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Abstract

Remote photoplethysmography (rPPG) based physiolog-

ical measurement has great application values in health

monitoring, emotion analysis, etc. Existing methods mainly

focus on how to enhance or extract the very weak blood

volume pulse (BVP) signals from face videos, but seldom

explicitly model the noises that dominate face video con-

tent. Thus, they may suffer from poor generalization abil-

ity in unseen scenarios. This paper proposes a novel ad-

versarial learning approach for rPPG based physiological

measurement by using Dual Generative Adversarial Net-

works (Dual-GAN) to model the BVP predictor and noise

distribution jointly. The BVP-GAN aims to learn a noise-

resistant mapping from input to ground-truth BVP, and the

Noise-GAN aims to learn the noise distribution. The two

GANs can promote each other’s capability, leading to im-

proved feature disentanglement between BVP and noises.

Besides, a plug-and-play block named ROI alignment and

fusion (ROI-AF) block is proposed to alleviate the inconsis-

tencies between different ROIs and exploit informative fea-

tures from a wider receptive field in terms of ROIs. In com-

parison to state-of-the-art methods, our approach achieves

better performance in heart rate, heart rate variability, and

respiration frequency estimation from face videos.

1. Introduction

Physiological signals such as heart rate (HR), respira-

tion frequency (RF), and heart rate variability (HRV) are

important indicators of human health status. Tradition-

*Corresponding author.

ally, these physiological signals are measured using elec-

trocardiography (ECG) and photoplethysmography (PPG);

both are skin-contact based approach, which is intrusive and

may cause may cause discomfort for human. Recently, no-

contact physiological measurement approaches based on re-

mote photoplethysmography (rPPG) have attracted increas-

ing attention, and most of the approaches use face videos

recorded by commodity cameras to perform rPPG based

physiological measurement [18, 19, 25]. The principle be-

hind rPPG based physiological measurement is that the op-

tical absorption by skin changes periodically along with the

periodic blood volume change due to heartbeat. Thus, if we

can capture the periodic skin color changes, we can obtain

the heart rate. However, such skin color changes are very

weak and can be easily affected by various noises such as

illumination and head movement.

Early approaches for rPPG based physiological measure-

ment usually use PCA or ICA to decompose the raw tem-

poral signal [1, 20, 28] or perform color space transforma-

tions like CHROM [8] and POS [37] to extract the BVP sig-

nals. These hand-crafted algorithms usually make certain

assumptions about the background noises, e.g., the motion

has the same influence to the intensity variations of differ-

ent color channels, based on which the CHROM method

can remove the motion influence by computing the ratio be-

tween three channels [8]. However, since the human face

is not an ideal Lambertian object, such assumptions do not

always hold for every facial region. As a result, while the

hand-crafted methods may not require training and have rel-

atively good generalization ability, there is still big room to

improve the physiological measurement accuracy. In addi-

tion, hand-crafted methods may not effectively leverage big

training dataset to learn informative features even when a
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large dataset is available.

With the great success of deep learning (DL) in vari-

ous computer vision tasks [14, 23, 24], DL methods have

also been studied for rPPG based physiological measure-

ment [25, 27]. Considering the low PSNR of BVP sig-

nals in face videos, DL methods usually first compute a

spatial-temporal map (STMap) [25] or the difference of

frames (DOF) [27] before using convolutional neural net-

works (CNNs) to learn informative features for physiologi-

cal signals. However, most DL methods only focus on how

to extract BVP signals from videos but ignore the modeling

of background noises that dominate the video’s content.

Some studies demonstrated that using synthetic physio-

logical signals with artificial noises can benefit the training

of DL-based physiological measurement methods [21, 27].

However, these synthetic noises are generally compiled by

mixing Gaussian noise with trigonometric functions (e.g.,

sine or cosine) or step pulses. Apparently, such a syn-

thetic physiological signal generation approach is not able

to replicate the real noise distribution in practical scenar-

ios. As a result, their effectiveness for improving the model

robustness is also limited.

To address these issues, we propose a novel adversarial

learning approach for robust rPPG based remote physiolog-

ical measurement by using dual generative adversarial net-

works (Dual-GAN) to simultaneously model the BVP pre-

dictor and noise distribution. As illustrated in Fig. 1, we

first compute the spatial-temporal map (STMap) from the

input video to obtain a preliminary representation of the

BVP signal. Then, we use one GAN model to learn the

mapping from STMap to BVP, in which the generator (a.k.a.

