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Abstract

Batch Normalization (BN) and its variants have deliv-

ered tremendous success in combating the covariate shift in-

duced by the training step of deep learning methods. While

these techniques normalize the feature distribution by stan-

dardizing with batch statistics, they do not correct the in-

fluence on features from extraneous variables or multiple

distributions. Such extra variables, referred to as meta-

data here, may create bias or confounding effects (e.g.,

race when classifying gender from face images). We in-

troduce the Metadata Normalization (MDN) layer, a new

batch-level operation which can be used end-to-end within

the training framework, to correct the influence of meta-

data on the feature distribution. MDN adopts a regres-

sion analysis technique traditionally used for preprocessing

to remove (regress out) the metadata effects on model fea-

tures during training. We utilize a metric based on distance

correlation to quantify the distribution bias from the meta-

data and demonstrate that our method successfully removes

metadata effects on four diverse settings: one synthetic, one

2D image, one video, and one 3D medical image dataset.

1. Introduction

Recent advances in fields such as computer vision, nat-

ural language processing, and medical imaging have been

propelled by tremendous progress in deep learning [7].

These deep neural models owe their success to their large

number of trainable parameters, which encode rich infor-

mation from the data. However, since the learning pro-

cess can be extremely unstable, much of the work is spent

on carefully selecting a model through hyperparameter tun-

ing, an integral part of approaches such as [31, 39]. To aid

with model development, normalization techniques such as

Batch Normalization (BN) [31] and Group Normalization

(GN) [61] make the training process more robust and less

sensitive to covariate or distribution shift.

BN and GN perform feature normalization by standard-

izing them solely using batch or group statistics (i.e., mean

and standard deviation). Although they have pushed the
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Figure 1. The proposed Metadata Normalization operation. MDN

layer takes the learned features from the previous layer (f ), ana-

lyzes the effects of the metadata on them, residualizes such effects,

and outputs the distribution corrected features (r).

state-of-the-art forward, they do not handle extraneous de-

pendencies in the data other than the input and output la-

bel variables. In many applications, confounders [57, 69]

or protected variables [46] (sometimes referred to as bias

variables [2]) may inject bias into the learning process and

skew the distribution of the learned features. For instance,

(i) when training a gender classification model from face

images, an individual’s race (quantified by skin shade) has

a crucial influence on prediction performance as shown in

[11]; (ii) in video understanding, action recognition models

are often driven by the scene [15, 30] instead of learning

the harder movement-related action cues; (iii) for medical

studies, patient demographic information or data acquisi-

tion site location (due to device and scanner differences)

are variables that easily confound studies and present a trou-

blesome challenge for the generalization of these studies to

other datasets or everyday clinical usages [10, 68].

This additional information about training samples is of-

ten freely available in datasets (e.g., in medical datasets as

patient data) or can be extracted using off-the-shelf mod-

els (such as in [11, 15]). We refer to them as metadata,

namely “data that provides information about other data”

[59], an umbrella term for additional variables that provide

information about training data but are not directly used

as model input. The extraneous dependencies between the

training data and metadata directly affect the distributions

of the learned features; however, typical normalization op-
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erations such as BN and GN operate agnostic to this extra

information. Instead, current strategies to remove metadata

effects include invariant feature learning [4, 42, 62] or do-

main adaptation [26, 55].

Traditional handcrafted and feature-based statistical

methods often use intuitive approaches based on multivari-

ate modeling to remove the effects of such metadata (re-

ferred to as study confounders in this setting). One such

regression analysis method [41] builds a Generalized Lin-

ear Model (GLM) between the features and the metadata

(see Fig. 1) to measure how much the feature variances

are explained by the metadata versus the actual output (i.e.,

ground-truth label) [1, 68]. The effects of the metadata can

then be removed from the features by a technique referred

to as “regressing out” the effects of the extraneous variables

[1, 10, 45]. The application of this GLM-based method to

deep end-to-end architectures has not yet been explored be-

cause it requires precomputed features to build the GLM

and is traditionally performed on the dataset prior to train-

ing. Thus, this method is inapplicable to vision problems

with pixel-level input and local spatial dependencies, which

a GLM is unable to model. The key insight we use is that the

later layers of a network represent high-level features with

which we can build our GLM. In this paper, we extend this

widely-explored and seminal regression analysis method by

proposing a corresponding operation for deep learning ar-

chitectures within a network to remove the metadata effects

from the intermediate features of a network.

