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Abstract

Reference-based image super-resolution (RefSR) has

shown promising success in recovering high-frequency de-

tails by utilizing an external reference image (Ref). In this

task, texture details are transferred from the Ref image to

the low-resolution (LR) image according to their point- or

patch-wise correspondence. Therefore, high-quality cor-

respondence matching is critical. It is also desired to be

computationally efficient. Besides, existing RefSR methods

tend to ignore the potential large disparity in distributions

between the LR and Ref images, which hurts the effective-

ness of the information utilization. In this paper, we pro-

pose the MASA network for RefSR, where two novel mod-

ules are designed to address these problems. The proposed

Match & Extraction Module significantly reduces the com-

putational cost by a coarse-to-fine correspondence match-

ing scheme. The Spatial Adaptation Module learns the dif-

ference of distribution between the LR and Ref images, and

remaps the distribution of Ref features to that of LR fea-

tures in a spatially adaptive way. This scheme makes the

network robust to handle different reference images. Exten-

sive quantitative and qualitative experiments validate the

effectiveness of our proposed model.

1. Introduction

Single image super-resolution (SISR) is a fundamen-

tal computer vision task that aims to restore a high-

resolution image (HR) with high-frequency details from its

low-resolution counterpart (LR). Progress of SISR in re-

cent years is based on deep convolutional neural networks

(CNN) [3, 11, 12, 13, 16, 31]. Nevertheless, the ill-posed

nature of SISR problems makes it still challenging to re-

cover high-quality details.

In this paper, we explore reference-based super-

resolution (RefSR), which utilizes an external reference im-

age (Ref) to help super-resolve the LR image. Reference

images usually contain similar content and texture with the
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Figure 1: Visual comparison of ×4 SR results. Our

MASA method generates more appealing texture details

than the two leading RefSR methods, i.e., SRNTT [33] and

TTSR [30].

LR image. They can be acquired from web image search

or captured from different viewpoints. Transferring fine

details to the LR image can overcome the limitation of

SISR and has demonstrated promising performance in re-

cent work of [35, 23, 34, 33, 30].

Previous methods aimed at designing various ways to

handle two critical issues in this task: a) Correspond use-

ful content in Ref images with LR images. b) Transfer fea-

tures from Ref images to facilitate HR image reconstruc-

tion. To address the first issue, methods perform spatial

alignment between the Ref and LR images [35, 23] us-

ing optical flow or deformable convolutions [2, 36]. These

alignment-based methods face challenges in, e.g., finding

long-distance correspondence. Other methods follow patch

matching [34, 33, 30] in the feature space. State-of-the-art

methods generally perform dense patch matching, leading

to very high computational cost and large memory usage.

For the second issue, our finding is that even if LR and

Ref images share similar content, color and luminance may
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differ. Previous methods directly concatenate the LR fea-

tures with the Ref ones and fuse them in convolution layers,

which is not optimal.

To address the above problems, we propose a RefSR

method called MASA-SR, which improves patch match-

ing and transfer. The design of MASA has several ad-

vantages. First, the proposed Match & Extraction Module

(MEM) performs correspondence matching in a coarse-to-

fine manner, which largely reduces the computational cost

while maintaining the matching quality. By leveraging the

local coherence property of natural images, for each patch

in the LR feature maps, we shrink its search space from the

whole Ref feature map to a specific Ref block.

Second, the Spatial Adaptation Module is effective in

handling the situations where there exists large disparity in

color or luminance distribution between the LR and Ref im-

ages. It learns to remap the distribution of the Ref features

to LR ones in a spatially adaptive way. Useful information

in the Ref features thus can be transferred and utilized more

effectively.

To the best of our knowledge, our model achieves state-

of-the-art performance for the RefSR task. Our contribu-

tions are as follows.

• The proposed Match & Extraction Module signifi-

cantly reduces the computational cost of correspon-

dence matching in the deep feature space. Our results

show that a two-orders-of-magnitude reduction mea-

sured in FLOPS is achieved.

• The proposed Spatial Adaptation Module is robust to

Ref images with different color and luminance distri-

butions. It enables the network to better utilize useful

information extracted from Ref images.

2. Related Work

2.1. Single Image Super­Resolution

Effort has been made to improve performance of single

image super resolution in recent years. In particular, deep

learning based SISR methods achieved impressive success.