BVP estimator) aims to generate a BVP signal as similar

as the ground-truth BVP, while the discriminator aims to

distinguish between the generated BVP from the ground-

truth BVP. The other GAN is used to model the noise dis-

tribution w.r.t. the BVP, in which the generator (including

a noise-free and a noise STMap generator) aims to gener-

ate a synthetic STMap as similar as the STMap computed

from video, while the discriminator (shared) aims to distin-

guish between the synthetic STMap and the real STMap.

The Dual-GAN can enhance the capability of each other.

The former improves the noise distribution learning ability

of the latter, and the latter, like online data augmentation,

can in turn improve the robustness of the former BVP pre-

dictor against unseen noises.

In addition, existing methods [25] treat the temporal sig-

nals of different ROIs (individual rows of STMap) indis-

criminately during convolution; however face is not an ideal

Lambertian object, the temporal signals of different ROIs

should have different BVP and noise distributions. There-

fore, we also propose a plug-and-play module named ROI

alignment and fusion (ROI-AF) block, which can perform

ROI-wise convolution to handle such noise distribution in-

consistency of individual ROIs, and by fusing BVP features

from a wider receptive field.

The contributions of this work are as follows:

1) We propose a novel Dual-GAN architecture for rPPG

based physiological measurement, which can not only

model BVP predictor but also explicitly model noise dis-

tribution via adversarial learning, and thus can obtain more

robustness BVP representation against unseen noises.

2) We propose a plug-and-play ROI-AF block, which

can be used after conventional convolution layers to address

noise and BVP distribution inconsistency among different

ROIs.

3) The proposed approach outperforms the state-of-the-

art methods in HR, HRV and RF estimation under both

intra-dataset and cross-dataset testings, showing its robust-

ness again complicated scenarios.

2. Related Work

2.1. Remote Physiological Measurement

Remote physiological measurement aims to achieve HR,

HRV, and RF estimation from videos recorded by com-

modity cameras. Traditional methods are mainly based on

certain skin reflection model to perform signal decompo-

sition to obtain the BVP signal. De Haan et al. proposed

a chrominance based color space projection (CHROM) to

eliminate the influence of head movement for HR estima-

tion [8]. Later, pixel-wise CHROM was proposed to fur-

ther improve the HR estimation [38]. Wang et al. pro-

posed a spatial subspace rotation (2SR) based on the cor-

relation of the three color channels to improve the HR esti-

mation robustness. De Haan et al. studied the signature of

rPPG signals at different wavelengths and then proposed a

blood-volume pulse vector method to extract the pulse sig-

nal [9]. Independent component analysis (ICA) was em-

ployed from the perspective of blind signal separation to

separate the BVP signals from three color channels for HR

estimation [28]. These methods are designed manually un-

der certain assumptions, and may not work very well when

the image acquisition conditions change.

Deep learning (DL) model has powerful nonlinear fit-

ting capabilities and has been successfully used in various

computer vision tasks. There are also attempts of studying

DL-based remote HR estimation [6, 15, 21, 25, 32, 39, 42].

DeepPhys computed the difference of frames and used a

deep convolutional network to extract physiological signals.

An attention mechanism was also proposed to reduce the ef-

fects of motion [6]. Wang et al. proposed a novel two-step

CNN and adopted a low-rank constraint loss to derive re-

liable features [39]. A 3D convolutional network (named

Spatial-Temporal Net) was used to estimate HR directly

from the video by fusing both spatial and temporal infor-

mation [32]. The face video contains lots of irrelevant in-
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formation besides the BVP signal, and thus some studies

tried to design effective hand-crafted representations for the

physiological signal [15, 25]. Time-frequency representa-

tion was proposed as the input of CNN, which directly ac-

cumulated the frequency component of the physiology sig-

nals extracted from video [15, 29]. A spatial-temporal rep-

resentation was designed as the input of CNN, which was

a combination of the temporal physiology signals extracted

from different ROIs of the face [25]. There are also a num-

ber of studies focusing on how to suppress the noises mixed

together with the physiological signals [18, 26]. Niu et al.

attempted to remove the noise from the MSTMap via cross-

verified feature disentangling [26]. Lee et al. tried to use

meta-learning to cope with the noise distribution changes

during model deployment [18]. Song et al. proposed to

learn the BVP signal distribution via GAN to improve the

BVP waveform quality [31]. Most of the existing methods

focus on how to enhance and extract the BVP signal from

the video, but ignore explicit modeling of the background

noises that is also important for improving the BVP signal

extraction. Different from the existing methods, we propose

to simultaneously model BVP predictor and noise distribu-

tion via adversarial learning. As a result, we can better dis-

entangle BVP features and noise features to achieve more

robust physiological measurement.