As illustrated in Fig. 1, we define a Metadata Normaliza-

tion (MDN) layer which applies the aforementioned regres-

sion analysis as a normalization technique to remove the

metadata effects from the features in a network1. Our MDN

operation projects each learned feature f of the Lth layer

to the subspace spanned by the metadata variables, denoted

by X , by creating a GLM [41, 43] f = Xβ + r, where

β is a learnable set of linear parameters, Xβ corresponds

to the component in f explained by the metadata, and r

is the residual component irrelevant to the metadata. The

MDN layer removes the metadata-related components from

the feature (Fig. 1) and regards the residual r as the nor-

malized feature impartial to metadata. We implement this

operation in a (mini)batch iterative training setting.

As opposed to BN and its variants that aim at normal-

izing the distribution of the features throughout the train-

ing process, MDN focuses on correcting the distribution

with respect to the chosen metadata variables. When em-

ployed in end-to-end settings, this enables deep learning ar-

chitectures to remove the effects of confounders, protected

variables, or biases during the training process. Moreover,

the metadata will only correct the distributions if there are

1Although metadata normalization was previously used to refer to the

adjustment of metadata elements into standard formats [36], we redefine

the term as an operation in deep learning architectures.

such distributions explained by the metadata. On the other

hand, if the learned features are orthogonal to the metadata

subspace (i.e., features are not biased by the metadata vari-

ables), the β coefficients will be close to zero and hence will

not alter the learning paradigm of the network.

In summary, our work makes the following primary con-

tributions: (1) We propose the Metadata Normalization

technique to correct the distribution of the data with respect

to the additional, metadata, information; (2) We present

a theoretical basis for removal of extraneous variable ef-

fects based on GLM and introduce a novel strategy to im-

plement this operator in (mini)batch-level settings; (3) For

the cases when output prediction variables are intrinsically

correlated with the metadata, we outline a simple exten-

sion to MDN to ensure that only extraneous effects of the

metadata are removed and not those that pertain to the ac-

tual output variables. Our implementation as a simple Py-

Torch layer module is available at https://github.com/

mlu355/MetadataNorm. We show the effectiveness of

MDN in four different experimental settings, including one

synthetic, one image dataset for gender classification from

face images, one video scene-invariant action recognition,

and one multi-site medical image classification scenario.

2. Related Work

Normalization in Deep Learning: Prior normalization

techniques for neural models include Batch Normalization

(BN) as a canonical example. BN has been a wildly ef-

fective mechanism to greatly speed up training and boost

model convergence [31]. Operations such as Group Nor-

malization (GN) [61] and Layer Normalization [6] are sim-

ilar and apply the underlying concepts behind BN to smaller

batch sizes and recurrent networks. Similar to BN and

GN, MDN is applied at a dataset level implemented in

(mini)batch-level settings, but it differs in how it shifts the

distributions of the features (w.r.t. the metadata).

Statistical Methods for Regressing Out Confounders:

Traditional feature-based statistical methods for removing

confounders include stratification [19], techniques using

Analysis of Variance (ANOVA) [45], and the use of mul-

tivariate modeling such as regression analysis [41] with the

statistical GLM method outlined above[1, 68]. However,

due to their ineffectiveness in dealing with pixel-level data

and dependency on handcrafted features, vision-based tasks

and end-to-end methods typically use other techniques to

alleviate bias or the effects of study confounders. Common

techniques include the use of data preprocessing techniques

to remove dataset biases such as sampling bias [64] and la-

bel bias [32]. Other methods to remove bias from machine

learning classifiers include the use of post-processing steps

to enforce fairness on already trained, unfair classification

models [23, 29, 68]. However, algorithms which decouple

training from the fairness enforcement may lead to a subop-
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timal fairness and accuracy trade-off [60]. Herein, we apply

the ideas behind feature-based confounder removal through

regression analysis as a batch-level module, which can be

added synchronously to the training process.

Bias in Machine Learning: Bias in machine learning mod-

els is an increasingly scrutinized topic at the forefront of

machine learning research. The prevalence of bias in large

public datasets has been a cause for alarm due to their prop-

agation or even amplification of bias in the models which

use them. Recent examples of dataset bias in public image

datasets such as ImageNet [63], IARPA Janus Benchmark

A (IJB-A) face [35] and Adience [21] have shown that they

are imbalanced with mainly light-skinned subjects and that

models trained on them retain this bias in their predictions

[11, 47]. Bias is prevalent in a wide range of disciplines,

such as gender bias in natural language processing via word

embeddings, representations, and algorithms [9, 16, 51] and

medical domains [34] such as genomics [13] and Magnetic

Resonance Imaging (MRI) analyses [3, 22], in which it is

common for data to be skewed toward certain populations

[25, 50]. Models trained on such biased settings produce

biased predictions or can amplify existing biases. Many ap-

proaches have been developed to remove these adverse ef-

fects for both qualitative causes (e.g., for fairness) and for

quantitative causes (e.g., improving the performance of a

model by reducing its dependence on confounding effects).

