representation by matching to a prior distribu-

tion adversarially, namely, the Kullback-Leibler (KL) diver-

gence is utilized to act as a measure of non-linear statistical

dependence between input sequence and reconstructed one

which facilitates the model to learn inherent action/gesture

representations. While most of existing methods only re-

ly on traditional element-wise loss, e.g., mean square er-

ror (L2 distance) [97] [77] and mean absolute error (L1)

[77]. 2) Unlike other Seq2Seq type encoder-decoder with

a fixed-length scheme [76] [77] that only read in parts of

the input sequence, we provide a flexible strategy which en-

ables the encoder to read in the whole input sequence, aim-

ing to utilize the complete context information and capture

the long-term dynamics in sequences with arbitrary length-

es. To realize the above functions, we extend the prelimi-

nary model of sequential variational autoencoder (S-VAE)

[68], which is a variant of VAE whose encoder-decoder are

implemented by bidirectional LSTM (BLSTM). Different

to the vanilla VAE, S-VAE can handle sequential data and

capture latent patterns from the whole input sequence.

The framework of the proposed unsupervised S-VAE (U-

S-VAE) is illustrated in Fig. 3. The encoder of U-S-VAE

is a multi-layer BLSTM in which the input is a whole se-

quence of body key-points (pose) corresponding to an MG

X = (x1, x2, ...., xT ). After the last frame is read in, the

hidden state ZT is passed to the decoder which acts as the

holistic summary of X . During the decoding phase, a sim-

ple LSTM decoder receives the ZT at the first time-step and

further re-generates the whole input sequence, denoted as

X̃ = (x̃1, x̃2, ...., x̃T ). In particular, we train U-S-VAE

with a joint loss function:

Ljoint = Lreg + λLKL, (2)

where Lreg is the element-wise-based re-generation loss

(||X − X̃||22) which is responsible for ensuring overal-

l structure similarity between the input and the recon-

structed one. Importantly, the KL-divergence is intro-

duced to ensure closer approximation to the joint distribu-

tion and the product of the marginals. The motivation is

to train a representation-learning encoder-decoder to max-

imize the mutual information between the inputs and the

re-generated. The λ controls the weight of KL-divergence

loss. As shown in Fig. 3, the decoder LSTM reads in the

ZT as the first-frame data to initiate its states. In each of

the next time step, instead of the masked ground truth [97]

or any other meaningful information as an input, zeros are

being fed into the decoder. This operation aims to weaken

the decoder which cannot get any information for predic-

tion and it exclusively relies on the state ZT passed by the

encoder. In other words, this strategy enforces the encoder

to learn the latent features and represent them with the fi-

nal state transferred to the decoder. After this unsupervised

network is trained, the latent state ZT of the encoder can

be used for classifying MG. Similar to [77], for the feature

vectors ZT of all sequences in the training set, a K-nearest

neighbors (KNN) classifier is used to assign classes.

5. Experiments

5.1. Benchmark Evaluations

To have standard evaluations for all the reported results

on the iMiGUE dataset, a two-level criteria has been de-

fined. More specifically, on the MG recognition level, we

utilized the cross-subject evaluation protocol which divides

the 72 subjects into a training group of 37 subjects and a

testing group of 35 subjects. The training and testing sets

have 13 936 and 4 563 MG samples, respectively. The IDs

of training and testing subjects can be found in the supple-

mentary materials. On the emotion classification level, we

selected 102 videos (51 win and 51 lose matches) as the

training set, and 100 videos (50 win and 50 loss match-

es) as the test set. The player’s emotional states (posi-

tive/negative) with the result of win or loss, are classified

via analysis of MGs. The details of training and testing pro-
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Methods Model+Modality
Accuracy

Top-1 Top-5

Super-

vised

S-VAE [68]

RNN + Pose

27.38 60.44

LSTM 32.36 72.93

BLSTM 32.39 71.34

ST-GCN [90]

GCN + Pose

46.97 84.09

2S-GCN [69] 47.78 88.43

Shift-GCN [10] 51.51 88.18

GCN-NAS [58] 53.90 89.21

MS-G3D [46] 54.91 89.98

C3D [79]

3DCNN + RGB

20.32 55.31

R3D-101 [27] 25.27 59.39

I3D [8] 34.96 63.69

TSN [86]

2DCNN + RGB

51.54 85.42

TRN [98] 55.24 89.17

TSM [43] 61.10 91.24

Unsup-

ervised

P&C [77] Encoder-Decoder

+ Pose

31.67 64.93

U-S-VAE Z (Ours) 32.43 64.30

Table 2. Comparison of MG recognition accuracy (%) with state-

of-the-art algorithms on the iMiGUE dataset (best: bold, second

best: underlined).

tocols (video IDs) can be found in the supplementary ma-

terial. Specially, to benefit the community of skeleton or

pose-based gesture recognition, we provide the pose data of

every frame, achieved by using the OpenPose toolbox [7].

