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Abstract

Many computer vision tasks address the problem of

scene understanding and are naturally interrelated e.g. ob-

ject classification, detection, scene segmentation, depth es-

timation, etc. We show that we can leverage the inher-

ent relationships among collections of tasks, as they are

trained jointly, supervising each other through their known

relationships via consistency losses. Furthermore, explic-

itly utilizing the relationships between tasks allows improv-

ing their performance while dramatically reducing the need

for labeled data, and allows training with additional unsu-

pervised or simulated data. We demonstrate a distributed

joint training algorithm with task-level parallelism, which

affords a high degree of asynchronicity and robustness. This

allows learning across multiple tasks, or with large amounts

of input data, at scale. We demonstrate our framework on

subsets of the following collection of tasks: depth and nor-

mal prediction, semantic segmentation, 3D motion and ego-

motion estimation, and object tracking and 3D detection

in point clouds. We observe improved performance across

these tasks, especially in the low-label regime.

1. Introduction

Many tasks in computer vision, such as depth and surface

normal estimation, flow prediction, pose estimation, seman-

tic segmentation, or classification, are inherently related as

they describe the surrounding scene along with its dynam-

ics. While solving for each of these tasks may require spe-

cialized methods, most tasks are connected by the under-

lying physics observed in the real world. A considerable

amount of research aims to reveal the relationships between

tasks [60, 5, 15, 56, 13, 54, 55], but only a few methods

exploit these fundamental relationships. Some approaches

rely on the unparalleled performance of deep networks to

learn explicit mappings between tasks [55, 54]. However,

while training tasks pairs leverages their relationships, it
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Figure 1. Illustration of our framework for the collective training of

multiple tasks with a consistency loss (two tasks are shown). Each

task is performed by a separate network, and trained on a its own

dataset and a shared unlabeled mediator dataset. The consistency

loss is imposed for samples from the mediator dataset.

may lead to inconsistencies across multiple tasks, e.g. [55],

and points to the alternative of training tasks jointly.

Multi-task learning targets the problem of training mul-

tiple tasks jointly. Common to many approaches is a shared

feature-extractor component with multiple “heads” that per-

form separate tasks [15, 56, 13]. Training multiple tasks to-

gether increases the coherency between them and – in some

setups – also enables their self-supervision [60, 5]. How-

ever, the joint training also has a few disadvantages. For

one, a single model for multiple tasks is difficult to design,

maintain and improve, as any changes in the training data,

losses, or hyperparameters associated with one of the tasks,

also affects all others. Secondly, different modalities come

with different architectures, which are difficult to merge into

a single model. For example, point clouds require sparse

processing [43], while tensored images use CNNs. Thirdly,

it can become intractable to process a single model – built

to perform multiple tasks – on a single compute node.

In this paper we introduce a novel approach for dis-

tributed collective training that explicitly leverages the in-

herent connections between multiple tasks (Fig. 1). Con-
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sistency losses are designed for related tasks, intended to

enforce their logical or geometric structure. For example,

given the two tasks of predicting surface normals and depth

from RGB images, the consistency loss between them is

based on the analytical relation between them – normals can

be computed from the derivatives of a depth map. We show

here that explicitly enforcing consistency between tasks can

improve their individual performance, while their collec-

tive training also establishes the correspondence among the

tasks, which – in turn – leads to a more sound visual un-

derstanding of the whole scene. We term the framework

‘Taskology’, as it connects tasks by their physical and logi-

cal constraints.

Using consistency losses to collectively train tasks en-

ables a modular design for training neural networks, which

offers three major advantages: We train structurally dif-

ferent tasks with entirely separate networks that are better

suited for each individual task. This is also advantageous

from a design, development, and maintainability point of

view; each component can be replaced or improved sepa-

rately from all others. Secondly, we benefit from unsuper-

vised or partially labeled data. For example, many datasets

are labeled for either segmentation or scene depth; with

consistency losses, we can use partially labeled datasets

for training both tasks, where the consistency losses are

active for the unlabeled portion of the data (Fig. 1). Fi-

nally, we train multiple complex models jointly and asyn-

chronously in a distributed manner, on different compute

nodes. Each network is processed on a separate machine,

while their training is tied together through consistency

losses. The communication between collectively trained

networks – through their predictions – is asynchronous.