Dong et al. [3] proposed the seminal CNN-based SISR

model that consists of three convolution layers. Later, a va-

riety of effective networks [11, 12, 13, 16, 31, 15, 26] were

proposed for SR. With the help of residual learning, Kim

et al. proposed VDSR [11] and DRCN [12] with deeper ar-

chitectures and improved accuracy. Lai et al. [13] proposed

LapSRN, which progressively reconstructs multi-scale re-

sults in a pyramid framework. Lim et al. [16] removed batch

normalization layers in residual networks and further ex-

panded the model size to improve SR performance. Zhang

et al. [31] built a very deep network with residual in resid-

ual structure. Channel attention was introduced to model

the inter-dependency across different channels.

Apart from MSE minimizing based methods, perception-

driven ones received much attention. The perceptual

loss [9] was introduced into SR tasks to enhance visual

quality by minimizing errors on high-level features. Ledig

et al. [14] proposed SRGAN, which was trained with an ad-

versarial loss, generating photo-realistic images with natu-

ral details. To produce more perceptually satisfying results,

ESRGAN [28] further improves SRGAN by introducing a

relativistic adversarial loss. Different from the adversarial

loss, the contextual loss [18, 19, 29] was proposed to main-

tain natural statistics in generated images by measuring the

feature distribution.

2.2. Reference­Based Super­Resolution

Compared with SISR, which only takes as input a low-

resolution image, RefSR uses an additional reference im-

age to upsample the LR input. The reference image gen-

erally has similar content with the LR image, capable to

provide high-frequency details. Recent work mostly adopts

CNN-based frameworks. One branch of RefSR performs

spatial alignment between the Ref and LR images. Cross-

Net [35] estimated flow between the Ref and LR images at

multi-scales and warped the Ref features according to the

flow. However, the flow was obtained by a pre-trained net-

work, leading to heavy computation and inaccurate estima-

tion. Shim et al. [23] further proposed to align and extract

Ref features by leveraging deformable convolutions [2, 36].

Nevertheless, these alignment-based methods are limited in

finding long-distance correspondence.

Another branch follows the idea of patch matching [1].

Zheng et al. [34] trained two networks to learn feature cor-

respondence and patch synthesis respectively. SRNTT [33]

conducted multi-level patch matching between Ref and LR

features extracted from the pre-trained VGG [24], and fused

the swapped Ref features together with the LR features to

generate the SR result. TTSR [30] further introduced the

transformer architecture into the RefSR task and stacked the

transformer in a cross-scale way to fuse multi-level infor-

mation. The hard attention and soft attention in the trans-

former help transfer texture features from the Ref image

more precisely. However, the patch matching method of

SRNTT and TTSR is of high computation cost. They also

leveraged VGG as the feature extractor that is heavy and

requires pre-training.

3. MASA-SR Method

As shown in Fig. 2(a), our framework mainly con-

sists of three parts: the encoder, Matching & Extraction

Modules (MEM), and fusion modules that contain Spatial

Adaptation Modules (SAM) and Dual Residual Aggrega-

tion Modules (DRAM). LR, Ref↓ and Ref denote the low-

resolution image, the ×4 bicubic-downsampled reference

image and the reference image, respectively. Unlike previ-
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Figure 2: (a) Framework of the proposed MASA-SR, which consists of an encoder, several Match & Extraction Mod-

ules (MEM), Spatial Adaptation Modules (SAM) and Dual Residual Aggregation Modules (DRAM). (b) Structure of the

Spatial Adaptation Modules (SAM), which is used to remap the distributions of the Ref features to that of the LR features.

(c) Structure of the Dual Residual Aggregation Modules (DRAM), which is effective in feature fusion.

ous methods [33, 30] that use the pre-trained VGG as the

feature extractor, our encoder is trained along with other

parts of the network from scratch.

The encoder consists of three building blocks – the sec-

ond and third blocks halve the size of the feature maps with

stride 2. After passing the Ref image into the encoder, three

Ref features with different scales are obtained as F s
Ref ,

where s = 1, 2, 4. The LR image and the Ref↓ image only

go through the first block of the encoder, producing FLR

and FRef↓.

