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Figure 1. We pose a novel problem: automatically associating subjects in videos with ‘effects’ related to them in the scene. Given an

input video (top) and rough masks of subjects of interest (middle), our method estimates an omnimatte – an alpha matte and foreground

color that includes the subject itself along with all scene elements associated with it (bottom). The associated elements can be other objects

attached to the subject or moving with it, or complex effects such as shadows, reflections, smoke, or ripples the subject creates in water.

Abstract

Computer vision is increasingly effective at segmenting

objects in images and videos; however, scene effects re-

lated to the objects—shadows, reflections, generated smoke,

etc.—are typically overlooked. Identifying such scene ef-

fects and associating them with the objects producing them

is important for improving our fundamental understanding

of visual scenes, and can also assist a variety of applica-

tions such as removing, duplicating, or enhancing objects in

video. In this work, we take a step towards solving this novel

problem of automatically associating objects with their ef-

fects in video. Given an ordinary video and a rough seg-

mentation mask over time of one or more subjects of inter-

est, we estimate an omnimatte for each subject—an alpha

matte and color image that includes the subject along with

all its related time-varying scene elements. Our model is

trained only on the input video in a self-supervised manner,

without any manual labels, and is generic—it produces om-

nimattes automatically for arbitrary objects and a variety

of effects. We show results on real-world videos contain-

ing interactions between different types of subjects (cars,

animals, people) and complex effects, ranging from semi-

transparent elements such as smoke and reflections, to fully

opaque effects such as objects attached to the subject.1

1Project page: https://omnimatte.github.io/

1. Introduction

“And first he will see the shadows best, next the reflec-

tions of men and other objects in the water, and then the

objects themselves, then he will gaze upon the light of the

moon and the stars and the spangled heaven ... Last of all

he will be able to see the sun.” – Plato

Is it possible to automatically determine all the effects
caused by a subject in a video? Reflect for a moment on the
difficulty of the task: a subject, such as a human wander-
ing through a scene, can cast shadows on the floor and dis-
tant walls, and be reflected in windows and other surfaces.
These ‘effects’ are non-local. However, they are correlated

with the subject’s shape, motion and, in the case of reflec-
tions, appearance.

Tackling this problem is the objective of this paper. More
specifically, given an input video and (possibly rough) seg-
mentations over time of subjects of interest in the video, we
seek to produce an output opacity matte (alpha matte) for
each subject that includes the subject and their effects in
the scene (Figure 1). We call this the “omnimatte” of the
subject. We additionally produce a color background image
containing the static background elements in the video. We
achieve this by proposing a network and training framework
that is able to automatically determine and segment regions
that are correlated with the given subject (Figure 2). The
model is trained in a self-supervised way only on the in-
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Figure 2. Estimating omnimattes from video. The input to the model is an ordinary video with multiple moving objects, and a rough

segmentation mask M for each object (left). In a pre-processing step, we compute an optical flow field F between consecutive frames

using [28]. For each object, we pass the mask, estimated flow in the object’s region, and a sampled noise image Zt (representing the

background) to our model, producing an omnimatte (color + opacity) and an optical flow field for the object (right). In addition, the model

predicts a single background color image for the entire video (top), given a spatial texture noise image Z̄ as input. See Sec. 3 for details.

put video, without observing any additional examples. Our
solution is inspired by the recent work of Lu et al. [17]
that presented a method to decompose a video into a set of
human-specific RGBA layers. We generalize this technique
to support arbitrary objects, by relying only on binary input
masks (no object-specific representation or processing) and
incorporating general optical flow to account for motion and
frame-to-frame correspondence.

Associating objects with their effects not only improves
our fundamental understanding of visual scenes and events
captured in video, it can also support a range of applica-
tions. Consider for example the problem of removing a
person or other types of objects from a video. As is well
known, a common error in person removal, e.g., by inpaint-
ing, is that a shadow or reflection of the person remains,
resulting in a video left with just a ‘shadow of the former
self’. The erroneous missing of a reflection is a central plot
point in the film ‘Rising Sun’ (1993), and the converse, a
lack of reflection, a common trope of vampire movies. The
important point is that manipulating an object in a video
requires dealing not only with the object; its effects in the
scene need to be adjusted together with the object in order
to create realistic and faithful renditions.