2.2. Deep Generative Noise Modeling

Generative models aim at learning the true data distribu-

tion from a limited number of data. Recent advances in pa-

rameterizing these models using deep neural networks have

led to successful applications in various computer tasks

like image conversion [44], face editing [7], image super-

resolution [10] and denoising [4]. One of the most com-

monly used and efficient deep generative models is Gener-

ative Adversarial Networks (GAN) [12]. GAN is effective

for learning unknown data distributions using unsupervised

learning and has achieved tremendous success in many ap-

plications.

For example, GAN has been widely utilized to gener-

ate noise-free images [5, 16, 43]. For remote physiologi-

cal measurement task, some methods tried to use synthetic

physiological signals with noises for data augmentation and

to improve the model robustness [21, 27]. These synthetic

physiological signals were generated by mixing clean sig-

nals, such as trigonometric functions (e.g., sine or cosine)

and step pulses, with Gaussian noises, which may not repli-

cate real-world noises very well. Considering the effec-

tiveness of GAN for noise modeling, some studies inves-

tigated GAN-based physiological signal generation, and re-

ported improved performance than previous physiological

measurement methods [11, 30].

We propose a Dual-GAN for modeling the noise distri-

bution and physiological estimator jointly for remote phys-

iological measurement. Our approach falls under the GAN-

based approach, but with several significant differences

compared with existing methods: (i) Compared with the

noise synthesis in [21, 27], our model can learn the distribu-

tion of real physiological signals by GAN and therefore can

generate more realistic physiological signals that can repli-

cate the ones in real applications. (ii) Different from the

image denoising methods [5, 16, 43], our method does not

require paired data (e.g., noise and noise-free) to learn the

noise distribution. (iii) Different from the synthesis meth-

ods in [11, 30], we simultaneously learn a BVP estimator

and a generative noise model, which can enhance the ca-

pability of each other, leading to better feature disentangle-

ment between BVP and noise signals.

3. Proposed Method

We denote the i-th input video as vi, and the corre-

sponding ground-truth BVP signal as sigt. The goal of

remote physiological measurement is to learn a mapping:

F : vi → sigt. Since the BVP signal is very weak compared

with the background face content (characterizing identity

and attributes) and the noises in the video, existing meth-

ods usually build a composite function for F by leverag-

ing either hand-crafted transformations [8, 28, 37] or deep

learning [6, 18, 42] to extract the BVP signal. However,

these methods do not explicitly model the noise distribution.

As a result, the disentanglement between the BVP signal

and the background noises can be sub-optimum, leading to

poor generalization ability in new scenarios. We propose an

adversarial learning framework to jointly model both BVP

predictor and noise distribution using a Dual-GAN network.

As shown in Fig. 1, besides learning the mapping from

STMap mi to BVP sigt via a GAN consisting of a gener-

ator (named BVP estimator Fb) and a discriminator D, we

also learn the noise distribution with a peer GAN consisting

of two sub-generators Gphy and Gnoise, and a discriminator

D, in which D is shared by both GANs. The details of our

approach are described as follows.

3.1. Spatial­Temporal Map

As discussed in [6, 25], direct applying CNNs to the

face video may not effectively exploit the information of the

physiological signal. Therefore, we choose to use STMap

as the input of CNN like [22, 25], which establishes a pre-

liminary representation of the physiological signal by dis-

carding most of the irrelevant background content. Let mi

denote the STMap computed from vi. The dimension of mi

is n × l × c, in which n denotes the number of ROIs, l de-

note the number of frames of a clip, and c = 3 denotes the

three channels of R, G and B. Then our goal is to establish

a mapping Fb : m
i → sigt.
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Figure 1. The architecture of our Dual-GAN for jointly modeling BVP predictor and noise distribution. The GAN for BVP modeling

consists of a generator Fb for BVP signal predictor from STMap, and a discriminator D for distinguishing between the predicted BVP

signal sest and the ground-truth BVP signal sgt. The GAN for noise modeling consists of a two-path generator for generating a synthetic

STMap from ground-truth BVP and random noise variable, and uses a shared discriminator D to distinguishing between synthetic STMap

ms and the real STMap m. The Dual-GAN structure allows us to perform indirect supervision w.r.t. the noises so that we can better model

the noise distribution and achieve better feature disentanglement for the BVP signal.