Fair representation learning is an increasingly popu-

lar approach to learn debiased intermediate representations

[65] that has been explored in numerous recent works

[2, 5, 29, 37, 40, 58], with [33, 54] introducing methods

to apply fair and invariant representation learning to contin-

uous protected variables. Recently, adversarial learning has

also become a popular area for exploration to mitigate bias

in machine learning models [2, 66]. Our MDN paradigm

can interpret this problem as correcting the feature distribu-

tions by treating the bias and protected variables as the study

metadata, and hence has interesting applications for fair rep-

resentation learning. In contrast with the domain adaptation

and invariant feature learning frameworks, MDN is a layer

which easily plugs into an end-to-end learning scheme and

is also applicable to continuous protected variables.

3. Method

With a dataset including N training samples with pre-

diction labels (Ii,yi) for i ∈ {1, . . . , N}, we train a neu-

ral network with trainable parameters Θ using a 2D or 3D

backbone, depending on the application (2D for images, and

3D for videos or MRIs). MDN layer can be inserted be-

tween all convolutional and fully connected layers to correct

the distribution of the learned features within the stochastic

gradient decent (SGD) framework.

3.1. Metadata Normalization (MDN) via GLM

Let xi ∈ R
K be a column vector storing the K-

dimensional metadata of the ith sample and X =
[x1, . . . ,xN ]⊤ be the metadata matrix of all N training

samples. Let f = [f1, ..., fN ] ∈ R
N be a feature ex-

tracted at a certain layer of the network for the N sam-

ples. A general linear model associates the two variables

by f = Xβ + r, where β is an unknown set of linear pa-

rameters, Xβ corresponds to the component in y explained

by the metadata, and r is the residual component irrelevant

to the metadata. Therefore, the goal of the MDN layer is to

remove the metadata-related components from the feature:

r = MDN(f ;X). (1)

In this work, we use an ordinary least square estimator

to solve the GLM so that the MDN layer can be reduced to

a linear operator. Specifically, the optimal β is given by the

closed-form solution

β = (X⊤X)−1X⊤f , (2)

and the MDN layer can be written as

r = f −Xβ = f −X(X⊤X)−1X⊤f (3)

= (I −X(X⊤X)−1X⊤)f = (I − P)f = Rf . (4)

Geometrically, P is the projection matrix onto the linear

subspace spanned by the metadata (column vectors of X)

[8]. The residualization matrix R ∈ R
N×N is the residual

component orthogonal to the metadata subspace (Fig. 1).

3.2. Batch Learning

In a conventional GLM, both X and R are constant ma-

trices defined with respect to all N training samples. This

definition poses two challenges for batch stochastic gradi-

ent descent. To show this, let X̂ ∈ R
M×K and f̂ ∈ R

M be

the metadata matrix and feature associated with M training

samples in a batch. In each iteration, we need to re-estimate

the corresponding residualization matrix R̂ ∈ R
M×M ,

which by Eq. (4) would require re-computing the matrix

inverse (X̂⊤X̂)−1, a time-consuming task. Moreover, the

GLM analysis generally results in sub-optimal estimation of

β when few training samples are available (i.e., M ≪ N ).

To resolve these issues, we further explore the closed-form

solution of Eq. (2), which can be re-written as

β = (X⊤X)−1

N∑

i=1

xifi ≈ NΣ
−1

E[xf ], (5)

where Σ = X⊤X is a property solely of the metadata

space independent of the learned features f and E[xf ] ≈
1

N

∑N

i=1
xifi. We propose to pre-compute Σ

−1 on all N
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training samples to derive the most accurate characteriza-

tion of the metadata space before training. During each

training step, we compute the batch-level estimate of the

expectation E[xf ] = 1

M
X̂⊤f̂ . Hence, the batch estimation

of the residualization matrix is

R̂ ≈ f̂ − X̂(NΣ
−1

E[xf ]) (6)

≈ (I −
N

M
X̂Σ

−1X̂)⊤f̂ . (7)

We have rederived our residual solution from Eq. (4) with

the addition of the scaling constant N
M

and X̂⊤X̂−1 re-

placed by our precomputed Σ−1.