Our experiments show that networks for different tasks can

be trained with stale predictions from their peers; we do

not observe a decrease in performance for up to 20 minute

(∼ 2000 steps) old predictions. Unlike existing methods for

distributed training [37] that mostly rely on data- or model

parallelism to split training across multiple compute nodes,

our framework separates training at task level; each model

is trained independently and asynchronously from all other

models, while all models are coherently trained together.

Distributed training allows scalability in multi-tasks learn-

ing, both in the number of tasks and datasets sizes.

To summarize, the contributions are: (1) we present a

framework that enables a modular design for training neu-

ral networks by separating tasks into modules that can be

combined and then trained collectively; (2) we propose con-

sistency losses for coherently training multiple tasks jointly,

which allows improving their overall performance; (3) we

demonstrate distributed training of multiple tasks, which al-

lows for scalability; (4) we show that collectively trained

tasks supervise themselves, which reduces the need for la-

beled data, and can leverage unsupervised or simulated data.

2. Related Work

Exploiting the structure of – and between – tasks has a

long tradition in computer science [51, 53] and computer

vision [36]. It has been recognized that knowing about the

structure of a task and how it is related to other tasks can be

used as a powerful learning scheme [3, 55, 54, 3, 60, 5, 22].

In our work we are interested in making use of these rela-

tions more explicitly through the joint co-training of mul-

tiple tasks based on consistency losses. Therefore, our

method is connected to related work on self- and unsuper-

vised learning, multi-task learning, domain adaptation, and

distributed training. While this spans a breadth of related

work that we cannot comprehensively discuss, we aim to

provide an overview of approaches closest to ours and with

a focus on computer vision.

Methods based on self-supervision aim to autonomously

generate labels for training data based on exploiting the in-

herent structure of related tasks. As a prominent example,

Doersch et al. [14] use unlabeled image collections to learn

a representation for recognizing objects. Similarly, many

other approaches use proxy or surrogate tasks to learn rich

representations for visual data [40, 42, 58, 56, 41]. Self-

supervised multi-view learning [60] is closely related to our

approach as it aims to train tasks by establishing geometric

consistency between them. By designing the consistency

losses we directly make use of the known relations between

tasks and thereby shape the tasks space, which is similar to

common self-supervised training schemes.

The goal of multi-task learning is training models for

tasks so as to obtain multiple outputs for a given input,

while jointly improving the performance of each individ-

ual tasks [4, 59, 46]. Many approaches exist that extract

features through a shared backbone and then train multiple

heads for different objectives [15, 56]. These approaches

are often restricted to tuning the loss function to balance

contributions between different tasks [8, 30, 48].

While our framework is not limited to any specific task

domain or combination of tasks, in this work we focus

on the collective training of computer vision models. To

this end, we are interested in using established methods for

learning depth [22, 18, 32, 60] also together with egomo-

tion [60, 5], surface normals [57, 13, 25, 19, 44, 52], seg-

mentation [49, 35, 29], optical flow [16, 28, 45, 9], or point

cloud tracking [24, 1]. While we do not aim to change the

model architectures for any of these tasks, our goal is to im-

prove their performance by designing consistency losses for

subsets of these tasks and by jointly training them.

Finally, the distributed version of our framework is

closely related to the concept of distillation [26] and on-

line distillation [2], where one network is trained toward an

objective with the goal to guide the training of another net-

work. Federated learning [39] is another technique where

learning is distributed among multiple instances of the same
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model. However, unlike them, we explicitly leverage the

structure between tasks and by training multiple complex

vision tasks simultaneously.

3. Method

Our main goal is to enable the distributed and collective

training of individual network architectures for computer

vision tasks that are inherently related. The main idea is to

connect tasks via shared consistency losses, which represent

functional or logical relationship. In particular, we aim to

exploit consistency constraints relating the tasks of predict-

ing depth, surface normals, egomotion, semantic segmen-

tation, object motion, and object tracking with 2D and 3D

sensor data. For some tasks it is possible to directly formu-

late their relationship as an analytical differentiable expres-

sion – e. g. normals can be computed from the derivatives

of depth values [27], other tasks are related in more intri-

cate ways, e. g. depth and egomotion, or segmentation and

optical flow [23, 5, 9]. To train models collectively, we use

existing model architectures for specific tasks (e. g. such

as for predicting depth or segmentation) and define consis-

tency losses between them. In this section we describe our

framework, the collective training of two or multiple tasks

(Sec. 3.1), the motivation for and examples of consistency

losses (Sec. 3.2), as well as the distributed training of mul-

tiple tasks (Sec 3.3).