3.2. ROI Alignment and Fusion Block

Each row of STMap mi represents the raw temporal sig-

nal for one ROI on the face. Since the face is not an ideal

Lambertian object, the BVP and noise distributions of dif-

ferent ROIs are different. However, existing methods usu-

ally perform the same convolutions for the temporal sig-

nals of different ROIs [25, 21]. Such a manner can be sub-

optimum when filtering out the noises in different ROIs to

obtain the BVP signals. A more reasonable approach is to

perform different convolutions for different ROIs. In an-

other aspect, as indicated in [17, 26], the BVP signals from

different ROIs of the facial region should be nearly synchro-

nized, and a large receptive field w.r.t. ROIs can be helpful

for extracting the periodic BVP signals with higher PSNR.

However, given the limited receptive filed of convolution

kernels, current CNNs may only leverage a few adjacent

ROIs (i.e., a few adjacent rows in the STMap and feature

map) at each convolution operation.

To solve these problems, we propose a simple yet effi-

cient block, named ROI alignment and fusion block (ROI-

AF), to perform feature alignment and fusion across ROIs.

As shown in Fig. 2, a feature map of CNN or the input

STMap is split by rows, and per-row 1D-Conv. is per-

formed to alleviate BVP and noise distribution differences

and achieve across-ROI feature alignment purpose. Then,

the aligned features are concatenated in terms of chan-

nels and 1-D conv. with a channel attention model, i.e., a

global average pooling (GAP) followed by two linear layers

(FC) is applied to fuse the aligned features from individual

ROIs. Finally, the fused feature map is reshaped to its orig-

inal dimensions. The proposed ROI-AF block is actually

plug-and-play and can be inserted into different convolution

blocks of a CNN network.

3.3. Dual­GAN

Dual-GAN jointly models the BVP predictor and noise

distribution via an adversarial learning. We detail BVP-

GAN and Noise-GAN below.

BVP-GAN. BVP-GAN consists of a generator Fb which

learns a mapping from STMap m to the ground-truth BVP

signal sgt, i.e., sest = Fb(m), and a discriminator D which

aims to distinguish between the estimated BVP signal sest
and the ground-truth BVP signal sgt. The generator Fb con-

sists of four “ConvBlock” and four “UpBlock” as shown in

Fig. 3 (a), which takes the STMap as input, and outputs

an estimated BVP signal. Four ROI-AF blocks are inserted

ahead of the four “ConvBlock” to reduce BVP and noise

distribution inconsistencies across ROIs. Besides BVP sig-

nal prediction, we also introduce an auxiliary task, i.e., per-

forming HR regression from STMap, which is expected to

improve the feature learning robustness of generator Fb via

multi-task learning.

To measure the quality of the estimated BVP signal sest,
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Figure 2. ROI Alignment and Fusion Block (ROI-AF): A feature map or STMap is split by rows, and per-row 1D-Conv. is performed

to handle BVP and noise distribution differences to achieve feature alignment. Then, the aligned features are concatenated in terms of

channels and 1-D conv. with a channel attention model (i.e., a global average pooling (GAP) followed by two linear layers (FC)) is

performed to obtain a fused feature map. Finally, the fused feature map is reshaped to its original dimensions.

we only need to focus on its periodicity instead of the am-

plitude changes. Therefore, we choose to use a negative

Pearson correlation loss calculated between the estimated

BVP signals sest and the ground-truth BVP signals sgt:

Lp = 1− PCor(sest, sgt) (1)

where PCor(·) is the Pearson correlation [42]. We also use

a frequency domain loss [26], which is defined as a cross-

entropy loss between the spectral distribution of the esti-

mated BVP signal and the one-hot code of ground-truth HR

frequency ogt:

Lfre = CE(PSD(sest), ogt) (2)

where PSD(·) denotes the power spectral density of sest,

and CE(·) denotes the cross-entropy loss. The ground-

truth HR ygt can also be represented by a one-hot vector

ogt = [0, ..., 0, 1, 0, ...], and ‘1’ denotes the index corre-

sponding to ygt. PSD(sest) can be regarded as one-hot

vector of HR, e.g., p = [0.1, ..., 0.1, 0.5, 0.1, ...]. For the

auxiliary HR regression task, we calculate the L1 distance

between the estimated HR yest and the ground-truth HR ygt
for supervision. In summary, the overall loss function for

generator Fb can be written as:

Lphy = λ1||yest − ygt||L1
+ λ2Lp + λ3Lfre (3)

where λ1, λ2 and λ3 are balancing parameters. In our exper-

iments, we set λ1 = 0.2, λ2 = 1, and λ3 = 0.1 empirically

according to individual loss scales.