3.3. Evaluation

During training, we store aggregated batch-level statis-

tics to use during evaluation, when we may not have a large

enough batch to form a reliable GLM solution. Observe

from Eq. (5) that β is re-estimated in each training batch

because the features f are updated after the batch. Since

the testing process does not update the model, the under-

lying association between features and metadata is fixed,

so the β estimated from the training stage can be used to

perform the metadata residualization. To ensure that the β

estimation can accurately encode the GLM coefficients as-

sociated with the entire training set and to avoid oscillation

from random sampling of batches), we update β at each it-

eration using a momentum model [52]:

βk = ηβk + (1− η)βk−1, (8)

where k ∈ {1, . . . , τ} is the batch index and η is the mo-

mentum constant. During testing, we no longer solve for β

and instead use the estimate βτ from the last training batch

MDN(f ;X) = f −Xβτ . (9)

The batch-level GLM solution will approach the optimal

group-level solution with increasing batch size, as larger

batches produce a better estimate for the dataset-level GLM

solution during both training and evaluation.

3.4. Collinearity between Metadata and Labels

In more complicated scenarios where confounding ef-

fects occur, the metadata not only affects the training input

but also correlates with the prediction label. In this case,

we need to remove the direct association between f and X

while preserving the indirect association created via y [69].

We control for the effect of y by reformulating the GLM as

f = XβX + yβy + r = X̃β̃ + r, (10)

where y is prediction labels vector of the training samples,

X̃ is the horizontal concatenation of [X,y], and β̃ is the

vertical concatenation of [βX ;βy]. This multiple regres-

sion formulation allows us to separately model the variance

within the features explained by the metadata and by the la-

bels, so that we only remove the metadata-related variance

from the features. To perform MDN in this scenario, we

first estimate the composite β̃ in a similar way as in Eq. (5)

for each batch during training

β̃ ≈ NΣ̃
−1

E [[xf ;yf ]] , (11)

where Σ̃ is the covariance matrix of X̃ estimated on the

whole training population, and the expectation E is com-

puted on the batch level. Next, unlike the previous MDN

implementation in Eq. (7), the residualization is now only

performed with respect to βX

MDN(f ;X) = f −XβX . (12)

Controlling for the labels when fitting features to the meta-

data preserves the components informative to prediction in

our residual and thus in the ensuing features of the network.

4. Experiments

We test our method on a variety of datasets covering a di-

verse array of settings, including both categorical and con-

tinuous metadata variables, binary and multi-class classifi-

cation, and multi-label. For all experiments, our baseline

is a vanilla convolutional neural network (2D or 3D CNN),

to which we add the proposed MDN to assess its influence

on the model learning process. We show that adding MDN

to a model can result in improved or comparable prediction

accuracy while reducing model dependence on the meta-

data. The collinearity of the metadata with the labels is

handled by adopting the MDN implementation in Section

3.3. We test our method by (1) adding MDN to solely the

final fully-connected layers of the network (which we refer

to as MDN-FC) and (2) adding MDN to the convolutional

layers in addition to the final linear layers (MDN-Conv).

For comparison, we add other normalization layers such as

Batch Normalization (BN) and Group Normalization (GN)

to all convolutional layers of the baseline.

Computational efficiency is one of the strengths of our

method, as there are no learnable parameters due to the

closed form solution for batch learning in Section 3.2.

Therefore, memory cost is negligible and training time com-

parable to models without MDN. We used NVIDIA GTX

1080 Ti with 11GB VRAM for image experiments and TI-

TAN RTX with 24GB VRAM for video experiments.

4.1. Metrics

For each of the experiments, we use the squared dis-

tance correlation (dcor2) [53] between our model features

and the metadata variables as the primary quantitative met-

ric for measuring the magnitude of the metadata effect on
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Figure 2. Synthetic data generation process with a generated train-

ing sample. The main diagonal Gaussian σA differentiates the two

groups while the off-diagonal Gaussian σB serves as the metadata.

the features. Unlike univariate linear correlation, dcor2

measures non-linear dependency between high-dimensional

variables. The lower the dcor2, the less the learned features

(and hence the model) are affected by the extraneous vari-

ables, with dcor2 = 0 indicating statistical independence.

The goal is to minimize dcor2 and reduce the dependence

between the features and metadata variables. We addition-

ally compute balanced accuracy (bAcc) for all experiments

to measure prediction performance. With regard to individ-

ual experiments, we compute the following additional met-

rics: (1) for the GS-PPB experiment, we compute accuracy

per shade; (2) for the HVU experiment, we compute mean

average precision (mAP) for the action classification task.