3.1. Collective Training of Tasks

Given a set of tasks T = {t1, . . . , tn} we define losses

for supervising each task individually, which we denote as

Lsup
i , as well as consistency losses for the collective train-

ing of sets of tasks, defined as Lcon. In the following, tasks

are referred to by their index i. We then define the overall

loss as follows:

L =

n
∑

i=1

Lsup
i

(

ŷi(wi, x), yi(x)

)

+ Lcon

(

ŷ1(w1, x), ŷ2(w2, x), . . . , ŷn(wn, x)

)

, (1)

where ŷi(·) denotes the generated prediction based on the

weights wi of a task i, yi(·) denotes the groudtruth label of

a task i and x is a data sample.

We assume that each task is performed by a separate

deep network accompanied by a labeled dataset, which we

refer to as its dedicated dataset. Furthermore, we use the

standard supervision loss for each model as if we wanted

to train it in isolation. For collective training we then use

a separate (unlabeled) dataset, which we refer to as media-

tor dataset, to enforce consistency between the tasks. Dur-

ing training, both tasks receive samples from the mediator

dataset and the results of this forward pass are used to com-

pute the consistency loss. The training loop of each task

alternates by drawing samples from the dedicated and the

mediator dataset. The setup for the collective training of

two tasks is illustrated in Fig. 1.

The setup described above can have a few special cases:

for one, a dedicated dataset for either task, or all, can be

empty. In this case the setup reduces to unsupervised train-

ing; the unsupervised learning of depth and egomotion [60]

exemplifies this case. Datasets can overlap, i. e. a dataset

can have labels for multiple tasks (e. g. for semantic seg-

mentation and depth), or datasets can be only partially la-

beled, i. e. one dataset has labels for depth only and another

one has labels for segmentation only. In the latter case the

consistency loss will be applied to both datasets, whereas

supervised losses are applied to individual datasets only.

The setup naturally generalizes to the collective training of

N tasks, where the consistency loss is generally a function

of the predictions of all participating tasks.

3.2. Task Consistency Constraints

We rely on the established knowledge [27, 47] in com-

puter vision of tasks and their relationships to identify con-

sistency constraints. Consistency constraints ensure the co-

herency between different tasks and are derived from laws

of geometry and physics. Our goal is to leverage the consis-

tency constraints to define consistency losses for task com-

binations. Any constraint that can be written as differen-

tiable analytic expression can be used within our frame-

work. While this work focuses on already existing rela-

tions between tasks via e. g. analytical loss relationships,

future work can focus on potentially learning these losses.

Sections 3.2.1, 3.2.2, 3.2.3 below describe specific task re-

lations considered in this work.

3.2.1 Scene depth, segmentation and ego-motion

We first exploit consistency constraints between predicting

depth, ego-motion and semantic segmentation. We estab-

lish consistency between these three tasks by considering

the relations in image pixels and scene geometry between

two consecutive frames during training. More specifically,

we can ‘deconstruct’ a scene at a time-step t, estimating

its depth and potentially moving objects; at time t + 1 we

can ‘re-construct’ the scene as a function of scene geometry

(depth) and moving objects observed at the previous time

step and considering the potential ego-motion and objects’

motion. Within this setup we impose both geometric and se-

mantics consistencies to reflect the relations between these

tasks. More specifically we consider training several tasks:

Motion Prediction Networks: Given two consecutive

RGB frames, I1(i, j) and I2(i, j), predict the ego-motion

between these frames, i. e. the transformation of the camera

between frame 2 and frame 1. This can be subdivided into

a translation vector T1→2 and rotation matrix R1→2. To

model independently moving objects, for every pixel (i, j),
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another task can predict the movement of the point visible

at the pixel of frame 1, relative to the scene, which occurred

between frame 1 and frame 2, denoted as δt1→2(i, j).

Depth Prediction Network: The depth prediction net-

work predicts a depth map, z(i, j), for an image I(i, j).

Semantic Segmentation Network: From an RGB

frame, the semantic segmentation network predicts a logit

map lc(i, j) for each class c. For each pixel (i, j), the class

is given by c(i, j) = argmaxc lc(i, j).

The tasks are interrelated as follows: the 3D translation

fields can deviate from their background value (due to cam-

era motion) only at pixels that belong to possibly-moving

objects (e.g. vehicles, pedestrians). Therefore, semantic

segmentation informs 3D motion prediction. Conversely,

given a depth map and a 3D motion field, optical flow fields

can be derived and then used to assert the consistency of

segmentation masks in pairs of adjacent frames. The flow

fields can then be used to inform training of a semantic seg-

mentation module.