We demonstrate results of inferring omnimattes for dif-
ferent objects such as animals, cars, and people, capturing
a variety of complex scene effects including shadows, re-
flections, dust and smoke. We evaluate the resulting om-
nimattes qualitatively and quantitatively, and also demon-
strate how omnimattes can be useful for video editing ap-
plications such as object removal, background replacement,
“color pop”, and stroboscopic photography.

2. Related Work

Video layer decomposition Our work is inspired by sem-
inal works on layered video decomposition such as [30]
and [6]. Layered representations of images and videos

have been applied widely in computer vision and graphics,
for example, for inferring occlusion relationships (e.g. [6]),
depth (e.g. [39, 27]), and synthesizing novel views (e.g. [26,
29]). In particular, our work builds on the recent work of
Lu et al. [17] that presented a method for decomposing
a video into a set of human-specific RGBA layers, where
each layer represents a person and their associated scene
elements. They take a neural rendering approach and rep-
resent the geometry and texture of people explicitly, using
a dedicated, human-specific pipeline. We demonstrate that
the neural rendering component is in fact unnecessary, and
that comparable results can be achieved by providing only
rough segmentation masks and flow as input to the network.
The result is a simpler and more efficient setup that allows
the model to handle arbitrary moving objects. We compare
the results with [17] in Sec. 4.5.

Image and video matting Image and video matting tradi-
tionally deals with the problem of estimating a foreground
layer (color + opacity) and a background color image from a
given image or a video (e.g., [5, 31, 15, 7, 37, 13, 25]). The
novel problem we propose—estimating an omnimatte—
also aims at estimating color + opacity layers from an input
video. However, the key fundamental difference is that om-
nimattes capture not only an object but also all the various
scene effects that are correlated with the object. None of
the existing matting methods is suitable for performing this
task: they cannot handle well entirely semi transparent ob-
jects, typically require accurate trimaps that are generated
manually, and they are often restricted to estimating two
layers (background/foreground). In practice, film produc-
tion uses manual or semi-automatic rotoscoping to create
mattes with such effects [14]. Our method works automat-
ically and generically on natural, ordinary videos that con-
tain arbitrary moving objects and scene effects, and requires
only rough object masks (e.g., see the flamingo example in
Fig. 1).
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Background subtraction Change detection using back-
ground subtraction [20, 9] typically does not produce al-
pha mattes, but binary masks containing all objects and ef-
fects (such as shadows). Qian and Sezan’s “difference mat-
ting” work [23] attempts to use background subtraction and
thresholding to produce a foreground matte with a known
background image, but the results are very sensitive to the
thresholding value. [25] recently modernized that approach,
producing nice quality, continuous-valued alpha mattes but
still require a known, clean image of the background. More
importantly, background subtraction and difference matting
cannot solve the omnimatte problem when the video has
multiple objects with effects. In such cases it is not enough
to detect the effects, each effect must also be associated its
subject. We evaluate our method numerically and compare
it with background subtraction using a change detection
dataset [34] with pixel-level labels for objects and shadows.

Shadow and reflection detection Specialized methods
also exist for detecting, removing, or modifying specific
types of effects, such as shadows and reflections. For ex-
ample, [8] acquire a shadow displacement map by waving
a stick over different parts of a scene, then use it to synthe-
size realistic shadows that match an object’s shape. [2, 3]
decompose natural videos to remove reflections, shadows,
and smoke. More recently, Wang et al. [33] proposed to
analyze the motion of people in video and use it to pre-
dict depth, occlusion, and lighting/shadow information, to
increase realism of 2D object insertion. Our goal in this
work is to provide a general technique for inferring all of
a subject’s associated effects. However, as shadows are a
particularly common effect, we compare our results with a
state-of-the-art shadow detector [32] in Sec. 4.1.

Video Effects Although omnimattes are not explicitly op-
timized for editing, they can facilitate various video editing
effects that rely on input object masks, including object re-
moval and video completion (e.g. [10, 35]), object cut-and-
paste (e.g. [15, 31]), color pop, and creation of stroboscopic
images from video (e.g. [1]). All of these effects can be
achieved via simple manipulations of the estimated omni-
mattes in a post-processing step, or alternatively, by using
the omnimattes as input to existing methods such as video
completion (e.g. [10]), to save the manual work required for
marking the object’s effects. We demonstrate these results
in Sec. 4.1.