4.2. Synthetic Experiments

The synthetic experiments are constructed as a binary

classification task on a dataset of random synthetically gen-

erated images comprised of two groups of data, each con-

taining 1000 images of resolution 32× 32 pixels. Each im-

age is generated by 4 Gaussians, the magnitude of which is

controlled by parameters σA (controlling quadrants II and

IV) and σB (controlling quadrant III). Images from Group

1 are generated by sampling σA and σB from a uniform

distribution U(1, 4), while images from Group 2 are gener-

ated with stronger intensities from U(3, 6) (see Figure 2).

The difference in σA between the two groups is associated

with the true discriminative cues that should be learned by

a classifier, whereas σB is a metadata variable. Therefore,

an unbiased model which is agnostic to σB should predict

the group label purely based on the two diagonal Gaussians

without depending on the off-diagonal Gaussian. The over-

lapping sampling range of σA between the two groups leads

to a theoretical maximum accuracy of 83.33%.

Our baseline is a simple CNN with 2 convolution/ReLU

stacks followed by 2 fully-connected layers of dimension

(18432, 84, 1) with Sigmoid activation. We observe the ef-

fect of adding MDN to various layers of the baseline: the

first (MDN-FC) has one MDN layer applied to the first

fully-connected layer, and the second (MDN-Conv) addi-

tionally applies MDN to the convolutional layers.

Table 1 shows the results of 100 runs of each model over

batch sizes 200, 1000, and 2000 with 95% confidence in-

tervals (CIs). Our baseline achieves 94.1% training accu-

Table 1. Comparison of models on the Synthetic Dataset over 100

runs with 95% CIs for dcor2 (lower is better) and bAcc (closer to

83.3% is better). Note that the theoretical maximum accuracy of

an unbiased model is 83.3%, so significantly higher values indicate

that the model is “cheating” by using the metadata.

Model |Batch| dcor2 bAcc

Baseline [28] 200 0.399 ± 0.014 94.1 ± 0.0
1000 0.464 ± 0.004 94.1 ± 0.0
2000 0.479 ± 0.005 94.1 ± 0.0

BN [31] 200 0.331 ± 0.003 93.2 ± 0.1
1000 0.289 ± 0.004 93.5 ± 0.1
2000 0.273 ± 0.004 93.6 ± 0.1

GN [61] 200 0.368 ± 0.010 94.0 ± 0.1
1000 0.399 ± 0.009 94.0 ± 0.1
2000 0.435 ± 0.009 94.0 ± 0.1

MDN-FC 200 0.189 ± 0.010 90.7 ± 0.1
1000 0.043 ± 0.008 86.7 ± 0.7
2000 0.028 ± 0.012 82.4 ± 1.2

MDN-Conv 200 0.181 ± 0.019 89.5 ± 0.8
1000 0.017 ± 0.007 82.8 ± 0.4
2000 0.003 ± 0.000 83.4 ± 0.1

racy, significantly higher than the theoretical maximum ac-

curacy of 83.3%, so it must be falsely leveraging the meta-

data information for prediction. Similarly, BN and GN pro-

duce accuracies around 93% and 94%, confirming that nei-

ther technique corrects for the distribution shift caused by

the metadata. On the other hand, MDN-Conv and MDN-

FC produce accuracies much closer to the theoretical unbi-

ased optimum. As batch size increases, both MDN-FC and

MDN-Conv decrease in accuracy until hitting the theoreti-

cal optimum, which suggests they have completely removed

their dependence on the metadata without removing compo-

nents of features which aid in prediction. MDN-FC reaches

the max accuracy at batch size 2000 with 82.4% and MDN-

Conv reaches the max accuracy more quickly, with 82.8% at

batch 1000. We measure dcor2 between the features in the

first FC layer and the metadata variable for samples from

each group separately (Fig. 3) and then record the average

in Table 1. We observe that dcor2 for both MDN models is

significantly lower than the lowest baseline dcor2 of 0.399

(Table 1). The dcor2 decreases as batch size increases; e.g.,

when using a batch size of 2000, the correlation drops to

virtually 0, indicating an exact independence between net-

work features and the metadata variable σB . These results

corroborate our expectation from section 3.2 that the batch-

level GLM solution will approach the optimal group-level

solution with large batches.