Let us define m(i, j) to be the movable mask:

m(i, j) =

{

1 c(i, j) ∈ M
0 otherwise

(2)

M is the collection of all classes that represent movable

objects, e.g. persons, cars. For each pixel (i, j), m(i, j)
equals 1 if the pixel belongs to one of the movable object

classes, and 0 otherwise.

We can now compute the warping of the first frame onto

the second as a result of the scene motion and object motion.

More specifically, given two adjacent video frames, 1 and

2, a depth map of frame 1, z1(i, j), the camera matrix K,

and a pixel position in homogeneous coordinates p1(i, j) =
(j, i, 1)T , one can write the shift in p resulting from the rota-

tion and translation and object motion δt that occurred be-

tween the two frames and obtain new values z′1(i, j) and

p′1(i, j), which are a function of z, p, δt and m and ego-

motion network predictions for R and T (see the supp.

material) z′1(i, j)p
′

1(i, j) = KR1→2K
−1z1(i, j)p1(i, j) +

K(m1(i, j)δt1→2(i, j) + T1→2).

Here p′1 and z′1 are respectively the new homogeneous

coordinates of the pixel and the new depth, projected onto

frame 2. From them we can obtain new estimated values for

the image I ′1(i, j), via back projection to the image space.

The movable mask m1(i, j) determines the motion of ob-

jects relative to the scene to occur only at pixels that belong

to movable objects, i. e. δt is applied for these objects only.

Consistency Losses: The first type of the consistency

constraint is photometric consistency across adjacent

frames, imposing that RGB values will be preserved after

warping. To formulate this constraint, we sample I2(i, j) at

the pixel positions p′1(i, j), and using bilinear interpolation,

Figure 2. 3D Object Detection setup: from a sequence of point

clouds (top), we predict bounding boxes per individual point cloud

(middle) and the optical flow, denoted as green arrows (bottom).

we obtain I ′1(i, j), frame 2’s RGB image warped onto frame

1. The photometric loss can then be written generally as:

Lph=
∑

i,j

Lp(I
′

1(i, j), I1(i, j)) +
∑

i,j

Lp(I
′

2(i, j), I2(i, j)) ,

(3)

where I ′2 is defined analogously to I ′1, just with 1 and 2

swapped everywhere. Lp stands for a pixelwise photomet-

ric loss, such as an L1 penalty on the difference in RGB

space and structural similarity (SSIM), each weighed by a

coefficient. In our experiments we used the same photo-

metric loss as described in [23]. The depth prediction and

motion prediction networks were taken from therefrom as

well. The segmentation network was taken from [21].

The second type of the consistency constraint is segmen-

tation logits consistency across adjacent frames. To formu-

late this constraint, we sample lc2(i, j) at the pixel positions

p′1(i, j), and using bilinear interpolation, we obtain l′c1(i, j).
The segmentation consistency loss can then be written gen-

erally as:

Lseg =
∑

i,j,c

L2 (l
′

c1(i, j), lc1(i, j))+

+
∑

i,j,c

L2 (l
′

c2(i, j), lc2(i, j)) , (4)

where l′c2 is defined analogously to l′c1, just with 1 and 2

swapped everywhere. L2 stands for a L2 loss squared.

Overall, the final consistency loss becomes

LCon
2D sem = Lph + Lseg. (5)

3.2.2 3D Object Detection in Point Clouds in Time

In this section, we focus on object detection from 3D point

clouds, a difficult task which also is crucial in many prac-

tical applications such as for autonomous vehicles. We

show that, when we simultaneously train an object flow

network, which predicts motion of objects through time,
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we can apply a motion-consistency loss to significantly

boost the single-frame 3D object detector performance, es-

pecially in the low-label regime. Similarly to establish-

ing consistencies between dynamic scenes in 2D space as

in Section 3.2.1, one can establish consistencies in 3D.

More specifically we can track moving objects in 3D across

frames. Given a module that detects movable objects in

a scene, in two consecutive frames, and another module

that predicts rigid motion, we can assert that the motion-

prediction module correctly estimates the motion of each

object. We here directly enforced this in 3D space using 3D

bounding box detections in Point Clouds and optical flow.