3. Estimating Omnimattes from Video

The input to our method is an ordinary video of mov-
ing objects, and one or more layers of rough segmentation
masks that mark the subjects of interest. The output is an
omnimatte for each input mask layer, consisting of an alpha
matte (opacity map) and a color image. The model is trained
per-video to reconstruct the input in a self-supervised man-
ner, without observing any additional examples.

To accurately reconstruct the input video, the model
must infer all the time-varying effects (e.g. shadows, reflec-
tions) from the input object masks, which do not represent

those effects. Our goal is to steer the model to place the as-
sociated effects in the layer of the subject causing them. Lu,
et al. [17] showed that this association can be achieved by
showing the network one mask at a time, leveraging the fact
that an effect is easier to predict from the object mask most
correlated with it. For example, the mask of the person in
Figure 1 provides more information about its shadow (more
similar to it in shape, in motion) compared to the mask of
the dog. Therefore (as shown in [17]) the network tends to
learn to predict the person’s shadow from the person’s mask
(thus associating it with the correct layer). We build on this
training strategy, but design network inputs and losses to
encourage this solution for general objects.

3.1. Overview

Figure 2 illustrates our pipeline. Our model is a 2D U-
Net [24] that processes the video frame by frame. For each
frame, we compute rough object masks using off-the-shelf
techniques to mark the major moving objects in the scene.
We group the objects into N mask layers {M i

t
}N
i=1 and de-

fine a (possibly time-varying) ordering ot for the layers. For
example, in a scene with a rider, a bicycle, and several peo-
ple in a crowd, we might group the rider and bicycle into
one layer, while grouping the crowd into a second layer. To
equip our model with explicit information about object mo-

tion and frame-to-frame correspondence, we also compute
a dense optical flow field, Ft, between each frame and the
consecutive frame in the video. This flow field is masked
by the input masks M i

t
to provide the network only flow

information related to the layer’s subject. We additionally
align all frames onto a common coordinate system using
homographies, and represent the background as a single un-
wrapped image on a separate layer.

From this rough yet explicit representation of moving
objects, the model has to infer: (i) omnimattes – pairs of
continuous-valued opacity maps (mattes) and RGB images

that capture not only the ith moving object but also all the
scene elements that are correlated with it in space and time
(e.g., reflections, shadows, attached objects, etc.), (ii) a re-
fined optical flow field for each layer, and (iii) a background
RGB image. Formally,

Omnimatte(It, Ht,M
i

t , F
i

t ) = Lt = {αi

t, C
i

t , F̂
i

t }, (1)

where It, Ht, M
i
t
, F i

t
are the input video RGB frame, es-

timated camera homography, the initial input mask, and the
pre-computed flow field of the ith object in time t, respec-
tively. αi

t
and Ci

t
are the alpha and color buffers of the out-

put omnimatte, and F̂ i
t

is the predicted object flow.
The training loss consists of terms on the RGBA out-

puts (Sec. 3.2) and the predicted flow (Sec. 3.3). The main
loss is a reconstruction loss Ergb-recon, but as reconstruction
is underconstrained with multiple layers, we add a sparsity
regularization Ereg to the alpha layers and an initialization
loss Emask to the masks, similar to [17]. We encourage the
motion of the result to match the input by adding a flow-
reconstruction loss Eflow-recon and a temporal consistency
term to the alpha mattes Ealpha-warp.

4509



The total loss is:

Ergb-recon + λrEreg + λmEmask +Eflow-recon + λwEalpha-warp, (2)

where λr, λm, and λw are weighting coefficients (see sup-
plementary material (SM)). As the background is assumed
to be static, we factor out camera motion and treat the back-
ground with a special, fixed layer (Sec. 3.4).

3.2. RGBA Losses

The main loss in our optimization is a reconstruction
loss. Formally, we composite the set of estimated layers
for each frame and the predicted background layer using
standard back-to-front compositing [22], and encourage the
composite image to match the original frame:

Ergb-recon =
1

T

∑

t

‖It − Comp(Lt, ot)‖1, (3)

where Lt = {αi
t
, Ci

t
}N
i=1 are the predicted layers for frame

t, and ot is the compositing order.
To prevent a trivial solution where a single layer recon-

structs the entire frame, we further apply a regularization

loss to the αi
t

to encourage them to be spatially sparse. We
use a mix of L1 and an approximate-L0:

Ereg =
1

T

1

N

∑

t

∑

i

γ
∥

∥

∥
α
i

t

∥

∥

∥

1

+Φ0(α
i

t), (4)

where Φ0(x) = 2 · Sigmoid(5x) − 1 smoothly penalizes
non-zero values of the alpha map, and γ controls the relative
weight between the terms.

