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Abstract

Weakly supervised temporal action localization aims to

detect and localize actions in untrimmed videos with only

video-level labels during training. However, without frame-

level annotations, it is challenging to achieve localization

completeness and relieve background interference. In this

paper, we present an Action Unit Memory Network (AUMN)

for weakly supervised temporal action localization, which

can mitigate the above two challenges by learning an ac-

tion unit memory bank. In the proposed AUMN, two at-

tention modules are designed to update the memory bank

adaptively and learn action units specific classifiers. Fur-

thermore, three effective mechanisms (diversity, homogene-

ity and sparsity) are designed to guide the updating of the

memory network. To the best of our knowledge, this is the

first work to explicitly model the action units with a mem-

ory network. Extensive experimental results on two stan-

dard benchmarks (THUMOS14 and ActivityNet) demon-

strate that our AUMN performs favorably against state-

of-the-art methods. Specifically, the average mAP of IoU

thresholds from 0.1 to 0.5 on the THUMOS14 dataset is sig-

nificantly improved from 47.0% to 52.1%.

1. Introduction
Temporal action localization (TAL) is an important yet

challenging task for video understanding. Its goal is to

localize temporal boundaries of actions with specific cat-

egories in untrimmed videos [13, 7]. Because of its

broad applications in high-level tasks such as video surveil-

lance [40], video summarization [17], and event detec-

tion [15], TAL has recently drawn increasing attentions

from the community. Up to now, deep learning based meth-

ods have made impressive progresses in this area. How-

ever, most of them handle this task in a fully supervised

way, requiring massive temporal boundary annotations for

actions [24, 51, 5, 42, 36]. Such manual annotations are ex-
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Figure 1. (a) Illustration of “Sharing Units” characteristic. The

running (red box) is a shared action unit among high-jump, long-

jump and cricket-bowling. (b) Illustration of “Sparsity” character-

istic. An action usually occupies a small portion of untrimmed

videos. (c) Illustration of “Smoothness” characteristic. CAS1 is

more suitable for the action localization task because the CAS2

tends to divide a continuous action into multiple instances.

pensive to obtain, which limits the development potential of

fully-supervised methods in real-world scenarios.

To relieve this problem, the weakly supervised set-

ting that only requires video-level category labels is pro-

posed [37, 55, 39, 37, 55, 53, 29, 30, 45, 46]. It can

be formulated as a multiple instance learning problem,

where a video is treated as a bag of multiple segments

and fed into a video-level classifier to get a class activa-

tion sequence (CAS). There are two primary challenges,

named localization completeness and background interfer-

ence. To solve the first challenge, previous works usually

adopt a well-designed erasing strategy [37, 55, 53] or a
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multi-branch architecture [21]. Both of them aim to force

the model to concentrate on different parts of videos and

hence discover the whole action without missing any rel-

evant segments. To handle the second challenge, some

methods [31, 28, 12] employ an attention-based per-class

feature aggregation scheme, where the class-specific atten-

tion is obtained by normalizing the CAS along the temporal

axis. This scheme helps learn a compact intra-class fea-

ture, which enables action segments to be more discrimi-

native than the background. Furthermore, one popular way

to handle both challenges is to learn a class-agnostic atten-

tion mechanism [29, 30, 16, 34, 10], to highlight action seg-

ments and suppress background segments.

By studying all previous TAL methods, we sum up the

following three important observations (i.e., TAL Proper-

ties): (1) Sharing Units. An action to be detected generally

consists of some primary action units, which can be shared

with other action classes. For example, as shown in Fig-

ure 1 (a), a high-jump contains running and jumping up-

ward while a long-jump consists of running and jumping

forward, so running is a shared action unit. (2) Sparsity. In

general, only a sparse set of video segments contains the

meaningful target actions. As we can see from Figure 1

(b), an action only occupies a small portion of the video.

(3) Smoothness. A smooth CAS is required for localiza-

tion, because an action is continuous, as shown in Figure 1

(c). These three characteristics are critical for the success of

action localization. Unfortunately, they have not been thor-

oughly addressed by previous studies. To achieve accurate

and complete action localization, these three observations

should be taken into consideration when designing an action

localization model. However, with only video-level labels,

it is difficult to model them jointly in a unified model.