Afterwards, {FLR,FRef↓,F
s
Ref} are fed into MEM to

perform coarse-to-fine correspondence matching and fea-

ture extraction as shown in Fig. 3. Though there are three

MEMs in Fig. 2(a), the matching steps are only performed

once between FLR and FRef↓. The feature extraction stage

is performed three times, each for one Ref feature F s
Ref of

scale s. To generate the final SR output, the LR features

and output features from MEM are fused through the fu-

sion module, where the proposed SAM is used to align the

statistics of Ref features to those of LR ones. The proposed

DRAM is used to enhance high-frequency details.

MEM, SAM and DRAM are explained in Sections 3.1,

3.2 and 3.3, respectively. The loss functions used to train

the network are introduced in Section 3.4.

3.1. Matching & Extraction Module (MEM)

It is known that in a local region of a natural image,

neighboring pixels are likely to come from common objects

and share similar color statistics. Previous research on nat-

ural image priors also indicates that neighboring patches in

one image are likely to find their correspondence spatially

coherent with each other.

This motivates us to propose a coarse-to-fine matching

scheme, i.e., coarse block matching and fine patch match-

ing. Note that ‘block’ and ‘patch’ are two different con-

cepts in our method, and the size of block is larger than

patch (3 × 3 in our experiments). As shown in Fig. 3,

we first find correspondences in the feature space only for

blocks. Specifically, we unfold the LR feature into non-

overlapping blocks. Each LR block will find its most rel-

evant Ref↓ block. By doing so, the computational cost of

matching is reduced significantly compared with previous

methods [33, 30]. To achieve enough precision, we further

perform dense patch matching within each (LR block, Ref↓
block) pair. In the last stage, we extract useful Ref features

according to the obtained correspondence information.

Stage 1: Coarse matching. In this stage, the LR

feature FLR is unfolded into K non-overlapping blocks:

{B0

LR, ...,B
K−1

LR }. For each LR block Bk
LR, we find its

most relevant Ref↓ block Bk
Ref↓.

We first take the center patch of Bk
LR to compute the

cosine similarity with each patch of FRef↓ as

rkc,j =

〈

pk
c

‖pk
c‖

,
qj

‖qj‖

〉

, (1)

where pk
c is the center patch of Bk

LR, qj is the j-th patch

of FRef↓, and rkc,j is their similarity score. According to
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the similarity scores, we find the most similar patch for pk
c

in FRef↓. We then crop the block of size dx × dy centered

around this similar patch, denoted as Bk
Ref↓. According to

the local coherence property, for all patches in Bk
LR, their

most similar patches are likely to reside in this Bk
Ref↓. On

the other hand, we also crop the corresponding sdx × sdy

block from F s
Ref , denoted by B

s,k
Ref , which will be used in

the feature extraction stage.

Note that the center patch may not be representative

enough to cover full content of the LR block if the size of

the LR block is much larger than that of its center patch.

This may mislead us to find the irrelevant Ref↓ block. To

address it, we use center patches with different dilation rates

to compute the similarity. The details are shown in Stage 1

of Fig. 3, where the dotted blue patch denotes the case of

dilation = 1 and the dotted orange patch denotes the case

of dilation = 2. Then the similarity score is computed as

the sum of results of different dilations.

After this stage, for each LR block, we obtain its most

relevant Ref↓ block and the corresponding Ref block, form-

ing triples of (Bk
LR, Bk

Ref↓, B
s,k
Ref ). We limit the search

space of Bk
LR to Bk

Ref↓ in the fine matching stage.

Stage 2: Fine matching. In this stage, dense patch

matching is performed between each LR block and its cor-

responding Ref↓ block independently. A set of index maps

{D0, ...,DK−1} and similarity maps {R0, ...,RK−1} are

obtained.

More precisely, taking the k-th pair (Bk
LR, Bk

Ref↓) for

example, we compute the similarity score between each

patch of Bk
LR and each patch of Bk

Ref↓ as

rki,j =

〈

pk
i

∥

∥pk
i

∥

∥

,
qk
j

∥

∥qk
j

∥

∥

〉

, (2)

where pk
i is the i-th patch of Bk

LR, qk
j is the j-th patch

of Bk
Ref↓, and rki,j is their similarity score. Then the i-th

element of Dk is calculated as

Dk
i = argmax

j

rki,j . (3)

The i-th element of Rk is the highest similarity score re-

lated to the i-th patch of Bk
LR as

Rk
i = max

j
rki,j . (4)