To guide the optimization to convergence from a random
initialization, we therefore adopt a “bootstrap” loss to co-

erce the alpha maps αi
t

to match the input masks M i
t
:

Emask =
1

T

1

N

∑

t

∑

i

∥

∥

∥
d
i

t ⊙ (M i

t − α
i

t)
∥

∥

∥

2

(5)

where di
t
= 1− dilate(M i

t
) +M i

t
is a boundary erosion

mask to turn off the loss near the mask boundary, and ⊙ is
element-wise product. This loss is turned off after its value
reaches a fixed threshold (see SM).

3.3. Flow Losses

Our model additionally predicts a set of flow layers. Pre-
dicting flow layers serves as an auxiliary task that injects
information about motion to our model and improves our
decomposition (as demonstrated by our experiments). To
achieve that we apply a flow reconstruction loss and a pho-
tometric warping loss defined below:

Eflow-recon =
1

T

∑

t

Wt · ‖Ft − Comp(Ft, ot)‖1, (6)

where Ft = {F̂ t

i
} is the set of predicted flow layers, Ft is

the original, pre-computed flow, and Wt is a spatial weight-
ing map that lowers the impact of pixels with inaccurate
flow. Wt is computed based on standard left-right flow con-
sistency error and photometric warping error (see full de-
tails in SM).

We additionally encourage temporal consistency within
layers using an alpha warping loss:

Ealpha-warp =
1

T

1

N

∑

t

∑

i

‖αi

t − α
i

wt‖1, (7)

where αi
wt

= Warp(αi
t+1,F

i
t
) is the alpha for layer i at

time t+ 1 warped to time t using the predicted flow.

3.4. Camera Motion and Background

We assume the background scene is stationary and cam-
era motion can be modeled by a time-varying homography
from an unwrapped “canvas” image, as in [30]. The ho-
mographies Ht from frame t to the canvas are estimated
via feature tracking (using [11]) on the original RGB video
frames and are held fixed. For input to the network, the
background canvas is represented by a single spatial noise
image Z̄ (see Fig. 2). The background color layers C0

t
are

produced by feeding Z̄ through the network to form a static
color image C̄0, which is then sampled using H−1

t to form
time-varying background images {C0

t
}.

To make the foreground layers aware of the camera mo-
tion, the input mask layers M i

t
are concatenated with a noise

image that tracks the camera. The background noise image
Z̄ is sampled using H−1

t to form time-varying noise images
{Zt}. This is a similar approach to Lu, et al. [17], but in our
case the noise image is not trainable.

Minor stabilization errors, as well as exposure changes,
vignetting, and radial distortion, usually cause slight
changes in appearance even for a stationary background. If
the background is assumed to be entirely static, these sub-
tle shifts in appearance will show up as noise in our om-
nimatte. Such effects, however, tend to have low spatial
and temporal frequency relative to the subject’s effects and
can be safely captured by applying a refinement warp to
the background layer. The refinement warp consists of a
spatially and temporally coarse grid-based warp. We ad-
ditionally apply a grid-based brightness adjustment to the
final composite Comp(Lt, ot). The parameters of the warp
and brightness adjustment are optimized together with the
network parameters (see SM for additional details).

3.5. Implementation Details

For all our results, we used Mask R-CNN [12] to seg-
ment the input objects, and STM [18] (a video object seg-
menter trained on the DAVIS dataset [21]) to track objects
across frames. Optical flow between consecutive frames
was computed using RAFT [28]. When dynamic back-
ground elements such as tree branches are present, we use
panoptic segmentation [36] to segment them and treat the
segment as additional objects. To increase the detail of the
color buffers Ci

t
, we apply a similar detail-transfer tech-

nique to Lu, et al. [17]. See SM for training details.
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(c) Predicted Omnimatte (left: alpha, right: RGBA)

Figure 3. Results on natural videos. For each example, we show: (a) input frame; (b) input mask(s) computed by Mask R-CNN [12]; (c)

our resulting omnimatte (left: alpha matte, right: RGBA); (d) our estimated background layer. The bottom example (Bus Station) shows

a failure case: while the shadows are correctly associated with the people, the reflection cast on the window by the person in the top-right

corner (marked by the red rectangle) is mistakenly grouped with the person in the bottom-left corner.