To fully leverage the above three characteristics for ac-

tion localization, we propose a novel end-to-end frame-

work, called Action Unit Memory Network (AUMN), for

more effective weakly supervised action localization. Our

framework starts with the action unit templates learning.

According to the “Sharing Units” characteristic, we de-

sign a sub-network as a memory bank of action unit tem-

plates, which serve as our learning primary for action lo-

calization. To exploit the templates for action classification,

we further design a Multi-Layer Perceptron (MLP) network

to embed each template into the action class space. Ba-

sically, the MLP network helps connect templates to ac-

tion classes. Intuitively speaking, action unit templates will

be projected onto a set of action classifiers. Afterwards, a

cross-attention module is proposed to compute the relation-

ships between a video segment and all templates. And ac-

cording to the “Smoothness” characteristic, we introduce a

self-attention module to compute the relationships between

different segments in a video for aggregating context infor-

mation. Leveraging both of the attention mechanisms, we

can get refined segment features and be able to dynamically

select action classifiers for each video segment, which in

turn, simultaneously contribute the adaptive learning of the

memory bank.

However, the video-level ground-truth supervision alone

is not enough for memory updating. Based on the property

of action units and “Sparsity” characteristic, we further de-

sign three effective mechanisms to guide the updating of the

memory bank: (1) Since action units are different from each

other, each template in the memory bank should be unique.

To achieve this goal, we design a diversity mechanism to

encourage the differences among the templates in the mem-

ory. (2) While the diversity mechanism can encourage each

template in the memory to be unique, it does not guaran-

tee that no template is useless, which means that a template

may have low similarities with all video segments. To avoid

this, we design a homogeneity mechanism to encourage a

uniform distribution for the occurring probability of tem-

plates. (3) In an untrimmed video, action segments only

occupy a small portion of the whole video, and most of the

video segments are background. Thus we design a sparsity

mechanism to encourage that only a sparse set of video seg-

ments can have high similarities with the templates in the

memory. These three mechanisms together with the super-

vision of video-level category label can guide the network

to learn meaningful action units.

To sum up, the main contributions of our work are three-

fold: (1) To the best of our knowledge, we are the first

to model the action units with a memory network for the

weakly supervised TAL task. (2) We propose two atten-

tion modules to ensure our memory to update adaptively

and learn action units specific classifiers. Further, three ef-

fective mechanisms (diversity, homogeneity and sparsity)

are designed to guide the updating. (3) Extensive exper-

imental results on two challenging benchmarks including

THUMOS14 [13] and ActivityNet [3] demonstrate that the

proposed AUMN performs favorably against state-of-the-

art weakly supervised TAL methods.

2. Related Work
In this section, we overview methods that are related to

fully and weakly supervised temporal action localization

and memory networks.
Fully Supervised Temporal Action Localization.

Temporal action localization (TAL) aims to not only rec-

ognize actions in untrimmed videos but also give an ac-

curate temporal proposal for each action, which makes

it very challenging. To tackle this problem, fully super-

vised based methods have been extensively studied recently,

where the frame-level annotations are required during train-

ing [50, 36, 5, 54, 48, 1, 51]. Most of these methods bor-

row intuitions from the object detection frameworks [9, 33,

22, 8, 32]. In specific, many methods adopt a two-stage

pipeline, i.e., action proposals are generated first and then
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fed into a classification module. For proposal generation,

some methods adopt the sliding window [50, 36, 44, 41]

and others predict temporal boundaries of action instances

directly [5, 54, 2, 20, 18]. In addition to the two-stage meth-

ods, one-stage methods are proposed to predict action cate-

gory and temporal boundaries from raw data directly, which

are more flexible and efficient [48, 1, 24, 19].
Weakly Supervised Temporal Action Localization.