5.2. Implementation details

In the proposed U-S-VAE, we set the following architec-

ture: Encoder: 1-Layer BLSTM with N = 256 units for each

direction. Decoder: 1-Layer LSTM with N = 256 units. The

learning rate is 0.0002 with a decay factor of 0.999 for ev-

ery five training epochs. The network is trained till the loss

converges such that the training loss tends to be stable.

A series of experiments are conducted on the iMiGUE

dataset on a PC with a Titan RTX GPU. All training config-

urations follow the original papers unless stated otherwise.

5.3. Clip­level Micro­gesture Recognition

In order to evaluate supervised learning-based methods’

performance on iMiGUE, 14 state-of-the-art algorithms are

selected which can be simply categorized into four group-

s, namely, body key-points-based RNN (i.e., BLSTM, L-

STM, and S-VAE [68]), and GCN (i.e., ST-GCN [90], 2S-

GCN [69], Shift-GCN [10], GCN-NAS [58], and MS-G3D

[46]), RGB-based 3DCNN (i.e., C3D [79], R3D-101 [27],

and I3D [8]), and 2DCNN with temporal reasoning (i.e., T-

SN [86], TRN [98], and TSM [43]). We further evaluate

the effectiveness of the proposed U-S-VAE by comparing

it with existing unsupervised methods. In fact, only a few

pose (skeleton)-based unsupervised models were proposed,

e.g., LongT GAN [97] and P&C [77]. Here, we report the

results of P&C since its implement code is publicly avail-

able. It is noted that all models follow the same evaluation

protocol mentioned above for a fair comparison. In Table 2,

we present the performances of these baseline networks.

From Table 2, we can summarize several observations:

Shake shoulders Touching forehead                                 Touching neck

Shake shoulders                    Covering face        Covering suprasternal notch
(a) (b) (c)

Figure 4. Examples of challenging recognition of the micro-

gestures.

1) Almost all of methods’ accuracy (Top-1) stuck under 60

percentage, which could verify that recognizing such hard-

ly noticeable MGs (e.g., a short-timing “Shake shoulders”

as shown in Fig. 4 (a)) is a very challenging task. Due to

the subtle differences between MGs (e.g., “Covering face”

vs. “Touching forehead”, “Touching neck” vs. “Covering

suprasternal notch” as shown in Fig. 4 (b) and (c)), visu-

al or structural appearances in the form of RGB or pose

contribute significantly less than that in a regular gesture

(action) recognition task. 2) 3DCNN and RNN-based mod-

els’ Top-1 performance are lower than 35%, which is not

surprising as fully-supervised learning models may have a

significant performance drop with class imbalance issue. 3)

Capturing temporal dynamics (temporal reasoning) is im-

portant as 2DCNN-based TSM and TRN outperform others

by large margins. 4) Our method outperforms prior unsu-

pervised learning model P&C. Although not using any la-

bels, our performance is very competitive with the super-

vised 3DCNN and RNN-based methods.

5.4. Video­level Emotion Understanding

Evaluations also include quantitative analysis compar-

ing performance of the-state-of-art methods for the task of

video-level emotion understanding. Here, three RGB-based

models with good performance on MG recognition, namely

I3D [8], TRN [98], and TSM [43] are selected for compar-

ison. Similarly, two pose-based methods ST-GCN [90] and

MS-G3D [46] are chosen. Those models follow the same

configurations with the clip-level recognition. For example,

in the task of clip-level MG recognition, TSM [43] divides

a clip (input) into 8 segments and samples one RGB frame

from each segment to form the input. Now, in the video-

level emotion understanding, only the input is changed to a

video. We report the performances of these networks in Ta-

ble 3, we can see the TSM [43] and TRN [98] only obtain an

emotion classification accuracy of 53 percentage by using

the RGB frames as input. The ST-GCN [90] and MS-G3D

[46] yield the similar results with the pose data as input. It is
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Methods Model + Modality Accuracy

TRN [98]

CNN + RGB

0.53

TSM [43] 0.53

I3D [8] 0.57

ST-GCN [90]
GCN + Pose

0.50

MS-G3D [46] 0.55

U-S-VAE + LSTM
RNN + Micro-gesture

0.55

TSM [43] + LSTM 0.60

Table 3. Comparison of emotion understanding accuracy (%) with

methods on iMiGUE dataset (best: bold, second best: underlined).

noted that I3D [8] achieves the best score among those mod-

els. I3D concatenates outputs from multi-parallel branches

at the same level but with different resolutions, which can

provide richer representations in emotion classification.