MDN-Conv has superior results to MDN-FC in terms of

lower dcor2 and accuracy closer to 83.33%. This suggests

that forming a sequence of linear models by applying MDN

to successive layers (after each convolution) may gradu-

ally remove nonlinear effects between features and meta-

data variables. Figure 4 shows the tSNE visualization of

features extracted from the baseline and from MDN-Conv
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Figure 3. Effect of MDN across different batch sizes on the synthetic dataset measured in dcor2 (averaged over 100 runs).
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Figure 4. tSNE of features extracted from baseline and MDN-Conv

on the synthetic dataset. Samples from the overlapping region

U(3, 4) are separable in baseline but not in MDN-Conv.
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Figure 5. Accuracy by shade on the GS-PPB dataset for different

methods pretrained on ImageNet.

with 3 groups: samples with kernels sampled from the over-

lapping U(3, 4) region, which should not be separable with-

out using the metadata, and samples separable into Group 1

and Group 2 using only σA (with kernels in U(1, 3) and

U(4, 6)). Our tSNE plot shows that the overlapping region

is separable in the baseline features but not in MDN-Conv.

4.3. Gender Prediction Using the GSPPB Dataset

The next experiment is gender prediction on the face im-

ages in the Gender Shades Pilot Parliaments Benchmark

(GS-PPB) dataset [11]. GS-PPB contains 1,253 facial im-

ages of 561 female and 692 male subjects, each labeled with

a shade on the Fitzpatrick six-point labeling system [24]

from type 1 (lighter) to type 6 (darker). Face detection is

used to crop the images to ensure that our classification re-

lies solely on facial features [27]. It has been shown that

models pre-trained on large public image datasets such as

ImageNet amplify the dependency between shade and tar-

get labels due to dataset imbalance [11, 63]. A large dis-

Table 2. Per-shade bAcc and per-class dcor2 on GS-PPB. Results

are averaged over 5 runs of 5-fold CV with 95% Confident Inter-

vals. Best results are bolded and second best are underlined.

Shade MDN-Conv MDN-FC Baseline [28] BN [31] GN [61]

1 96.2±1.1 95.9±1.2 95.2±1.5 96.6±0.6 95.6±1.5

2 96.2±0.6 96.0±0.6 94.5±0.8 95.7±0.7 95.6±0.9

3 96.4±0.8 94.5±1.7 94.9±1.2 95.2±1.1 95.1±1.4

4 95.7±1.6 94.3±1.8 95.0±1.6 94.9±1.4 94.6±2.1

5 95.1±0.7 93.8±0.8 93.3±0.8 93.8±1.0 93.3±1.0

6 91.0±0.9 90.9±1.0 87.6±1.4 88.5±1.0 89.0±1.6

Avg. 95.1±0.4 94.2±0.5 93.4±0.7 94.1±0.4 93.8±0.5

dcor2 F 0.06±0.01 0.07± 0.01 0.14±0.02 0.22±0.02 0.17±0.01

dcor2 M 0.08±0.01 0.09± 0.01 0.05±0.01 0.10±0.01 0.10±0.01

Avg. 0.07±0.01 0.08± 0.01 0.10±0.01 0.16±0.01 0.13±0.01

crepancy in classification accuracy of such pre-trained mod-

els has been observed between lighter and darker shades,

with lowest accuracy in shades 5 and 6. In this experiment,

we aim to to reduce the shade bias in a baseline VGG16

backbone model [48] pre-trained on ImageNet [18] (chosen

for its known dataset bias to shade [63]) by fine-tuning on

the GS-PPB dataset using MDN with shade as the metadata

variable. In our VGG16 baseline, we replace the final FC

layers with a simple predictor of two FC layers. We test

MDN by applying it to the first FC layer (MDN-FC) and

additionally to the last convolutional layer (MDN-Conv).

Table 2 shows prediction results across five runs of 5-fold

cross-validation. Per shade accuracies are further visualized

in the box plot Figure 5. MDN-Conv and MDN-FC both

achieve higher accuracies on the darker shades 5 and 6 with

comparable or higher performance for other shades, correct-

ing for the bias in the baseline VGG16 pretrained on Ima-

geNet. Both MDN models also achieve the highest average

bAcc and lowest correlations, with MDN-Conv obtaining

the highest average bAcc of 95.1% and the lowest dcor2 on

both classes (F:0.06, M:0.08, Avg:0.07). BN and GN opera-

tions increase accuracy when applied to the baseline, which

is expected, as these operations have been shown to improve

model stability and performance. However, when compared

with the MDN models, they produce higher correlation and

less robust results MDN, with smaller average accuracy and

a much higher dcor2 for females than for males, indicating

that they are more heavily leveraging if a person is female

vs male. This difference is greatly reduced by MDN, which

has dcor2 agnostic to gender. This shows that in settings
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Figure 6. Comparison of train dcor2 for MDN-FC, Baseline and

BN on HVU pretrained on the Kinetics-700 Dataset

where features are heavily impacted by metadata, MDN can

successfully correct the feature distribution to improve re-

sults over normalization methods that only perform stan-

dardization over using batch or group statistics.