Weakly supervised methods tackle the same problem but

with less supervision, e.g., video-level category labels. This

pipeline can alleviate the requirement for expensive action

boundary annotations, but raise two challenges named lo-

calization completeness and background interference. To

handle the two problems, existing methods can be divided

into three types. The first type of works attempt to solve

the localization completeness by applying a well-designed

erasing strategy [37, 55, 53] or a multi-branch architec-

ture [21]. For example, Zhong et al. [55] design a step-

by-step erasion approach to train the one-by-one classifiers,

via collecting detection results from these classifiers, more

action segments are found. And in CMCS [21], a multi-

branch network with a diversity loss is proposed to make

the model focus on different parts of videos. The second

type of works aim to tackle the background interference via

a intra-class feature compactness scheme [31, 28, 12, 27].

They first compute the class-specific attention by apply-

ing the softmax function to CAS then use this attention to

get an aggregated video-level feature. By devising differ-

ent mechanisms to learn a compact intra-class feature, ac-

tion and background segments tend to be separated. For

example, to decrease the intra-class variance, 3C-Net [28]

and A2CL-PT [27] maintain a set of class center and

RPN [12] learns class-specific prototypes. The third type

of works are based on a class-agnostic attention mech-

anism [29, 30, 16, 34, 10, 52, 25], which can consider

both the challenges simultaneously. Unlike the second type

of works, the attention here is generated in a bottom-up

way from the raw data and trained for highlighting fore-

ground segments. It is first proposed by STPN [29] and

then inspires many following methods. Some of them in-

troduce an auxiliary category to focus on modeling back-

ground [30, 16]. And based on the observation that back-

ground features differ from action features, DGAM [34]

adopts a conditional variation auto-encoder to construct dif-

ferent feature distributions conditioned on the attention. Re-

cently, TSCN [52] and EM-MIL [25] fuse the output of dif-

ferent modalities (RGB and optical flow) to generate pseudo

labels for guidance of the attention.
Memory Networks. Memory networks typically in-

volve an internal memory implicitly updated in a recurrent

process, e.g., LSTM [11], or an explicit memory bank that

can be read or written with an attention based mechanism.

Memory networks that can be trained end-to-end are first

proposed in the natural language processing research like

question answering [26] and sentiment analysis [6]. Re-

cently, in the temporal action localization task, a popular

use of memory is exploring the temporal structure based on

the LSTM [47, 48, 38]. The ability of LSTM to learn from

long sequences with unknown size of background is well-

suited for fine-grained action localization from untrimmed

videos. Instead of exploiting the temporal relationships in a

video, we propose an attention-based memory mechanism

to model the action units which are shared among all the

videos. This mechanism helps us to deal with the large

intra-class variations, so that we can get more complete lo-

calization results by discovering various action units.

3. Our Proposed Approach
In this section, we first formulate the task of weakly su-

pervised Temporal Action Localization. Then we describe

each composition of the proposed Action Unit Memory

Network (AUMN) in details.

3.1. Notations and Preliminaries

Assume we have N untrimmed training videos {vi}
N
i=1

.

Each video vi has its ground-truth label yi ∈ R
C , where

C is the number of action categories. yi(j) = 1 if the ac-

tion category j is present in the video and yi(j) = 0 other-

wise1. During testing, the goal of the temporal action local-
ization is to generate a set of action proposals {(c, s, e, q)}
for each video, where c and q denote the predicted cate-

gory and the confidence score, s and e represent the start

and the end time respectively. In this paper, we follow pre-

vious works [29, 28, 34] to extract features for both RGB

and optical flow streams. Given an untrimmed video vi, we

first divide it into non-overlapping 16-frame segments and

apply the I3D pretrained on the Kinetics dataset to extract

features for each segment. Then we get two segment-wise

features XRGB
i ∈ R

li×D and XFLOW
i ∈ R

li×D, where li
denotes the number of segments in video vi and D is the di-

mension of features. Because the RGB and FLOW streams

are trained independently, we use Xi to represent them in

the rest of this paper for simplicity. Since the extracted fea-

tures from I3D are learned for the action recognition task

originally, it is desired to add a task-adaption layer to re-

fine the extracted features. In specific, we adopt a temporal

convolutional layer with the ReLU activation as

Xe
i = ReLU(W emb ∗Xi + bemb), (1)

where the ∗ represents the convolution operation, W emb

and bemb are the weights and bias of temporal filters, Xe
i ∈

R
li×F is the learned embedding feature, and F is the di-

mension of learned features.