The discriminator D of BVP-GAN consists of five “Con-

vBlock”, a “GAP” and an “FC”, which takes the combina-

tion of STMap and BVP signals as input, and outputs fake

or real as shown in Fig. 3 (d). The loss function of D is

defined as:

max
D

min
Fb,Gnoise

Ljoint =log(D(sgt,m))− log(D(Fb(m),m))

− log(D(sgt, Fn(ggt, z)))
(4)

where Fn(·) denotes the generator of the Noise-GAN that

aims to generate a STMap from ground-truth BVP and ran-

dom noise variable, which will be discussed in the next sub-

section. Through the adversarial learning between genera-

tors Fb and discriminator D, we expect that Fb can predict

BVP signals as close as possible to the ground-truth BVP

signals.

Noise-GAN. One key challenge that prohibits existing

methods to explicitly model the noise distribution during

BVP estimation is that there is no paired data (i.e., data

with and without noises) for supervision. We address this

challenge by using an indirect supervision manner, i.e., su-

pervising the sum of a known BVP distribution and an un-

known noise distribution.

Specifically, Noise-GAN consists of a STMap genera-

tor Fn for generating STMap from ground-truth BVP signal

and random noise variables, and a discriminator D, which

is shared with BVP-GAN. The generator Fn uses a two-

path structure, consisting of two sub-generators (Gphy and

Gnoise) and a sum operation. While Gphy aims to generate

a noise-free STMap from the ground-truth BVP signal, i.e.,

mphy = Gphy(sgt), Gnoise aims to generate a noise STMap

from random noise variable z sampled from a Gaussian dis-

tribution, i.e., mn = Gnoise(z). We assume an additive

model between noises and BVP signal, and sum mphy and

mn together to obtain a synthetic STMap msyn. Thus, Fn

aims to generate a synthetic STMap msyn that is as close as

possible to the real STMap m used in BVP-GAN.

As shown in Figs. 3 (b) and (c), Gphy consists of four

“ConvBlock”, and four “UpBlock”, and Gnoise consists of

four “UpBlock”. The adversarial loss for Fn is also Eq. (4).

Our Dual-GAN structure also allows us to introduce ex-

tra supervision to ensure individual components can func-

tion as we expect. Specifically, we expect the generator Fb

in BVP-GAN can only filter out the noises while retain the

useful BVP information. Then, based on Fb and Gphy , the

reconstructed BVP signal sr is expected to be the same as

sgt: sgt = sr = Fb(Gphy(sgt)). Such a constraint can

be achieved by minimizing a negative Pearson correlation

coefficient Lr

Lr = 1− PCor(Fb(Gphy(sgt)), sgt) (5)

Training Strategy. We train our Dual-GAN using an

alternative training strategy. In each batch, we sample both

real training data (m, sgt and ygt) and synthetic data (msyn

and sest) generated by our models1. These data are then

1For the first iteration, the synthetic data is generated by network with

random weight.
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Figure 3. The architectures of the (a) BVP estimator Fb, (b) noise-free STMap generator Gphy , (c) noise STMap generator Gnoise and (d)

shared discriminator D. “ConvBlock” denotes two convolution layers, “UpBlock” denotes transposed convolution and two convolution

layers, “GAP” denotes global averaging pooling, “FC” denotes two linear layers.

used as follows: (i) training Fb using training data (m, sgt,

and ygt), and synthetic data msyn with corresponding labels

sgt and ygt using loss function Lphy in Eq. (3); (ii) training

Gphy using loss function Lr in Eq. (5) with Fb fixed; (iii)

training Fb and Gnoise by minimizing Ljoint in Eq. (4);

and (iv) training the shared discriminator D by maximizing

Ljoint in Eq. (4) with all generators fixed.

Given the proposed Dual-GAN structure and the

alternative training strategy, both Fb(Gphy(sgt)) and

Fb(Gphy(sgt) + Gnoise(z)) are expected to obtain the

ground-truth BVP signal sgt. Thus, the improved noise

modeling capability of Gnoise will in turn improve the ro-

bustness of Fb against noises that are not present in the orig-

inal training data. This can improve the generalization abil-

ity of the proposed approach for physiologic measurement

under unseen scenarios.