Stage 3: Feature extraction. In this stage, we first extract

patches from B
s,k
Ref according to the index map Dk, and

form a new feature map B
s,k
M . Specifically, We crop the

Dk
i -th patch of B

s,k
Ref as the i-th patch of B

s,k
M . Moreover,

since Ref features with higher similarity scores are more

useful, we multiply B
s,k
M with the corresponding similarity
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Figure 3: Pipeline of the Match & Extraction Mod-

ule (MEM). In Stage 1, each LR block finds the most rele-

vant Ref↓ block. In Stage 2, dense patch matching is per-

formed in each (LR block, Ref↓ block) pair. In Stage 3, Ref

features are extracted according to the similarity and index

maps produced in the second stage. All the blocks are de-

noted by solid squares in light blue and patches are denoted

by dotted squares in different colors.

score map Rk to get the weighted feature block as

B
s,k
M := B

s,k
M ⊙ (Rk) ↑ , (5)

where ()↑ and ⊙ denote bilinear interpolation and element-

wise multiplication.

The final ouput of MEM is obtained by folding

{Bs,0
M , ...,B

s,K−1

M } together, which is the reverse operation

of the unfolding operation in Stage 1.

Analysis. For an LR image with m pixels and a Ref↓
image with n pixels, computational complexity of match-

ing in previous methods is generally O(mn). While in the

MEM, suppose each Ref↓ block has n′ pixels, computa-

tional complexity is reduced to O(Kn + mn′). Since K

is much smaller than m and n′ is also several hundred times

smaller than n, the computational cost is reduced signifi-

cantly through this coarse-to-fine matching scheme.

3.2. Spatial Adaptation Module (SAM)

In many situations, the LR and the Ref images may have

similar content and texture. But color and luminance dis-
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tributions diverge. Thus the distribution of extracted Ref

features may not be consistent with that of the LR features.

Therefore, simply concatenating the Ref and LR features

together and feeding them into the following convolution

layers is not optimal. Inspired by [6, 21], we propose the

Spatial Adaptation Module (SAM) to remap the distribution

of the extracted Ref features to that of the LR features.

We illustrate the structure of SAM in Fig. 2b. The LR

feature and extracted Ref feature are first concatenated be-

fore feeding into convolution layers to produce two param-

eters β and γ, which are with the same size as the LR fea-

ture. Then instance normalization [27] is applied to the Ref

feature as

F c
Ref ←−

F c
Ref − µc

Ref

σc
Ref

, (6)

where µc
Ref and σc

Ref are the mean and standard deviation

of FRef in channel c as

µc
Ref =

1

HW

∑

y,x

F
c,y,x
Ref , (7)

σc
Ref =

√

1

HW

∑

y,x

(

F
c,y,x
Ref − µc

Ref

)2

. (8)

H and W are the height and width of FRef .We then update

β and γ with the mean and standard deviation of the LR

feature of

β ←− β + µLR , (9)

γ ←− γ + σLR , (10)

where µLR and σLR are computed in a similar way as

Eqs. (7) and (8). Finally, γ and β are multiplied and added

to the normalized Ref feature in an element-wise manner as

FRef ←− FRef · γ + β . (11)

Since the difference between the Ref features and LR

features varies with respect to the spatial location, while the

statistics µLR, σLR, µRef and σRef are of size C × 1× 1,

we use learnable convolutions to predict two spatial-wise

adaptation parameters β and γ. Unlike [21] that only uses

the segmentation maps to produce two parameters, the con-

volutions in SAM takes as the input both Ref and LR fea-

tures to learn their difference. Besides, after obtaining β

and γ from the convolutions, we add them with the mean

and standard deviation of the LR features.

3.3. Dual Residual Aggregation Module (DRAM)

After spatial adaptation, the transferred Ref features are

fused with the LR features using our proposed Dual Resid-

ual Aggregation Module (DRAM) as shown in Fig. 2(c).

DRAM consists of two branches, i.e., the LR branch and

the Ref branch.