3.2. Action Unit Memory Network

The overall architecture of our action unit memory net-

work is shown in Figure 2. It consists of three parts includ-

ing feature extraction, memory bank construction, memory

1If there are multiple action categories in one video, yi is normalized

with the ℓ1 normalization.
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ŷ

Figure 2. Overall architecture of our proposed Action Unit Memory Network (AUMN), which consists of three parts: feature extraction,

memory bank construction, memory bank for classification and updating.

bank for classification and updating. The details are intro-

duced as follows.

Memory Bank Construction. The action unit memory

bank stores multiple templates M ∈ R
K×F , and each tem-

plate represents an action unit, where K and F are the num-

ber and dimension of templates respectively. We adopt two

encoders named EncK and EncV to embed the templates

into pairs of keys and values respectively. The EncK is de-

signed to reduce the dimension of the templates for efficient

reading from the memory, which is implemented as a fully

connected layer (FC). And the EncV is designed to encode

each template into a template-specific classifier, which is a

MLP network consisted of two FC layers with a bottleneck

structure among them to reduce parameters. In this way, the

keys store appearance and motion related information for

the templates and can be used for template matching dur-

ing memory reading, and the values store templates specific

classifiers and can be used for segment classification. For-

mally, we formulate the encodings as follows:

KM = EncK(M), (2)

VM = EncV (M), (3)

where KM ∈ R
K×F/m and VM ∈ R

K×CF are keys and

values, M denotes the memory, and m is a hyper-parameter

to control memory reading efficiency. Given the memory

bank and an input video, we introduce how to perform video

classification and memory updating next.
Memory Bank for Classification. For video classifi-

cation, we use an encoder EncQ which is implemented

as a FC layer to encode video feature Xe
i into a set of

queries Qi ∈ R
li×F/m, and then feed the segment fea-

tures and queries into a self-attention module and a cross

attention module to generate classification results. In the

self-attention module, we first calculate the similarity scores

among video segments with queries and then use these

scores to refine the segment features by aggregating context

information, which can be formulated as

Xs
i = (softmax(

QiQ
T
i

√

F/m
) + I)Xe

i , (4)

where I is the identity matrix used to preserve the original

information, and Xs
i keeps the same dimension with Xe

i .

Via this message passing between segments, we can extract

global context information and get more discriminative fea-

tures for both classification and localization.

In the cross-attention module, we read from the memory

and get a set of segment-wise classifiers. To achieve this

goal, we first calculate the similarity scores Si ∈ R
li×K

between video segments and memory templates with the

scaled dot-product

Si = sigmoid(
Qi(K

M )T
√

F/m
). (5)

Based on the similarity scores, we can obtain a set of

segment-wise classifiers by using the similarity scores to

aggregate memory values as

VO
i = SiV

M , (6)

where VO
i ∈ R

li×CF . Later, to perform classification,

we reshape VO
i into a set of segment classifiers Wcls

i =
{Wcls

i (t) ∈ R
F×C}lit=1

, which is adaptive to the appear-

ance or motion variations of each segment.
With the refined features of the self-attention module and

the segment-wise classifiers of the cross-attention module,

we can obtain the segment-level classification results by ap-

plying each classifier on the corresponding segment. Since

we only have video-level ground-truth supervision, we need
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to aggregate these segment-level classification results into

a video-level prediction. In specific, since the second di-

mension of the similarity matrix Si denotes the similarity

between a segment and a template, we can apply the max-

pooling operation along the second dimension of the Si to

get the foreground attention weight ai ∈ R
li as

ai = MaxPool(Si), (7)

The video-level classification result ŷi is then obtained as

an attention weighted pooling

ŷi = softmax(
1

li

li
∑

t=1

ai(t)(X
s
i (t)W

cls
i (t))), (8)

where ŷi ∈ R
C . Then the classification loss is defined as

the cross-entropy loss between the prediction and the video

label yi

Lcls = −
1

B

B
∑

i=1

C
∑

j=1

yi(j) log ŷi(j). (9)