4.4. Action Recognition Using the HVU Dataset

The Holistic Video Understanding (HVU) dataset [20] is

a large scale dataset that contains 572k video clips of 882

different human actions. In addition to the action labels,

the videos are annotated with labels of other categories in-

cluding 282 scene labels. We use the original split from the

paper, with 481k videos in the training set and 31k videos in

the validation set. Our task is action recognition with scene

as our metadata, aiming to reduce the direct reliance of our

model on scene. Action recognition architectures are often

biased by the background scene because videos of the same

action are captured in similar scenes [15, 30]. These archi-

tectures may capture the easier scene cues rather than the

harder-to-understand movement cues that define the action

in time, which can reduce generalizability to unseen cases.

We use a 3D-ResNet-18 [28] architecture pretrained on

the Kinetics-700 dataset [12] as our BN model and our base-

line is the same with no normalization (BN layers removed).

MDN is added to the final FC layer of the baseline be-

fore the output layer (MDN-FC). The metadata variables

are one-hot vector encodings of the top 50 scenes by occur-

rence. The model is fine-tuned on the HVU dataset until

validation accuracy converges, at around 70 epochs. Fig-

ure 6 and Table 3 show that while the baseline model in-

creases in dcor2 during training, MDN and BN decrease,

even though BN has higher dcor2. MDN displays the low-

est dcor2 by far of 0.182, so we have clearly succeeded at

reducing the dependence between our model features and

scene. However, both MDN and BN experience slightly

lower mAP than the baseline without normalization. This is

not surprising since scenes may provide information about

the action itself, separating cases where the model directly

uses scene for prediction and indirectly does so with action

as an intermediate dependency. Thus, removing scene de-

pendence may hurt model performance by either preventing

it from “cheating” by directly using the scene for prediction,

or removing useful components of the features.

Table 3. Performance of MDN and baseline on the HVU dataset.

Model dcor2 mAP (%)

BN (3D-ResNet-18) [31] 0.335 39.7

Baseline (3D-ResNet-18 - BN) [28] 0.307 42.4

MDN-FC (3D-ResNet-18 + MDN) 0.182 40.3
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Figure 7. Prediction accuracy of each cohort and the balanced ac-

curacy over the 4 cohorts on the testing folds (averaged over the 5

folds) versus training iterations.

We have demonstrated that MDN successfully removes

direct reliance of our model on scene, but further explo-

ration is needed to interpret the effect on model perfor-

mance. This video action recognition experiment is also

particularly challenging due to the large dimensionality of

video input. Thus, it is difficult to produce the large batch

sizes needed to best estimate the GLM parameters. This is a

common problem in video recognition tasks for batch-level

operations such as BN. Several prior works [14, 17, 49]

have proposed work-around solutions by calculating aggre-

gated gradients from several batches to virtually increase

the batch size or aggregated batch-level statistics (for BN

and for our case the GLM parameters). This is an area that

requires further study and we anticipate that implementing

such strategies may improve results further.

4.5. Classification of MultiSite Medical Data

The last experiment is diagnostic disease classification

of 4 cohorts of participants based on their T1-weighted 3D

MRI scans. The 4 cohorts are healthy control (CTRL)

subjects, subjects that show Mild Cognitive Impairment

Table 4. Multi-site multi-label disease diagnosis classification

based on 3D MRIs and accuracy scores with respect to the tar-

get (UCSF) dataset. Recall rate (accuracy) for each cohort, bAcc

of all cohorts, standard deviation of per-cohort recall, and distance

correlation between the learned features and dataset labels.

Class
# of Subjects

Baseline BN [31] GN [61] MDN
Total UCSF

CTRL 460 156 8.3% 9.6% 14.1% 41.7%

HIV 112 37 63.0% 62.2% 66.9% 32.4%

MCI 732 335 37.8% 54.6% 51.4% 73.7%

HAND 145 145 42.1% 55.9% 52.4% 42.0%

Overall bAcc 37.8% 45.6% 46.1% 47.5%

Standard Deviation 22.5% 25.2% 22.5% 18.1%

dcor2 0.26 0.30 0.34 0.06
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Figure 8. tSNE visualization of the features extracted from the

convolutional layers with BN or with MDN. Each data point is

color-coded based on the dataset label.