In order to experimentally confirm how micro-gesture in-

fluences the classification accuracy of emotions, we feed the

probability vectors yield by TSM [43] into a RNN network.

This is aiming to train an emotion understanding model via

the results of clip-level MG recognition. More specifically,

a vector (e.g., an output of the Softmax layer) that repre-

sents the probability distributions of a list of potential out-

comes (possible MG classes), will be fed in a three-layered

LSTM network (TSM [43] with LSTM). After all vectors

(clips) of a video are fed in, the labels of positive or nega-

tive (winning or losing of the match) can be used to train the

network to understand the emotional states behind a series

of micro-gestures in a holistic way. The reason why we se-

lect the TSM is because it obtains the best accuracy score in

clip-level MG recognition. For comparison, the output vec-

tors of proposed U-S-VAE are also utilized to train a similar

emotion understanding network. In Table 3, we report the

emotion understanding results of these models, according

to the protocol (video-level) described in Sec. 5.1. We can

observe and conclude that micro-gesture is helpful for the

emotion understanding. TSM with LSTM (TSM + LST-

M) can achieve the best score, U-S-VAE with a 35% MG

recognition accuracy (U-S-VAE + LSTM) can beat most of

the compared methods which further verifies that the MG-

based analysis can benefit the final emotion understanding.

5.5. Analysis and Discussion

To test the generalization capability of U-S-VAE, we

provide its performance on different datasets, such as the

NTU RGB+D 60 [67], which is a large scale dataset com-

monly used for testing action/gesture models. NTU RG-

B+D contains 60 action categories collected from 40 sub-

jects. In video capturing, each action is recorded simul-

taneously by three cameras at different horizontal angles.

As such, not merely provided the commonly cross-subject

(C-Sub) protocol, the authors of NTU RGB+D also recom-

mended the cross-view (C-View) evaluation. We follow this

convention and report the recognition accuracy (Top-1) of

the two protocols. Here, the results of RGB-D-based unsu-

pervised methods are presented, including Shuffle & Learn

Unsupervised

Methods
Modality

iMiGUE NTU RGB+D

C-Sub C-View C-Sub

Shuffle & Learn [52]

RGB-D

- 40.90 46.20

Luo et al. [49] - 53.20 61.40

Li et al. [39] - 63.90 68.10

LongT GAN [97]

Pose

- 48.10 39.10

P&C [77] 31.67 76.10 50.70

U-S-VAE 3L 30.85 25.46 22.50

U-S-VAE 2L 30.30 55.13 37.03

U-S-VAE 1L w C 32.04 44.57 36.11

U-S-VAE 1L 32.43 64.88 50.96

Table 4. Ablation study of U-S-VAE with different datasets (best:

bold, second best: underlined).

[52], and models of Luo et al. [49] and Li et al. [39].

These models rely on the depth information which are not

available in iMiGUE so that we cannot evaluate their per-

formance on our dataset. Moreover, two pose-based mod-

els, the LongT GAN [97] and P&C [77] are compared for

evaluation analysis. Because the code of LongT GAN is

not released, we cannot report its result on iMiGUE. Final-

ly, for ablation studies on encoder with different number of

BLSTM layer, U-S-VAE with 2-layers BLSTM (U-S-VAE

2L) and 3-layers (U-S-VAE 3L) are chosen for comparison.

Ablation studies on different features for classification are

carried, and we select the cell states of BLSTM to serve as

the feature vectors for testing (U-S-VAE 1L w C). In Table

4, we report these experimental results.

From the results of Table 4, we can summarize several

observations: 1) The mutual information (KL-divergence)

plays a strong role in learning latent representation since

our model (U-S-VAE 1L) can achieve better performance

than P&C [77] on two datasets with cross-subject proto-

col. 2) The score of P&C in cross-view evaluation is higher

than ours, this is because P&C has a pre-processing step to

implement a view-invariant transformation [77]. Besides,

P&C also has an additional feature-level auto-encoder can

benefit the classification. 3) In ablation studies, U-S-VAE

1L can achieve the best performance on both iMiGUE and

NTU RGB+D datasets. U-S-VAE with hidden states ZT

can beat U-S-VAE with the cell states (U-S-VAE 1L w C).

6. Conclusions

In this paper, we propose iMiGUE, a new dataset focus-

ing on micro-gestures study. This work not merely inves-

tigates representative methods at the MG recognition level,

but also attempt to understand the emotional states by us-

ing those MGs. We hope these efforts could facilitate new

advances in the emotion AI field. In the future, more effort-

s will be put on studying relationships between MG groups

and emotional states. Also, sophisticated models will be ex-

plored to find the latent mapping among emotions and MGs

in a more holistic way.
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