4. Results

4.1. Qualitative examples on real videos

Figure 3 shows examples of our estimated omnimattes
on a variety of real-world videos from DAVIS [21], CDW-
2014 [34] (see Sec. 4.4), and videos downloaded from
YouTube. These examples span a wide range of dynamic
subjects (e.g., people, animals or general moving objects
such as a soccer ball), performing complex actions and gen-
erating various scene effects including shadows, reflections,
water ripples, dust and smoke. None of the input object
masks include these effects (see Fig. 3(b)).

As seen in Fig. 3(c-d) top, our method successfully as-
sociates the subjects with the scene effects that are related
to them. In Blackswan, the omnimatte of the swan captures
its reflection and the water ripples it causes. In Elephant,
our omnimatte captures the semi-transparent cloud of dust

sprayed by the elephant, as well as the shadow the elephant
casts on the ground. In Tennis, the running player casts
thin shadows, which the omnimatte correctly separates from
the shadows in the background. Additionally, although the
player’s racket is not included in the input mask (b), it is re-
constructed in our omnimatte result; this demonstrates our
model’s ability to reconstruct objects that are attached to the
main subject even when given incomplete input masks.

In Soccer, we show a two-subject example where our
model estimates a separate omnimatte for each of the sub-
jects: a person (top row) and a soccerball (bottom row). Our
model successfully separates the person’s shadow from that
of the soccerball up until the final few frames of the video,
where part of the person’s shadow appears in the soccer-
ball’s omnimatte (full video in SM).

Another two-subject example is shown in Bus Station

where two people walk away from each other. Our model
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(a) Input frame

(d) Our automatic mask

(from Omnimatte)

(g) FGVC result

using (d)

(c) Manual mask 

used in FGVC

(f) FGVC result 

using (c)

(b) MaskRCNN

(e) FGVC result

using (b)

Figure 4. Omnimattes as input to state-of-the-art object re-

moval. Results by FGVC [10] using different types of input

masks: (b) Raw masks from MaskRCNN do not capture shadows,

and produce unrealistic results (e). By using manually annotated

masks that include the shadow (b), both the horse and the shadow

are removed (f). (d) binary mask automatically derived from om-

nimatte produces comparable result (g) when inputted to FGVC.

correctly associates each person with their shadow in this
challenging case. However, the reflection cast on the win-
dow by the person on the right (top) is incorrectly placed in
the left person’s layer (bottom). The challenge of this scene
lies in both the spatial proximity of the reflection to the in-
correct person, and the similar motions (both people in the
scene are moving consistently at the same speed). Lu, et
al. [17] showed that layers tend to ‘grab’ spatially proxi-
mal effects; in this case, the reflection is actually closer to
the person who is not casting the reflection. [17] addition-
ally showed that correlated motions are grouped in the same
layers; as both people are walking in synchronization, the
network places the reflection in the incorrect person’s layer.

4.2. Object Removal

Our method can be applied to remove a dynamic object
from a video by either: (i) binarizing our omnimatte and us-
ing it as input to a separate video-completion method such
as FGVC [10], or by (ii) simply excluding the object’s om-
nimatte layer from our reconstruction.

As shown in Fig. 4(b,e), removing an object but not its
correlated effects produces an unrealistic result (object re-
moved but its shadow remains). Typically such effects are
manually annotated to create a conservative binary mask of
the regions to remove (Fig. 4(c)). To show that an omni-
matte can replace manual editing, we derive a binary mask
by thresholding our soft alpha at 0.25 and dilating by 20 pix-
els, and inputting it to FGVC [10]. Fig. 4(c) shows both the
horse and its shadow are removed, demonstrating that our
derived mask is comparable to a manually annotated mask.