The Ref branch aims to refine the high-frequency details

of the Ref features. It first downsamples the Ref feature

FRef by a convolution layer with stride 2, and the residual

ResRef between the downsampled Ref feature and the LR

feature FLR is then upsampled by a transposed convolution

layer as

{

ResRef = Conv(FRef )− FLR ,

F
′

Ref = FRef +Deconv(ResRef ) .
(12)

Similarly, the high-frequency details of the LR features are

refined as
{

ResLR = FLR − Conv(FRef ) ,

F
′

LR = Deconv(FLR +ResLR) .
(13)

At last, the outputs of two branches are concatenated and

passed through another convolution layer with stride 1. In

this way, the details in the LR and Ref features are enhanced

and aggregated, leading to more representative features.

3.4. Loss Functions

Reconstruction loss. We adopt L1 loss as the reconstruc-

tion loss as

Lrec = ‖IHR − ISR‖1 , (14)

where IHR and ISR denote the ground truth image and the

network output.

Perceptual loss. The perceptual loss is expressed as

Lper = ‖φi(IHR)− φi(ISR)‖2 , (15)

where φi denotes the i-th layer of VGG19. Here we use

conv5 4.

Adversarial loss. The adversarial loss [4] Ladv is effective

in generating visually pleasing images with natural details.

We adopt the Relativistic GANs [10]:

LD =− EIHR
[log(D(IHR, ISR))]

− EISR
[log(1−D(ISR, IHR))] ,

(16)

LG =− EIHR
[log(1−D(IHR, ISR))]

− EISR
[log(D(ISR, IHR))] .

(17)

Full objective. Our full objective is defined as

L = λrecLrec + λperLper + λadvLadv . (18)

4. Experiments

4.1. Datasets

Our model is trained on CUFED5 [33] dataset with a×4
upscale factor following the setting in [33, 30]. CUFED5
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Algorithm CUFED5 Sun80 Urban100

SRCNN [3] 25.33 / 0.745 28.26 / 0.781 24.41 / 0.738

MDSR [16] 25.93 / 0.777 28.52 / 0.792 25.51 / 0.783

RDN [32] 25.95 / 0.769 29.63 / 0.806 25.38 / 0.768

RCAN [31] 26.15 / 0.767 29.86 / 0.808 25.40 / 0.765

HAN [20] 26.15 / 0.767 29.91 / 0.809 25.41 / 0.765

SRGAN [14] 24.40 / 0.702 26.76 / 0.725 24.07 / 0.729

ENet [22] 24.24 / 0.695 26.24 / 0.702 23.63 / 0.711

ESRGAN [28] 23.84 / 0.693 26.77 / 0.705 23.25 / 0.695

CrossNet [35] 25.48 / 0.764 28.52 / 0.793 25.11 / 0.764

SRNTT [33] 25.61 / 0.764 27.59 / 0.756 25.09 / 0.774

SRNTT-rec [33] 26.24 / 0.784 28.54 / 0.793 25.50 / 0.783

TTSR [30] 25.53 / 0.765 28.59 / 0.774 24.62 / 0.747

TTSR-rec [30] 27.09 / 0.804 30.02 / 0.814 25.87 / 0.784

MASA 24.92 / 0.729 27.12 / 0.708 23.78 / 0.712

MASA-rec 27.54 / 0.814 30.15 / 0.815 26.09 / 0.786

Table 1: PSNR/SSIM comparison among different SR

methods on 3 testing datasets. Methods are grouped by

SISR (top) and RefSR (bottom). The best and the second

best results are colored in red and blue.

is composed of 11,871 training pairs. Each pair contains an

original HR image and a corresponding reference image at

160 × 160 resolution. To validate the generalization capac-

ity of our model, we test it on three popular benchmarks:

CUFED5 testing set, Urban100 [7] and Sun80 [25].

CUFED5 testing set consists of 126 testing pairs, and

each HR image is accompanied by 4 reference images with

different similarity levels based on SIFT [17] feature match-

ing. We stitch 4 references to one image, same as that

of [30], during testing. Urban100 contains 100 building

images without references, and we take the LR image as

the reference such that the network explores self-similarity

of input images. Sun80 contains 80 natural images, each

paired with several references. We randomly sample one of

them as the reference image. All results of PSNR and SSIM

are evaluated on the Y channel of YCbCr color space.

4.2. Implementation Details

The encoder consists of 3 building blocks, each com-

posed of 1 convolutional layer and 4 ResBlocks [5]. The fu-

sion module consists of 1 spatial adaptation module, 1 dual

residual aggregation module, several convolutional layers

and ResBlocks. The numbers of ResBlocks in 1×, 2× and

4× fusion modules are 12, 8, and 4. The number of all in-

termediate channels is 64. The activation function is ReLU.