We address 3D Object Detection in Point Clouds using

two models: one predicting 3D bounding boxes on a point

cloud, and the other predicting 2D box flow on point cloud

sequences (Figure 2). We use a PointPillar-based [33] net-

work as our 3D detector, which allows us to work in a

pseudo-2D top-down space for all our experiments. At the

shared feature layer preceding the detector prediction head

we attach a flow prediction head that, given nf frames, out-

puts 3(nf − 1) channels corresponding to flow. Our detec-

tion model operates on the grid-voxelized input point cloud

of shape (nx, ny), where we choose nx = ny = 468 (the

z dimension has been marginalized out as we are using a

PointPillar [33] model). The grid size in x− y corresponds

to each grid point being of extent (0.32m, 0.32m) in real

space. For each grid point, we predict:

1. (7na, nf ) residual values pinned to na fixed an-

chors. The 7 values correspond to displacements

dx, dy, dz, dw, dℓ, dh, dθ of the final predicted box

from the values for the anchor boxes. Ground truth

boxes are automatically corresponded to anchors at

training time.

2. (na, nf ) class logit values denoting confidence that an

object of the specified type exists for that anchor box.

3. (na, 3(nf − 1)) values corresponding to the box flow

(flowx, f lowy, f lowθ) of a hypothetical box in the

current frame to any nf − 1 frames in the past.

As mentioned we use the same backbone to predict box

flow. Namely, through an equivalent backbone we predict a

three-channel map (flowx, flowy, flowθ) of the same resolu-

tion of the detector predictions, corresponding to the flow of

the boxes in a current frame to any of the previous frames

in the sequence. The flow is only supervised at locations

within the grid associated with positive object detections.

Consistency Loss: This set of detection and flow pre-

dictions induces natural consistency constraints. Namely,

given a predicted flow that transforms an anchor point cen-

tered at (x, y) in the current frame to the closest anchor

point (x+ flowx, y+ flowy, θ+ flowθ) ≈ (x′, y′, θ′) in an-

other frame, we consider the following two loss functions

(in the following, all primed coordinates are coordinates af-

ter flow has been applied to the current frame):

1. Lclass: The class confidences at two points (x, y, z) 7→
(x + flowx, y + flowy, θ + flowθ) connected by the

predicted flow vector should have the same class confi-

dence. Lclass = (classlogit(x, y)− classlogit(x′, y′))
2

2. Lresidual: The predicted flow can be used to calcu-

late consistent residual values for (x, y, θ) at two

points connected by the predicted flow. The resid-

ual values for z, w, ℓ, and h should also remain con-

stant between two detections connected by flow (for

short time spans we assume near-constant elevation).

Lresidual =
∑

i∈(x,y,θ)(di
′ − di+ (flowi − (i′ − i))2 +

∑

j∈(z,ℓ,w,h)(dj
′ − dj)2

Overall, our 3D Point Cloud motion-consistency loss be-

comes LCon
PC in time = Lclass + Lresidual.

The class loss Lclass ensures that class logits along

predicted object tracks are equal, while the residual loss

Lresidual do the same for residual values along tracks. The

first term in the residual consistency takes into account the

predicted flow, which transforms (x, y, θ) to (x′, y′, θ′). Be-

cause the flow is continuous and not quantized like the voxel

grid, we can normalize out the quantization noise exactly by

adding a remainder term, (flowi− (i′− i)) for i ∈ (x, y, θ).
For the residual consistency, we further enforce that the

bounding box residuals for z, ℓ, w, h do not change along

object tracks. This reflects our assumption that the dimen-

sions of the vehicle are preserved and there is no appreciable

elevation change over the span of a second.

3.2.3 Depth and Surface Normals

Given a depth prediction module and a surface-normal pre-

diction module, we can assert that the normals obtained

from the spatial derivatives of the depth map are consistent

with the predicted normals. More specifically, the depth

model can produce continuous depth, from which one can

analytically compute surface normals estimates per each lo-

cation n̂d, which are a function of depth. On the other hand,

a surface normals model, can be trained independently to

produce surface normals predictions n̂p, and a consistency

loss between these two predictions of surface normals can

be imposed on the shared data source (Figure 3). The con-

sistency is then computed as:

LCon
Normals = cosine distance(n̂d, n̂p), (6)

where n̂d is the computed surface normals from the inferred

depth and n̂p is the normal map predicted from the normal

prediction network (see the supp. material for derivation).