Memory Bank Updating. For the memory updating, we

find that the above classification loss alone is not enough

to learn a satisfying memory bank. Thus we design three

mechanisms (diversity, homogeneity and sparsity) to guide

the updating of the memory bank. The diversity mechanism

encourages that each template in the memory bank is dif-

ferent from other templates, the homogeneity mechanism

encourages that each template in the memory bank is mean-

ingful, and the sparsity mechanism encourages that the tem-

plates in the memory bank can suppress background seg-

ments. In specific, in the diversity mechanism, we design a

diversity loss to ensure the uniqueness of each template in

the memory as

Ld =
∥

∥MMT − I
∥

∥

F
, (10)

where I is the identity matrix and ‖·‖F is the Frobenius

norm of a matrix. While the diversity loss encourages the

templates in the memory bank to be unique, it does not guar-

antee that each template in the memory bank is useful. For

example, a template may not represent an action unit and

have low similarities with all video segments during train-

ing. To deal with this issue, we design a homogeneity loss

to encourage a uniform distribution for the occurring prob-

ability of templates in the homogeneity mechanism. In spe-

cific, we first pool the similarity matrix Si over time by a

sum operation and then use a softmax function to obtain the

occurring probability of each template as

pO
i = softmax(

li
∑

t=1

Si(t)), (11)

where pO
i ∈ R

K . Then the homogeneity loss can be for-

mulated as

Lh =

∥

∥

∥

∥

∥

1

B

B
∑

i=1

pO
i

∥

∥

∥

∥

∥

2

, (12)

where B is the mini-batch size. And based on the obser-

vation that an action usually occupies a small portion of a

untrimmed video, we design a sparsity loss in the sparsity

mechanism to relieve the interference of background seg-

ments. And the sparsity loss is designed as

Ls =
1

B

B
∑

i=1

‖ai‖1 , (13)

which encourages background segments to have low simi-

larities with all the templates.

3.3. Network Training and Inference

Training. For training the whole network, we compose

the classification loss and three auxiliary losses as

L = Lcls + αLd + βLh + γLs. (14)

where α, β and γ are hyper-parameters to balance the con-

tribution of each loss function. To summarize, we maintain

a set of templates in representation of various action units

and update them in the video-level classification task. To

better guide the learning of templates, a diversity loss and a

homogeneity loss are devised to keep the variety and effec-

tiveness of each template, and a sparsity loss is introduced

to relieve background interference.
Inference. After modeling action units by the AUMN,

we can localize actions by examining whether a segment

belongs to a kind of action unit. In specific, we take a

two-step approach to perform localization. First, we thresh-

old on video-level prediction scores ŷi and discard cate-

gories which have confidence scores below a threshold ηcls.

Thereafter, for each of the remaining action categories, we

apply the threshold ηact on the foreground attention weight

to generate action proposals. To assign a confidence for

each proposal, we compute the class activation sequence

(CAS) Ci ∈ R
li×C first, where

Ci(t, ; ) = Xs
i (t)W

cls
i (t), (15)

then Ci is passed through a softmax function along the cat-

egory dimension to get class scores at each time location,

denoted as C̄i. And the confidence score q in the proposal

{(c, s, e, q)} is computed as

q =

e
∑

t=s

θaRi (t)C̄
R
i (t, c) + (1− θ)aFi (t)C̄

F
i (t, c)

s− e+ 1
, (16)

where the superscripts R and F denote RGB or FLOW
streams respectively, θ is a scalar denoting the relative im-

portance between the two modalities and is set to 0.3 in this

work. To remove proposals with a high overlap, the class-

wise Non-Maximal Suppression (NMS) is used.

4. Experiment

4.1. Experimental Setup

Datasets. The proposed AUMN is evaluated on two

benchmark datasets including THUMOS14 [13] and Ac-

tivityNet [3]. THUMOS14 dataset contains 200 validation

videos and 213 testing videos annotated with temporal ac-

tion boundaries belonging to 20 categories. This dataset is
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Table 1. Localization performance comparison with state-of-the-art methods on the THUMOS14 test set. Note that weak+ represents

methods that utilize external supervision information besides from video labels, i.e., frequency of action instances.