Some methods are also based on Dual-GAN such as [13,

40, 41], but our work is very different from theirs: (i) Dual-

GAN is used in [13] for novel retina and segmentation im-

age synthesis, which requires paired data (mask and retina

image) for supervision; however the noise modeling in our

method does not require paired noise-free data for supervi-

sion. (ii) [41] used Dual-GAN to perform style-level im-

age translation, but does not retain pixel-level correspon-

dence. Our BVP feature disentanglement from STMap with

noises require precise temporal alignment. (iii) Dual-GAN

was used in [40] to reuse multiple pre-trained networks

for multi-label classification via knowledge amalgamation,

which is a completely different task than our feature disen-

tanglement.

4. Experimental Results

We perform rPPG based physiological measurement for

three types of physiological signals, i.e., heart rate (HR),

heart rate variability (HRV), and respiration frequency

(RF), using three public-domain datasets (UBFC-rPPG [2],

VIPL-HR [22], and PURE [33]).

4.1. Databases and Experimental Settings

UBFC-rPPG [2] contains 42 RGB videos containing

sunlight and indoor illumination. The videos were recorded

with a Logitech C920 HD Pro webcam in a resolution of

640 × 480 and 30 fps. The ground-truth BVP signals and

HR values were collected by CMS50E.

VIPL-HR [22] is a challenging large-scale database

for remote physiology measurement under less-constrained

scenarios. It contains 2,378 RGB videos of 107 subjects

captured with different head movements, lighting condi-

tions and acquisition devices. In addition, the frame rate

of the videos varies due to different recording scenarios and

devices. We normalize the videos and the corresponding

BVP signals to 30 fps by cubic spline interpolation.

PURE [33] contains 60 RGB videos from 10 subjects

with 6 different activities (sitting still, talking, four varia-

tions of rotating and moving head), which were recorded

using an eco274CVGE camera at 30 fps and a resolution of

640 × 480. The BVP signal was collected using CMS50E

at 60 fps. The BVP signals are reduced to 30 fps with cubic

spline interpolation to align with the videos.

Tasks and Evaluation Metrics: We perform HR, HRV,

and RF estimation on UBFC-rPPG, HR estimation on

VIPL-HR and PURE, and cross-database HR estimation on

UBFC-rPPG with training on PURE. For HR estimation, we

follow [18, 22] and report the standard deviation of the error

(Std), mean absolute error (MAE), root mean square error

(RMSE), mean error rate percentage (MER), and Pearson’s

correlation coefficient (r). For HRV and RF estimation, we

follow existing methods [26, 42] and report low frequency

(LF), high frequency (HF), and LF/HF ratio in terms of Std,

RMSE, and r.

Parameters: Our algorithm is implemented in the Py-

Torch and trained on NVIDIA TITAN Xp. All CNNs are

trained for 10 epochs, using random initialization, via adam

optimizer with default beats of 0.9 and 0.999, weight decay

of 0, learning rate of 0.0001, batch size of 32 and without

any decay strategy for learning rate. For all the experiments,
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Table 1. RF and HRV estimation results by our method and several state-of-the-art methods on the UBFC-rPPG database.
Method LF-(u.n) HF-(u.n) LF/HF RF-(Hz)

Std↓ RMSE↓ r↑ Std↓ RMSE↓ r↑ Std↓ RMSE↓ r↑ Std↓ RMSE↓ r↑

POS [37] 0.171 0.169 0.479 0.171 0.169 0.479 0.405 0.399 0.518 0.109 0.107 0.087

CHROM [8] 0.243 0.240 0.159 0.243 0.240 0.159 0.655 0.645 0.226 0.086 0.089 0.102

Green [36] 0.186 0.186 0.280 0.186 0.186 0.280 0.361 0.365 0.492 0.087 0.086 0.111

CVD [26] 0.053 0.065 0.740 0.053 0.065 0.740 0.169 0.168 0.812 0.017 0.018 0.252

Dual-GAN (Ours) 0.034 0.035 0.891 0.034 0.035 0.891 0.131 0.136 0.881 0.010 0.010 0.395

Table 2. HR estimation results of our method and several state-of-

the-art methods on the UBFC-rPPG database.
Method MAE↓ RMSE↓ MER↓ r↑

POS [37] 8.35 10.00 9.85% 0.24

CHROM [8] 8.20 9.92 9.17% 0.27

Green [36] 6.01 7.87 6.48% 0.29

SynRhythm [21] 5.59 6.82 5.5% 0.72

PulseGAN [31] 1.19 2.10 1.24% 0.98

Dual-GAN (Ours) 0.44 0.67 0.42% 0.99

the length of each video clip is set to 256 frames, and the

step between clips is 10 frames. We use the data balance

and random horizontal flipping in [25] for data augmenta-

tion when computing STMap from face videos. In all exper-

iments, we compute HR, HRV, and RF based on the average

duration between two adjacent BVP signal peaks [26, 42].