Interestingly, that can also be done by combining sim-

ulated and real data sources. Figure 3 visualizes the setup
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Figure 3. Depth and normals joint training for domain adaptation:

we use SceneNet (simulated) data to supervise the training of sep-

arate models for depth and surface normal prediction and apply

a consistency loss to jointly train both models for images from

ScanNet, where we do not use any ground truth normals labels.

used in our experiments later, where the data source for sur-

face normals (supervised) training is simulated, whereas a

real data source can be used by both (it is used in unsuper-

vised manner for the normals model).

3.3. Distributed Training

Collective training of multiple networks eventually re-

quires distributing the computation across multiple compute

nodes, to speed up the training, or simply because a large

enough collection of models cannot be processed on a sin-

gle machine. In distributed training it is often the communi-

cation between the nodes that sets the limitations [37]. Our

framework provides the advantage of training tasks inde-

pendently, with communication via consistency losses only.

Furthermore, the modules share, potentially vast amounts

of unsupervised, data, which allows for data-parallelism.

To reduce the communication load, distributed training

schemes often aim to be asynchronous, which means that

model parameters or their gradient updates develop some

degree of ‘staleness’, which denotes the interval between

updates to each model. It is easy to observe that stale pre-

dictions are less harmful than stale gradient updates [2],

since predictions are expected to converge as the training

progresses. Therefore, modules will query each other’s pre-

dictions to compute shared losses, but propagate gradients

locally, within their own module.

Our distributed implementation is based on this princi-

ple and takes advantage of shared losses. Each module

is training on a separate machine (“trainer”), as illustrated

in Fig. 4. The consistency loss depends on the outputs of

all co-training tasks, which means that its computation re-

quires evaluating a forward pass through all of them. Each

trainer evaluates the forward pass of its own module and, to

evaluate the forward passes of the other modules, it queries

servers that host stale copies of the peer modules. At each

training step, the trainer then pushes gradients to its own

module and updates its weights.

One advantage of our distributed method is that each

Images

Labels

Dataset 1
Mediator Dataset 

(unlabeled)

Images

∇ ∇

RPC

Trainer 1

Forward-pass
Server 2:

A stale copy 
of task 2’s 

model

Consistency 
Loss

Supervision
Loss 1

Task 1

Figure 4. Illustration of our distributed setup for collective train-

ing. Each task-module is training on its own machine (its “trainer”,

only Trainer 1 is shown in the figure). In order to compute the

consistency loss, Trainer 1 reaches out to a server that hosts a

stale copy of Task 2’s model and performs the forward pass (and

vice versa). Each trainer pushes gradient updates to its respective

model, and every so often, the stale copies on both forward-pass

servers are refreshes with fresh copies form the respective trainer.

module can train with its own hyperparameters, including

optimizer, regularizers, and learning rate schedules. Typ-

ically per-task modules are published together with these

hyper-parameters, and our method allows using them as

necessary for each respective model. Moreover, more

computationally expensive modules can be allocated with

more computational resources, to approximately equalize

the training times among the modules. Finally, since the

modules communicate through predictions, and predictions

are typically much more lightweight than network weights,

the communication overhead is significantly lower com-

pared to other distributed training techniques.

4. Experiments

In the following sections we report results of experi-

ments on using consistency losses, for the co-training of

multiple models as described in Sections 3.2.1, 3.2.2, 3.2.3.

We observe improved performance across tasks (Sec-

tion 4.1), successful training with unlabeled data, where

our approach is more helpful in lower label regimes (Sec-

tion 4.2), and successful domain adaptation (Section 4.3).

The experiments in Sections 4.1, 4.2, and 4.4 were run dis-

tributed, whereas the rest of the experiments were run on a

single machine (e. g. as in Fig. 1).

4.1. Scene Depth, Segmentation and Ego­motion

For this experiment we show results for the distributed

collective training of three tasks. The first task is semantic

segmentation based on NAS-FPN [21]. The other two tasks

are depth prediction and motion estimation (for both cam-

era and objects), for which we rely on existing models [23].

Segmentation masks were used to regularize the 3D mo-

tion fields [23] (Section 3.2.1). Semantic segmentation was

trained on COCO [34] 2017 as its dedicated dataset and

Cityscapes [10] was used as the unlabeled mediator dataset

– no Cityscapes labels were used at training. Each of the

three models was trained on a separate machine, as outlined

in Sec. 3.3. The segmentation module received a greater
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allocation of compute resources than the others, since it is

significantly more computationally expensive. The hard-

ware configuration is described in the supp. material. The

batch size, the optimizer, the learning rate, and other hyper-

parameters varied across the tasks and based on the respec-

tive published values for each model. During training, each

of the three models queries its peers via RPC to obtain their

predictions, which were up to one minute stale.