No batch normalization (BN) layer is used in our network.

In MEM, the LR block size is set to 8×8. The Ref↓ block

size is set to
12HRef↓

HLR
×

12WRef↓

WLR
, where HLR, WLR and

HRef↓, WRef↓ are the height and width of the LR image

and the Ref↓ image, respectively. The patch size is set to

3×3. The discriminator structure is the same as that adopted

in [28]. We train our model with the Adam optimizer by

setting β1 = 0.9 and β2 = 0.999. The learning rate is set to

1e-4 and the batch size is 9. The weight coefficients λrec,

Algorithm FLOPS-M (G) FLOPS-T (G) Param. (M) Runtime (ms)

CrossNet [35] - 348.31 35.18 98.7

SRNTT [33] 6,005.78 6,500.70 5.75 4,161.6

TTSR [30] 618.48 1,044.28 6.99 199.8

MASA 8.84 367.93 4.03 141.1

Table 2: FLOPS of matching steps (FLOPS-M), total

FLOPS (FLOPS-T), number of network parameters and

runtime comparisons among different RefSR methods.

CrossNet [35] is an alignment-based method, while the oth-

ers are matching-based methods.

λper and λadv are 1, 1 and 5e-3, respectively.

4.3. Comparison with State­of­the­Art Methods

We compare our proposed model with previous state-

of-the-art SISR and RefSR methods. SISR methods in-

clude SRCNN [3], MDSR [16], RDN [32], RCAN [31]

and HAN [20]. GAN-based SISR methods include SR-

GAN [14], ENet [22] and ESRGAN [28]. Among all these

methods, RCAN and HAN achieved the best performance

on PSNR, and ESRGAN is considered state-of-the-art in

terms of visual quality. Some recent RefSR methods are

also included, i.e., CrossNet [35], SRNTT [33], TTSR [30].

All the models are trained on the CUFED5 training set, and

tested on the CUFED5 testing set of Sun80 and Urban100.

The scale factor in all experiments is ×4.

Quantitative evaluations. For fair comparison with other

MSE minimization based methods on PSNR and SSIM, we

train another version of MASA by only minimizing the re-

construction loss, denoted as MASA-rec.

Table 1 shows the quantitative comparisons on PSNR

and SSIM, where the best and the second best results are

colored in red and blue. As shown in Table 1, our model

outperforms state-of-the-art methods on all three testing

sets.

We also compare the FLOPS, the number of network pa-

rameters and runtime with other RefSR methods in Table 2,

where FLOPS-M denotes the FLOPS of the matching steps,

and FLOPS-T denotes the total FLOPS. The FLOPS is cal-

culated on input of a 128× 128 LR image and a 512× 512
Ref image. Our model yields the smallest number of pa-

rameters and the second-best FLOPS and runtime with the

best performance on PSNR/SSIM. Though the alignment-

based method CrossNet [35] has the smallest FLOPS and

runtime, its performance on PSNR/SSIM is not on top when

compared with other methods in Table 1.

Qualitative evaluations. We show visual comparison be-

tween our model and other SISR and RefSR methods in

Fig. 4. Our proposed MASA outperforms other methods in

terms of visual quality, generating more fine details without

introducing many unpleasing artifacts in general. MASA

produces a higher level of natural hair, wrinkle, and leaf

texture.
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Input LR RCAN HAN ESRGAN

Reference SRNTT TTSR MASA (Ours)

Figure 4: Visual comparison among different SR methods on the CUFED5 testing set (top two examples), Sun80 [25] (the

third and the fourth example) and Urban100 [7] (the last example). This figure is best viewed by zoom-in.

4.4. Ablation Study

In this section, we conduct several ablation studies to in-

vestigate our proposed method. We analyze the influence

of different block sizes and dilation rates used in the coarse

matching stage. We also verify the effectiveness of the pro-

posed Spatial Adaptation Module and the Dual Residual

Aggregation Module.

Influence of block sizes and dilation rates. In the match-

ing & extraction module, the LR block size, the Ref↓ block

size and the dilation rates are key factors to balance the

matching accuracy and efficiency. Thus we analyze the

influence of these three hyper-parameters on the CUFED5

testing set. Fig. 5 shows the ablation results. We only show

the FLOPS of batch matrix-matrix product operations.