(MCI), those diagnosed with Human Immunodeficiency

Virus (HIV) infection, and subjects with HIV-Associated

Neurocognitive Disorder (HAND). Since HAND is a co-

morbid condition that combines the characteristics of HIV

and MCI, the classification is formulated as a multi-label bi-

nary classification problem, where we predict for each sub-

ject whether 1) the subject has MCI diagnosis; and 2) the

subject is HIV-positive. The HAND patients are positive

for both labels and the CTRLs are negative for both.

The T1-weighted MR images used in this study were col-

lected at the Memory and Aging Center, University of Cali-

fornia - San Francisco (UCSF; PI: Dr. Valcour) [67] shown

in Table 4. Since the number of subjects is relatively small,

especially for the HIV cohort (N = 37), we augment the

training dataset with MRI scans collected by the Neuro-

science Program, SRI International (PI: Dr. Pfefferbaum),

consisting of 75 CTRLs and 75 HIV-positive subjects [1],

and by the public Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI1) [44], which contributed an additional 229

CTRLs and 397 MCI subjects. To perform classification on

such multi-site data, the source of the data (dataset label)

becomes the metadata, which is parameterized here by one-

hot encodings. Medical imaging datasets acquired in mul-

tiple sites with different scanning protocols is a core chal-

lenge for machine learning algorithms in medicine, [38, 56],

as different scanning protocols lead to different image for-

mations. Differing class formations across sites (as in this

experiment) creates a simple undesirable cue for the model

to leverage during prediction as a confounder. We corrected

the features distribution by deeming the acquisition site as

our metadata variable and employing our MDN operation.

The baseline classification model consists of a feature

extractor and a classifier. We designed the feature extractor

as 4 stacks of 3×3×3 convolution/ReLU/BN/max-pooling

layers with dimension (16, 32, 64, 32). The classifier con-

sists of 2 fully connected layers with dimension (2048, 128,

16). We construct each batch by sampling 10 subjects from

each cohort of each dataset (with replacement). The model

accuracy is evaluated by 5-fold cross-validation with re-

spect to the 4 cohorts of UCSF, which is the primary goal of

the experiment. We train the model for 20 epochs until the

bAcc on the testing folds (averaged over the 5 testing folds)

converges. We then rerun the experiment by replacing the

BN layers in the baseline model with MDN layers.

We observe from Table 4 and Fig. 7 that MDN improves

bACC for the multi-label prediction compared to the base-

lines with BN and GN. The baseline models exhibit highly

imbalanced predictive power among the 4 cohorts reflected

by the large discrepancy in per-cohort recall (std of 25.2%

and 22.5%). This is in part because the 3 datasets repre-

sent distinct cohort constructions (e.g., ADNI only contains

MCI, but no HIV) so the multi-domain feature distribu-

tion is likely to bias the discriminative cues related to the

neurological disorders. This, however, is not the case for

MDN, which successfully reduces the accuracy discrepancy

among cohorts (std of 18.1%). The CTRL group received

an especially high increase in bAcc, from 9.6% in BN and

14.1% in GN to 41.7% in MDN.

The reduced dataset bias is also evident in the distance

correlation analysis, which examines the dependency be-

tween the features extracted from the convolutional layers

and the dataset label. Table 4 records the average dcor2 de-

rived over the 5 testing folds, and MDN achieves a signifi-

cantly lower metric than the baseline model. Qualitatively,

we randomly select a testing fold and use t-SNE to project

the features learned by the two models into a 2D space and

color-code the data point by their dataset label (Fig. 8). The

features are clearly clustered by dataset assignment for the

baseline model, whereas this adverse clustering effect is sig-

nificantly reduced after MDN.

5. Conclusion

We presented a novel normalization operation for deep

learning architectures, denoted by Metadata Normalization

(MDN). This operation, used in end-to-end settings with

any architecture, removes undesired extraneous relations

between the learned features of a model and the chosen

metadata. MDN extends traditional statistical methods to

deep learning architectures as a network layer that corrects

the distribution shift of model features from metadata, dif-

fering from BN and its variants that only standardize the

features. Therefore, it can effectively combat bias in deep

learning models as well as remove the effects of study con-

founders in medical studies. Our results on four diverse

datasets have shown that MDN is successful at removing

the dependence of the learned features of a model on meta-

data variables while maintaining or improving performance.
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