Supervision Method Feature
mAP@IoU

Fully

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG (0.1:0.1:0.5)

S-CNN [36], CVPR2016 - 47.7 43.5 36.3 28.7 19.0 - - 35.0

R-C3D [42], ICCV2017 - 54.5 51.5 44.8 35.6 28.9 - - 43.1

SSN [54], ICCV2017 - 66.0 59.4 51.9 41.0 29.8 - - 49.6

TAL-Net [5], CVPR2018 - 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3

GTAN [24], CVPR2019 - 69.1 63.7 57.8 47.2 38.8 - - 55.3

Weakly+ STAR [43], AAAI2019 I3D 68.8 60.0 48.7 34.7 23.0 - - 47.0

3C-Net [28], ICCV2019 I3D 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5

Weakly

UntrimmedNet [39], CVPR2017 - 44.4 37.7 28.2 21.1 13.7 - - 29.0

Hide-and-Seek [37], ICCV2017 - 36.4 27.8 19.5 12.7 6.8 - - 20.6

Zhong et al. [55], MM2018 - 45.8 39.0 31.1 22.5 15.9 - - 30.9

AutoLoc [35], ECCV2018 UNT - - 35.8 29.0 21.2 13.4 5.8 -

Clean-Net [23], ICCV2019 UNT - - 37.0 30.9 23.9 13.9 7.1 -

STPN [29], CVPR2018 I3D 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0

WTALC [31], ECCV2018 I3D 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8

CMCS [21], CVPR2019 I3D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9

ASSG [53], MM2019 I3D 55.6 49.5 41.1 31.5 20.9 13.7 5.9 39.7

TSM [49], ICCV2019 I3D - - 39.5 31.9 24.5 13.8 7.1 -

Nguyen et al. [30], ICCV2019 I3D 60.4 56.0 46.6 37.5 26.8 19.6 9.0 45.5

TCAM [10], CVPR2020 I3D - - 46.9 38.9 30.1 19.8 10.4 -

DGAM [34], CVPR2020 I3D 60.0 54.2 46.8 38.2 28.8 19.8 11.4 45.6

BaS-Net [16], AAAI2020 I3D 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6

RPN [12], AAAI2020 I3D 62.3 57.0 48.2 37.2 27.9 16.7 8.1 46.5

EM-MIL [25], ECCV2020 I3D 59.1 52.7 45.5 36.8 30.5 22.7 16.4 44.9

A2CL-PT [27], ECCV2020 I3D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9

TSCN [52], ECCV2020 I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0

AUMN I3D 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1

particularly challenging as it consists of very long videos

with multiple action instances of small duration. Follow-

ing previous works [39, 29, 31, 23, 28, 16, 52], we use the

200 validation videos for training and the 213 testing videos

for evaluation. ActivityNet dataset includes ActivityNet1.2

and ActivityNet1.3. ActivityNet1.3 consists of 10024 train-

ing videos, 4926 validation videos and 5044 testing videos

belonging to 200 action categories. And ActivityNet1.2 is

a subset of ActivityNet1.3, which covers 100 action cate-

gories with 4819 training, 2383 validation and 2480 testing

videos. ActivityNet only contains 1.5 instances per video on

average and most videos only contain one action category

with only 36% background averagely. Following previous

works [39, 29, 31, 23, 28, 16, 52], we train our model on

the training set and evaluate it on the validation set.

Evaluation Metrics. Following the standard evaluation

protocol, we evaluate the TAL performance with the mean

Average Precision (mAP) values under different intersec-

tion over union (IoU) thresholds.

Implementation Details. We use the two-stream I3D

networks [4] pre-trained on Kinetics as our feature extrac-

tor. Note that for fair comparison, we do not finetune the

I3D network. We apply the TV-L1 algorithm to extract op-

tical flow from RGB data. Then we divide both streams

into non-overlapping 16 frames segments as the input to

the I3D network, the dimension D of the output feature

for each segment is 1024. We train separate AUMNs for

RGB and FLOW streams and collect the generated propos-

als from both networks during inference. In AUMN, the

embedding layer is composed of a temporal convolutional

layer with 1024 input channels and 512 output channels.