4.2. Results

HR, HRV and RF estimation on UBFC-rPPG: Fol-

lowing the protocol in [31], the videos of the first 30 sub-

jects are used for training, and the videos of the remaining

12 subjects are used for testing. For HRV and RF estima-

tion, we compare our approach with POS [37], CHROM [8]

and Green [36] as shown in Table 1, which are performed

in iPhys 2. CVD [26], a DL method, is also used for com-

parison 3. For HR estimation, besides our approach and

the above three methods, we also provide the results of

SynRhythm [21] and PulseGAN [31]. We implement Syn-

Rhythm by ourselves and use the results of PulseGAN from

the original paper since we use the same protocol as [31].

The HR estimation results by individual methods are

shown in Table 2. We can see that DL methods like Syn-

Rhythm and PulseGAN perform much better than the hand-

crafted methods such as POS, CHROM, and Green. This

suggests that DL methods can learn more informative fea-

tures than hand-crafted methods for BVP signal prediction

and HR estimation. Compared with the best of the base-

line methods, i.e., PulseGAN, the proposed Dual-GAN can

further reduce the errors (MAE, RMSE, and MER) signif-

icantly, and improve the Pearson correlation coefficient be-

tween the estimation HR and the ground-truth HR. The rea-

sons why our Dual-GAN outperforms PulseGAN are three-

fold: (i) While PulseGAN can also generate new physio-

2https://github.com/danmcduff/iphys-toolbox
3https://github.com/nxsEdson/CVD-Physiological-

Measurement

Table 3. HR estimation results by our method and several state-of-

the-art methods on the VIPL-HR database.

Method Std↓ MAE↓ RMSE↓ r↑

SAMC [35] 18.0 15.9 21.0 0.11

POS [37] 15.3 11.5 17.2 0.30

CHROM [8] 15.1 11.4 16.9 0.28

I3D [3] 15.9 12.0 15.9 0.07

DeepPhy [6] 13.6 11.0 13.8 0.11

RhythmNet [25] 8.11 5.30 8.14 0.76

CVD [26] 7.92 5.02 7.97 0.79

Dual-GAN (Ours) 7.63 4.93 7.68 0.81

logical signals for data augmentation by learning the physi-

ological signal distribution output by CHROM, which does

not explicitly model the noises mixed with the BVP sig-

nal. By contrast, our jointly modeling of BVP predictor and

noise distribution enables us to obtain better disentangled

features for BVP signals; (ii) joint training of Dual-GAN in

our approach can make them promote each other’s capabil-

ity; (iii) the ROI-AF block can improve the representation

learning capability of the network (see our ablation study).

The HRV and RF estimation results are shown in Table 1.

LF, HF, and LF/HF are three measures for HRV estimation,

each reported with Std, RMSE, and r, respectively. We can

see that the proposed approach outperforms all the baseline

methods for HRV and RF estimation under all measures.

This is reasonable because HRV and RF computation rely

on the BVP estimation accuracy.

HR estimation on VIPL-HR and PURE: We further

evaluate the effectiveness of the proposed approach by per-

forming HR estimation on two more challenging VIPL-

HR and PURE datasets. We follow [25, 26] and use a

subject-exclusive 5-fold cross-validation protocol on VIPL-

HR. We compared our method with seven baseline methods

(SAMC [35], POS [37], I3D [3], DeepPhy [6], Rhythm-

Net [25], and CVD [26]) on VIPL-HR, in which the per-

formance of these methods are directly from [25, 26]. As

shown in Table 4, the proposed Dual-GAN outperforms all

the baseline methods under all measures. For PURE dataset,

we follow the same testing protocol in [32] and compare

with 2SR [9], CHROM [8], and HR-CNN [32], for which

their performance are available in [32]. From Table 4, we

can see that the proposed approach again outperforms all

the baseline methods. These results show that the proposed

Dual-GAN is still very effective for HR estimation under

less-constrained scenarios.
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Table 4. HR estimation results of our method and several state-of-

the-art methods on the PURE database.
Method MAE↓ RMSE↓ r↑

2SR [9] 2.44 3.06 0.98

CHROM [8] 2.07 9.92 0.99

HR-CNN [32] 1.84 2.37 0.98

Dual-GAN (Ours) 0.82 1.31 0.99

Table 5. Cross-database HR estimation (training on PURE and

testing on UBFC-rPPG) by our Dual-GAN and baseline methods.