Depth Error Segmentation

Configuration (Abs. Rel.) MIOU

A. Depth & motion only 0.165 -

B. Segmentation only - 0.455

C. Frozen segmentation model B with depth & motion 0.129 -

D. Frozen depth & motion model C & segmentation - 0.471

E. Depth, motion and segmentation training jointly 0.125 0.478

Table 1. Results of the distributed collective training of three

models: Depth prediction, 3D motion prediction, and seman-

tic segmentation. COCO was the dedicated dataset for seman-

tic segmentation, and Cityscapes served as an unlabeled mediator

dataset. Both depth prediction and segmentation were evaluated

on Cityscapes, with segmentation evaluated only for predictions

associated with pedestrians and vehicles (details of the evaluation

protocol are given in the supp. material).

The effect of collective training on the performance of

the participating models is shown in Tab. 1. Experiments A

and B are the baselines, where the depth and motion models

were trained jointly, but separately from segmentation. Ex-

periment E shows the improvement in performance when all

three tasks train jointly with consistency constraints. Rows

C and D are ablations that demonstrate the changes in per-

formance when consistency constraints are turned on pro-

gressively. In C the depth and motion models are supervised

by the segmentation model from experiment B. C achieves

the same depth error as a similar configuration trained on a

single machine [23], where segmentation masks were pre-

computed. In experiment D, segmentation was concistency

supervised by the improved depth and motion model from

experiment C, but the latter two models remained frozen.

The progression in quality demonstrates the effect of con-

sistency supervision on all tasks.

While consistency contributes to correctness, it does not

guarantee the latter. This is reflected in the failure cases of

the method. Some illustrative examples are shown in the

supp. material.

4.2. 3D Object Detection in Point Clouds in Time

We perform all experiments on the vehicle class of

the Waymo Open Dataset [50] which provides complete

tightly-fitting 3D bounding box annotations along with

tracks for each vehicle and use a sequence length nf = 3
point clouds (∆ = 0.5s). Our backbone architecture is

based on a PointPillar detector [33]. Given a sequence of

input point clouds, we quantize the points for each frame

into a grid in the x-y plane and then use our single-frame

Method Labels 3D mAP/mAPH (%) BEV mAP/mAPH (%)

No Consistency 5% 17.6/9.6 44.3/24.3

Adding Lcon 5% 23.5/12.0 51.1/26.5

No Consistency 20% 30.8/16.4 63.0/34.1

Adding Lcon 20% 31.6/19.1 65.7/39.2

No Consistency 100% 53.0/47.6 75.0/66.8

Adding Lcon 100% 54.2/49.6 75.0/68.5

Table 2. 3D detection and 2D (BEV) metrics on the Waymo Open

Dataset, given various degrees of dataset labels provided for train-

ing. We can see consistent improvements when applying our

motion-based consistency loss, especially with fewer labels.

detection model to produce a confidence value at each grid

point for the presence of an object box as well as residual

values (x, y, z, w, ℓ, h, θ) to refine the final box coordinates

(Section 3.2.2). For all our reported experiments, nf = 3
and na = 2. We follow the original PointPillar network

settings in choosing all class thresholds. We perform exper-

iments with partial labeling in which only 5% or 20% of the

box labels are available. Our baseline (100%) is trained in

isolation, whereas all partial label studies are performed in

the distributed framework.

Our results are shown in Table 2. We can see the three

sets of experiments, in which we stripped the dataset of its

labels to various degrees. Our metrics are based on the stan-

dard mean average precision (mAP) metrics for 2D and 3D

detection. We also use the mAPH metric introduced in [50],

which takes into account object heading. mAPH is calcu-

lated similarly to mAP, but all true positives are scaled by

errθ/π, with errθ being the absolute angle error of the pre-

diction in radians. We also report results on both 3D detec-

tion and 2D Bird-Eye-View (BEV) detection.

We can see that joint training with consistency losses is

very beneficial. The consistency loss improves the object

detector performance in all three settings, with more signif-

icant improvements when labels are scarce. This also holds

for both 3D detection and 2D BEV detection. Furthermore,

the consistency loss has a beneficial effect on mAPH, i.e.

is able to correct errors in heading, as it enforces rotational

consistency along each object track.