The number of templates K is 7 if not mentioned specif-

ically. In Eq. (14), the loss function weights α = 0.01, β
= 0.02, and γ is set to 0.05 and 0.03 for the RGB stream

and the FLOW stream, respectively. During inference, the

threshold ηcls is 0.1 and ηact is the mean value of the corre-

sponding foreground attention ai for video vi. And we use

the class-wise NMS with a threshold 0.3 to remove highly

overlapped proposals. Our model is trained using Adam op-

timizer [14] with the learning rate 10−4 and batch size 32.

4.2. Comparison with State­of­the­art Methods

Experiments on THUMOS14. Table 1 summarizes the

performance comparison between the proposed AUMN and

state-of-the-art TAL methods on the THUMOS14 test set.

Weakly+ denotes methods that adopt additional supervi-

sion during training, e.g., the number of action instances

in a video, and AVG indicates the average mAP for IoU

thresholds 0.1:0.1:0.5. From the results, we can see that

the proposed AUMN outperforms all the previous weakly

supervised models and achieves a new state-of-the-art per-

formance (33.3% mAP at IoU0.5). And an absolute gain

of 5.1% is achieved in terms of the average mAP when

compared to the best previous method (TSCN [52]). It is

worth noting that EM-MIL [25] gets a higher mAP at IoU

thresholds 0.6 and 0.7 than ours. However, we get 7% im-

provement than EM-MIL at average mAP. Besides, EM-
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Table 2. Localization performance comparison with state-of-the-

art methods on the ActivityNet1.2 validation set.

Method
mAP@IoU

0.5 0.75 0.95 AVG

UntrimmedNet [39] 7.4 3.9 1.2 3.6

Zhong et al. [55] 27.3 14.7 2.9 15.6

AutoLoc [35] 27.3 15.1 3.3 16.0

WTALC [31] 37.0 14.6 - 18.0

TSM [49] 28.3 17.0 3.5 -

CMCS [21] 36.8 22.0 5.6 22.4

Clean-Net [23] 37.1 20.3 5.0 21.6

3C-Net [28] 37.2 23.7 - 21.7

Bas-Net [16] 38.5 24.2 5.6 24.3

Huang et al. [12] 37.6 23.9 5.4 23.3

TCAM [10] 40.0 25.0 4.6 24.6

DGAM [34] 41.0 23.5 5.3 24.4

EM-MIL [25] 37.4 23.1 2.0 20.3

TSCN [52] 37.6 23.7 5.7 23.6

AUMN (Our’s) 42.0 25.0 5.6 25.5

MIL adopts a pseudo label scheme to relieve background

interference while we adopt a simple sparsity prior. We be-

lieve the performance of our approach can be promoted fur-

ther when equipped with a more effective background sup-

pression techniques. Compared to the weakly+ methods,

our method outperforms 3C-Net [28] at all IoU thresholds

and achieves 5.1% improvement over STAR [43] in average

mAP. When compared with fully supervised methods, we

note that the performance of AUMN drops faster than fully

supervised methods as the IoU threshold increases. How-

ever, we can also get a comparable result at low IoU thresh-

olds, e.g., AUMN outperforms TAL-Net at IoU thresholds

0.1, 0.2 and 0.3.
Experiments on ActivityNet. On the ActivityNet

dataset, we follow the standard evaluation protocol [3] by

reporting the average mAP scores at different thresholds

(0.5:0.05:0.95). The performance comparisons on the Ac-

tivityNet1.2 and ActivityNet1.3 are shown in Table 2 and

Table 3, respectively. The results are consistent with those

on the THUMOS14 dataset, and our AUMN outperforms all

previous weakly supervised models in average mAP on both

ActivityNet1.2 and ActivityNet1.3, with 25.5% and 23.5%

average mAP respectively. It is worth noting THUMOS14

dataset and ActivityNet dataset have different characteris-

tics. For the THUMOS14 dataset, the most important thing

is the background suppression. While for the ActivityNet

dataset, the most important thing is the localization com-

pleteness. At high IoU thresholds, EM-MIL has better per-

formance on the THUMOS14 dataset while worse perfor-

mance on the ActivityNet dataset. This is because EM-MIL

mainly considers background suppression while ignores the

localization completeness. Different from existing meth-

ods, our AUMN takes both background suppression and lo-

calization completeness into consideration, and can achieve

favorable performance on both datasets.