Method MAE↓ RMSE↓ MER↓ r↑

GREEN [36] 8.29 15.82 7.81% 0.68

ICA [28] 4.39 11.60 4.30% 0.82

POS [37] 3.52 8.38 3.36% 0.90

CHROM [8] 3.10 6.84 3.83% 0.93

PulseGAN [31] 2.09 4.42 2.23% 0.97

Siamese-rPPG [34] 1.29 8.73 \ \
Dual-GAN (Ours) 0.74 1.02 0.73% 0.997

Table 6. Ablation study of our Dual-GAN in terms of Noise-GAN

and ROI-AF modules for HR estimation on UBFC-rPPG.
Noise-GAN ROI-AF MAE↓ RMSE↓ MER↓

w/o w/o 1.59 3.14 1.53%

w/o w. 0.84 1.81 1.26%

w. w/o 0.66 1.52 0.82%

w. w. 0.44 0.67 0.42%

Cross-database HR estimation: Generalization abil-

ity is very important for remote physiological measurement

model. We perform cross-database evaluations to verify the

generalization ability of our approach. We follow [31, 34]

to train our model on PURE and test it on UBFC-rPPG.

The cross-database HR estimation results of our method and

the baseline methods are given in Table 5, in which the re-

sults of GREEN [36], ICA [28], POS [37], CHROM [8]

are from [31], and the results of PulseGAN and Siamese-

rPPG are form [31] and [34], respectively. From Table 5, we

can see that our model still achieves the best results under

all evaluation metrics compared with these state-of-the-art

methods. These results indicate that the proposed method

generalizes well into new scenarios with unknown noises.

4.3. Ablation Study

We provide ablation study of our approach in terms of

noise modeling and ROI-AF by performing HR estimation

on UBFC-rPPG. We cover the following ablation studies:

(I) without Noise-GAN and ROI-AF; (II) without Noise-

GAN but with ROI-AF; (III) without ROI-AF but with

Noise-GAN; and (IV) the whole Dual-GAN method. The

results are shown in Table 6.

Comparing the results by (I) and (II), we can see that

using ROI-AF can reduce the MAE and RMSE errors by

0.75 and 1.31, respectively. This suggests that reducing the

noise and BVP diversities across different ROIs via ROI-

AF is helpful for improving BVP estimation accuracy. In

addition, we found that Lp converges to 0.0002 with ROI-

AF blocks but converges to 0.0023 without ROI-AF.

Figure 4. (a) The BVP signal with real noises computed from video

(one row from STMap m). (b,c,d) Synthetic BVP signals with

synthetic noises (one row from synthetic STMap msyn) by using

different noise variable z.

Similarly, using Noise-GAN for noise distribution mod-

eling can greatly improve HR estimation accuracy. These

results indicate that the Noise-GAN does learn a good distri-

bution about the noises mixed with the BVP signals, which

leads to better BVP feature disentanglement.

We also visualize the synthetic STMap by our Noise-

GAN by changing the random noise variable z. From

Fig. 4, we can notice that the same row from three syn-

thetic STMaps shown in Figs. 4 (b, d, d) are very similar to

the same row from the STMap computed from video. This

also explains why Noise-GAN is able to work as online data

augmentation to improve the BVP estimator’s robustness.

5. Conclusion

Remote physiological measurement based on rPPG is

challenging because of the very weak BVP signal and the

strong noises. We propose to jointly model the BVP pre-

dictor and noise distribution using Dual-GAN, in which a

BVP-GAN learns a mapping from input STMap to BVP

signal, and a Noise-GAN learns a mapping from random

noise variable and ground-truth BVP to STMap, both in an

adversarial learning manner. We also propose an alterna-

tive training strategy for optimizing the generators and dis-

criminators in Dual-GAN end-to-end. The dual GANs can

promote each other’s capability, leading to improved noise

distribution estimation accuracy and enhanced feature dis-

entanglement for BVP signals, which finally improves the

physiological measurement accuracy.
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