Fig. 5 shows a comparison between omnimatte removal
(approach (ii) above) and FGVC using manual masks. In
the flamingo example, our method removes not only the
flamingo but also its reflection in the water beneath it.
FGVC relies on a mask that does not include the reflec-
tion, thus the reflection remains intact in their result. Our
omnimattes bypass the need to manually label such semi-

(a) Input Frame (b) FGVC (c) Ours

Figure 5. Direct omnimatte-based removal. For each input frame

(a) we show the result of removing a foreground object by ex-

cluding its omnimatte from the reconstruction (c), compared to

FGVC [10] (b).

transparent effects. In the breakdance example, both the
crowd and the dancer are moving. To handle this case, we
assign an omnimatte to the dancer and a separate single om-
nimatte to the crowd. Fig. 5(c) shows the crowd omnimatte
composited with the background layer. The FGVC result
(b) shows artifacts on the ground where the dancer is re-
moved, whereas our result is seamless and realistic.

4.3. Comparison with Shadow Detection

We show qualitative comparisons with a recent state-of-
the-art shadow detection method, ISD [32], a deep-learning
based method that takes an RGB image as input and pro-
duces segments for object-shadow pairs. ISD integrates a
MaskRCNN-like object detection stage (Detectron2 [36]),
hence it does not require or allow an input mask.

Figure 7 compares our result with ISD on two challeng-
ing scenes, where a person casts a shadow onto another ob-
ject (a bench), and where a person’s shadow is occluded
by another object (a dog). Our method successfully han-
dles and outperforms ISD in both cases. Occlusions and
shadows cast on other objects present particularly difficult
cases for purely data-driven methods such as ISD, since
the appearance of the shadow depends on the relative con-
figuration of multiple objects in the scene, presenting a
combinatorial explosion of scenarios for training. In con-
trast, our method analyzes and leverages space-time infor-
mation throughout the entire video to perform these com-
plex object-effects associations.

4.4. Comparison with Background Subtraction

We quantitatively evaluate our approach on the task of
background subtraction using a change detection dataset,
CDW-2014 [34], which has ground-truth pixel-level labels
for objects and hard shadows. We selected a subset of
videos that contain objects and their shadows (see Fig. 8
for sample frames and labels). We manually excluded “bad
weather” and “low framerate” categories to avoid low qual-
ity videos, and selected short clips of up to 5 moving ob-
jects. The selected subset contains 12 clips, each with
40 - 115 frames, for approximately 950 frames in total.
While the background subtraction task requires only sep-

4512



Color Pop Background Replacement Stroboscopic Photograph

Figure 6. Video editing with Omnimattes. Effects such as “color pop” (left; subject in color, background in grayscale), background

replacement (center), and stroboscopic photography (right) all benefit from capturing the subjects’ associated effects with an Omnimatte.

Note the color pop present in the flamingo’s reflection and the correct placement of shadows in the background replacement and strobo-

scopic photograph examples. See the SM for the full details and before/after videos.

(a) Input frame (c) Our result(b) ISD result (d) Our input mask

Figure 7. Comparison with shadow detection. (b) Results pro-

duced by ISD [32], a recent state of the art, single-image shadow

detection method, and (c) our results when using (d) MaskRCNN

masks as input. See SM for additional comparisons.

arating foreground from background, we demonstrate the
additional capabilities of our method by also segmenting
the effects for individual object instances.

We convert our soft omnimattes into a single, hard seg-
mentation mask using a fixed threshold value and report
the Jaccard index (J ) and Boundary measure (F) [19] in
Table 1. We compare with two top-performing methods
on CDW-2014, FgSegNet [16] and BSPVGAN [38], which
were trained on subsets of CDW-2014. Our method out-
performs FgSegNet and matches the performance of BSPV-
GAN, despite not being trained supervised on CDW-2014.

4.5. Comparison with Layered Neural Rendering

Fig. 10 shows a qualitative comparison with the human-
specific, layered neural rendering method by Lu et al. [17].
In [17], people are parameterized explicitly using per-frame
UV maps that represent each individual’s geometry, and a
per-person trainable texture map that represents appearance.
Instead, we use binary masks and pre-computed optical flow
to represent object regions (see Sec. 3). For comparison, we
used binary masks extracted from their UV maps.