4.3. Depth and Surface Normals with Domain Shift

Since training in our framework involves multiple

datasets, it is interesting to explore what happens when

there is a large domain disparity between them. To this

end, we select the extreme case of domain disparity be-

tween the dedicated datasets and the mediator dataset. As

tasks for this experiment we selected depth estimation and

surface normal prediction. We use SceneNet [38] (simu-

lated data) as the dedicated dataset, and ScanNet [11] (real

data) as the unlabeled mediator dataset (Figure 3). We use

simulated SceneNet to train depth and normal estimation

models and evaluate them on the real ScanNet data as our

baseline. The strong domain disparity is evident from the

fact that a model trained on simulated data performs poorly
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on the real dataset (Table 3). For the baseline both models

are trained separately to predict depth and surface normals,

with a mean squared error loss for the depth model and a co-

sine loss for the surface normal model. The trained models

are then used to predict surface normals for samples from

ScanNet. Accuracy is measured by using the ground truth

data of ScanNet for depth and surface normals generated by

the method of [25].

We then train the models with consistency loss on Scan-

Net. The consistency loss can then be computed as cosine

similarity of the computed surface normals and those pre-

dicted by the normal prediction network. The consistency

is based on the fact that a normal map can be analytically

computed from a depth map [31] (Section 3.2.3).

Table 3 shows the results of individual training of depth

and surface normals prediction on SceneNet (simulated)

and tested on ScanNet (real), and when training in the same

transfer setting but with loss consistency. We observe that

training with loss consistency improves the performance on

both tasks on this challenging sim-to-real transfer task.

Normals Depth

Accuracy (in %) Error (in %)

Method < 11.25◦ < 22.50◦ < 30.00◦ Abs. Rel

SceneNet −→ ScanNet 9.2 30.8 46.3 28.2

SceneNet −→ ScanNet
(with Consistency) 13.6 34.9 46.7 24.9

Table 3. Surface normal prediction transfer from SceneNet (simu-

lated) to ScanNet (real).

4.4. Tolerance to Staleness

As discussed in Sec. 3.3, in our setup, individual mod-

ules communicate with each other through their predic-

tions. This is motivated by the increased resilience to stal-

eness that predictions exhibit compared to weights and gra-

dients [2]. To study the amount of staleness our setup can

afford, we train depth and egomotion [5] on the KITTI

dataset [20], each on a separate machine. This experiment

is particularly challenging because it is fully unsupervised:

each of the modules is only supervised by the predictions

produced by its peer. Since both modules are randomly ini-

tialized, each model initially receives a random and stale

peer-supervision signal.

In Fig. 5 we show the results of this experiment, which

is the depth prediction error as function of time for various

values of staleness. While greater staleness values initially

hinder the training, all experiments converge to approxi-

mately the same result, and approximately at the same time.

Staleness of up to 20 minutes – or 2000 training steps – is

shown to have no adverse effect on the convergence time or

the test metric.

The negative effects of staleness on convergence time

and on result metrics have been studied for various dis-

tributed training methods [12, 7, 6, 17]. While the tolerance
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Figure 5. Depth prediction error as function of time for different

values of staleness for distributed collective training on depth and

egomotion on KITTI. Staleness of 20 minutes means that the depth

trainer receives egomotion labels from an egomotion model that

refreshes every 20 minutes, and vice versa. The depth trainer per-

forms about 100 training steps per minute, so 20 minutes trans-

lates to 2000 steps. A value of 0 staleness denotes a configuration

where all networks were placed on the same machine and trained

synchronously. The graphs in the inset show the long-time pro-

gression of training. All experiments achieve the same absolute

relative depth prediction error of about 0.143 (which on is par with

the state-of-the-art [5] for models that disregard object motion), at

about the same time, irrespectively of the staleness.

to staleness varies widely, due to the diversity of methods,

most studies only report the sensitivity of methods to stale-

ness of up to a few tens of steps. Unlike these findings, our

distributed training setup is much more robust and thereby

enables training with staleness of up to thousands of steps.

5. Conclusions

We have introduced a novel framework, ‘Taskology’, for

the collective training of multiple models of different com-

puter vision tasks. Our main contribution is that our frame-

work enables a modular design for training neural networks

by separating tasks into modules that can be combined and

trained collectively. Furthermore, we employ consistency

losses so as to exploit the structure between tasks. By

jointly training multiple tasks, we have shown that consis-

tency losses help to improve the performance, and can take

advantage of unlabeled and simulated data. Our approach

achieves better results from joint training, especially when

a large portion of the dataset is not labeled. We also demon-

strated a distributed version of the framework, which trains

models on separate machines and is robust to staleness.
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