Fig. 5(a) shows the influence of the LR block size. It

can be seen that as the LR block size increases, PSNR and

FLOPS both drop, indicating the decreasing matching ac-

curacy and computational cost. We also test the case that

the size of LR block is 1 × 1, the PSNR reaches 27.60 dB

while the FLOPS sharply goes up to 787.77G, which is not

shown in Fig. 5(a).

Fig. 5(b) shows the influence of the Ref↓ block size.
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Figure 5: Influence of different LR block sizes, Ref↓ block sizes and dilation rates on PSNR and FLOPS. (a) Influence of LR

block sizes. (b) Influence of Ref↓ block sizes. (c) Influence of dilation rates.

(a) Ref (b) SR! (c) SR!"

(d) Ref # (e) SR!
# (f) SR!"

#

input

Figure 6: Ablation study on the spatial adaptation module.

The results with the subscript ’w’ are the outputs of the

model with SAM, while those with the subscript ’wo’ are

the outputs of the baseline model without SAM.

The PSNR and FLOPS increase as the increasing of the

Ref↓ block size. Because larger Ref↓ block size boosts

the matching accuracy in the fine matching stage. How-

ever, when the Ref↓ block size increases to some extent,

the growth of PSNR slows down. On the other hand, since

patch matching has to be performed on larger blocks, the

computational cost increases inevitably.

As illustrated in Fig. 5(c), the more combinations of dif-

ferent dilation rates exist, the higher PSNR can be obtained.

Since larger dilation rates cover a larger area in the LR

block, it leads to more accurate coarse matching.

Effect of spatial adaptation module. The spatial adap-

tation module plays the role of aligning the distribution of

the Ref features to that of the LR features. As shown in Ta-

ble 3, compared with the baseline (without any normaliza-

tion), SAM improves the PSNR and SSIM by 0.22 dB and

0.007, only introducing 0.15M more parameters. We also

compare SAM with other normalization methods, includ-

ing adaptive instance norm. (AdaIN) [8] and SPADE [21].

We found that SPADE is not suitable for this task, and the

performance of AdaIN is similar with that of the baseline.

Qualitative comparison is visualized in Fig. 6. We first

test the model with SAM and the baseline model on the Ref

image, which has a similar luminance with the LR image.

baseline AdaIN SPADE SAM (ours)

PSNR / SSIM 27.32 / 0.807 27.30 / 0.806 24.46 / 0.688 27.54 / 0.814

param. 3.88M 3.88M 3.99M 4.03M

Table 3: Ablation study on the spatial adaptation module.

Model Model 1 Model 2 Model 3 Model 4

Ref branch ✗ ✗ ✓ ✓

LR branch ✗ ✓ ✗ ✓

PSNR / SSIM 27.43 / 0.809 27.51 / 0.813 27.48 / 0.811 27.54 / 0.814

param. 3.73M 3.88M 3.88M 4.03M

Table 4: Ablation study on dual residual aggregation.

Then we change the luminance of the Ref image (denoted

by Ref ′), and test two models on it. As shown in Fig. 6, the

model with SAM performs better in both cases. Besides,

when testing on Ref ′ with changing luminance, the per-

formance of the model with SAM almost keeps the same,

while the performance of baseline drops significantly. This

demonstrates that SAM is robust in handling different Ref

images.

Effect of dual residual aggregation module. To verify

the effectiveness of the dual residual aggregation module

(DRAM), we conduct ablation study on 4 models as shown

in Table 4. Model 1 simply concatenates the LR features

with the Ref features and feeds them into a convolution

layer. Model 2 only keeps the LR branch of the DRAM,

and Model 3 only keeps the Ref branch. Model 4 is the

proposed DRAM. In Table 4, it is clear that DRAM outper-

forms Model 1 by 0.11 dB.

5. Conclusion

In this paper, we have proposed MASA-SR, a new end-

to-end trainable network for RefSR. It features a coarse-to-

fine correspondence matching scheme to reduce the compu-

tational cost significantly, while achieving strong matching

and transfer capability. Further, a novel Spatial Adaptation

Module is designed to boost the robustness of the network

when dealing with Ref images with different distributions.

Our method achieves state-of-the-art results both quantita-

tively and qualitatively across different datasets.
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