In both examples, our method achieves comparable re-
sults to [17], successfully capturing the trampoline defor-
mations, shadows and reflections, yet with a generic, much
simpler input. Note that the input masks derived from the
UV maps provided by [17] represent the full body of a per-
son even if they are occluded in the original frame. This

(a) Input Frame (b) Ground truth (c) BSPVGAN (d) Ours

Figure 8. Comparison with background subtraction. We used

selected videos from the CDW-2014 change detection dataset [34]

(examples input frames in (a)), with ground truth, manually seg-

mented objects and shadows (b, white pixels = moving objects,

dark gray pixels = shadows, light gray pixels = ‘unknown’, typ-

ically at boundaries). (c) Result by a top-performing (on this

dataset) background subtraction method [38]. (d) Our result (al-

pha mattes of estimated omnimattes). Numerical experiments are

summarized in Table 1. More results can be found in the SM.

Method J&F (Mean) ↑ J (Mean) ↑ F (Mean) ↑
FgSegNet [16] 0.675 0.631 0.719

BSPVGAN [38] 0.756 0.718 0.793

Ours 0.754 0.711 0.797

Table 1. We compare our method to the two top-performing meth-

ods on CDW-2014 [34]. We report the Jaccard index (J ) and

Boundary measure (F ) on a subset of the data that includes ob-

jects and their shadows. Our method performs at par or better than

the two background subtraction methods.

allows our model to inpaint object regions and scene effects
that are occluded in some frames but visible in others, as in
[17]. The ability of our model to inpaint occluded regions
even when using incomplete masks is also evident in the
person-dog example in Fig. 1, where the person and their
shadow are reconstructed in our omnimatte. However, we
note that in cases where the input mask is substantially oc-
cluded, the output omnimatte will show occlusion as well;
thus in order to deal with large occlusions, a full-object
mask should be inputted to the model, as done in [17].

4.6. Additional Video Editing Effects

The additional information present in an omnimatte
compared to a standard matte that includes only the sub-
ject allow simple creation of various video effects such as
color pop, background replacement, or object duplication
(Fig. 6). Previously, creating these effects for videos con-
taining shadows or reflections required extensive manual
editing effort. Since the omnimatte is a standard RGBA im-
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Figure 9. Ablations. We ab-

late several components of our

method: Left: (a-b) sample in-

put frame and our result using

our full method, and (c) removing

the brightness adjustment, and (d)

removing the background offset

(Section 3.4). Right: we show two

examples comparing our method

with and without the flow compo-

nent (f-g). (e) Input Frame (f) w/ flow (g) w/o flow

(a) Input Frame (b) Full method

(c) w/o brightness adjustment (d) w/o background offset

Input frame

Input UV maps (people specific)

Input segmentation

Lu et al. Ours

Input UV maps (people specific)

Input frame

Lu et al. Ours

Input segmentation

Figure 10. Comparison with Lu et al. [17]. We achieve compa-

rable results to [17] using just binary masks instead of the people-

specific UV maps used in [17]. These binary segmentation masks

are easier to obtain and are general – allowing our method to sup-

port arbitrary objects ([17] is applicable just to people). Notice

how our omnimattes capture trampoline deformation well (top two

rows), and reflections in the glass (bottom two rows).

age, these edits may be applied using standard video editing
software. The omnimattes for color pop and background
replacement were used unchanged, the horse jump alpha
matte was adjusted with a linear contrast ramp. Please see
SM for full details on creating these effects.

4.7. Ablations

In Fig. 9 we ablate several components of our method.
Removing the brightness adjustment (c) and removing the
background offset (d) both result in undesirable nonzero al-
pha values in the bear’s omnimatte, due to lighting changes,
vignetting, and homography inaccuracies that break the
static background assumption (Sec. 3.4). Including both
components results in a clean alpha matte (b).

We ablate the flow component of our model by removing
both flow inputs and flow losses (Sec. 3.3), and show results
in (g). In the top row, part of the bear is missing from the
omnimatte, and in the bottom row, the person’s omnimatte
incorrectly contains parts of other people. In contrast, our
full model (f) has a complete bear and a clean person om-
nimatte. These examples show that providing the model
with motion information (flow) allows it to better associate
scene elements with the correct objects, and prevents holes
appearing in the foreground object’s alpha matte.

(a) Input Frame (b) Omnimatte (left: alpha, right: RGBA)

Figure 11. Failure case due to incorrect camera registration.

When the background motion cannot be accurately represented by

a homography (in this case due to a significant depth variation in

the scene), the predicted omnimatte may contain regions of the

background to compensate for the registration inaccuracies.

4.8. Limitations

While our method allows for small deviations from a
static background via smooth, coarse geometric and pho-
tometric offsets, when the homographies do not accurately
represent the background, the omnimattes must correct for
these errors by including background elements (e.g. rocks
and grass, Fig. 11). Conversely, we cannot separate ob-
jects or effects that remain entirely stationary relative to the
background throughout the video. These issues could be
addressed by building a background representation that ex-
plicitly models the 3D structure of the scene (e.g. [4]).

Finally, we observed that different random initializations
of the network’s weights may occasionally lead to different,
sometimes undesirable, solutions (see supplemental mate-
rial for visualization). We speculate that more reliable con-
vergence could be obtained by further optimizing the order
in which frames are introduced to the model.

5. Conclusion

We have posed a new problem: from an input video with
one or more segmented moving subjects, we produce an
omnimatte for each subject – an opacity map and color im-
age that includes the subject itself along with the visual ef-
fects related to it. These effects can be reflections of the
subject, shadows they cast, or attached objects. We have
proposed a network and training framework for solving this
new problem, and have demonstrated omnimattes produced
automatically for real-world videos with a variety of objects
and associated effects. We have also shown how omnimat-
tes can support a variety of video editing applications.

Acknowledgements. This work was supported in part by an

Oxford-Google DeepMind Graduate Scholarship and a Royal So-

ciety Research Professorship. We thank Weidi Xie for assisting

with object removal baselines.

4514



References

[1] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala,

Steven Drucker, Alex Colburn, Brian Curless, David Salesin,

and Michael Cohen. Interactive digital photomontage. In

ACM SIGGRAPH 2004 Papers, pages 294–302. 2004.

[2] Jean-Baptiste Alayrac, João Carreira, and Andrew Zisser-

man. The visual centrifuge: Model-free layered video repre-

sentations. In CVPR, 2019.

[3] Jean-Baptiste Alayrac, Joao Carreira, Relja Arandjelovic,

and Andrew Zisserman. Controllable attention for structured

layered video decomposition. In ICCV, 2019.

[4] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-

ics. In ECCV, 2020.

[5] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro.

Video snapcut: robust video object cutout using localized

classifiers. TOG, 2009.

[6] Gabriel J Brostow and Irfan A Essa. Motion based decom-

positing of video. In ICCV, 1999.

[7] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David

Salesin, and Richard Szeliski. Video matting of complex

scenes. In SIGGRAPH, 2002.

[8] Yung-Yu Chuang, Dan B Goldman, Brian Curless, David H

Salesin, and Richard Szeliski. Shadow matting and com-

positing. In SIGGRAPH. 2003.

[9] Ahmed Elgammal, David Harwood, and Larry Davis. Non-

parametric model for background subtraction. In ECCV,

2000.

[10] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf.

Flow-edge guided video completion. In ECCV, 2020.

[11] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-

directed video stabilization with robust l1 optimal camera

paths. In CVPR, 2011.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask R-CNN. In ICCV, 2017.

[13] Qiqi Hou and Feng Liu. Context-aware image matting for

simultaneous foreground and alpha estimation. In ICCV,

2019.

[14] Wenbin Li, Fabio Viola, Jonathan Starck, Gabriel J Brostow,

and Neill DF Campbell. Roto++ accelerating professional

rotoscoping using shape manifolds. ACM Transactions on

Graphics (TOG), 35(4):1–15, 2016.

[15] Yin Li, Jian Sun, and Heung-Yeung Shum. Video object cut

and paste. In SIGGRAPH, 2005.

[16] Long Ang Lim and Hacer Yalim Keles. Learning multi-

scale features for foreground segmentation. arXiv preprint

arXiv:1808.01477, 2018.

[17] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew

Zisserman, David Salesin, William T Freeman, and Michael

Rubinstein. Layered neural rendering for retiming people in

video. In SIGGRAPH Asia, 2020.

[18] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo

Kim. Video object segmentation using space-time memory

networks. In ICCV, 2019.

[19] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

CVPR, 2016.

[20] Massimo Piccardi. Background subtraction techniques: a

review. In 2004 IEEE International Conference on Systems,

Man and Cybernetics (IEEE Cat. No. 04CH37583), 2004.

[21] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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