4.3. Ablation Studies
In this section, we conduct a series of ablation studies on

the THUMOS14 dataset to evaluate the influence of each

Table 3. Localization performance comparison with state-of-the-

art methods on the ActivityNet1.3 validation set.

Method
mAP@IoU

0.5 0.75 0.95 AVG

STPN [29] 29.3 16.9 2.6 16.3

ASSG [53] 32.3 20.1 4.0 18.8

CMCS [21] 34.0 20.9 5.7 21.2

STAR [43] 31.1 18.8 4.7 18.2

TSM [49] 30.3 19.0 4.5 -

Nguyen et al. [30] 36.4 19.2 2.9 19.5

Bas-Net [16] 34.5 22.5 4.9 22.2

TSCN [52] 35.3 21.4 5.3 21.7

A2CL-PT [27] 36.8 22.0 5.2 22.5

AUMN 38.3 23.5 5.2 23.5

Table 4. Ablation studies on the THUMOS14 dataset, where Ls,

Ld, Lh denote the sparsity loss, the diversity loss and the homo-

geneity loss. Here, S denotes the self-attention module.

Ls Ld Lh S
mAP@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

- - - - 58.5 53.1 45.1 34.9 24.6 14.4 6.8 43.2

X - - - 65.1 59.8 51.5 40.9 28.8 16.3 7.3 49.2

X X - - 65.8 61.0 52.6 42.2 29.5 17.0 7.6 50.2

X - X - 65.5 60.9 51.7 41.3 29.4 17.1 7.7 49.8

X X X - 66.1 61.5 54.4 43.3 31.8 19.1 8.9 51.4

X X X X 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1

design.
Influence of Each Loss Function. As introduced in

Section 3.2, we design three auxiliary losses (diversity loss

Ld, homogeneity loss Lh and sparsity loss Ls) to guide the

memory updating. To explore the influence of each loss

function, we conduct experiments with different loss com-

binations, and the results are shown in Table 4. From the re-

sults, we have the following observations: (1) The sparsity

loss Ls can bring a significant performance improvement at

all IoU thresholds. Because there is no frame-level label as

the supervision of the foreground attention, Ls can serve as

a prior to guide the action unit templates to focus on the ac-

tion related segments. (2) The diversity loss Ld is designed

to encourage the action unit templates in the memory bank

to be different from each other. Without the diversity loss,

we can only rely on the random initialization to achieve our

goal. From the results, we can see that the diversity loss can

bring a 1.0% performance gain in average mAP, which indi-

cates that the diversity loss is necessary. (3) The homogene-

ity loss Lh is designed to guarantee that each learned action

unit template is useful. Without the Lh, some templates in

the memory bank may be useless, which may decrease the

representative ability of the memory bank. When equipped

with this loss, we observe a 0.6% performance gain in av-

erage mAP. (4) These three losses can promote each other.

For example, the Ld can keep the difference between tem-

plates, but cannot ensure each learned template is useful.

On the other hand, although Ld can ensure no template is

redundant, it may lead to learning a set of identical mem-

ory templates. By combining them together, the mAP is in-

creased by 3% at IoU = 0.5, which is much more significant

than applying them independently.
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Figure 3. Illustration of the class activation sequence with (W)

and without (W/O) the self-attention module.

Figure 4. Performance comparison of different template numbers.

The average mAP is computed at IoU thresholds 0.1:0.1:0.5. Note

that the Ld and Lh are removed when K = 1.

Influence of the Self-attention Module. As intro-

duced in Section 3.2, the self-attention module is designed

to incorporate context information so as to encourage a

smoother temporal classification score, which is important

for complete action localization. From the results in Ta-

ble 4, the self-attention module can consistently improve

the performance at all IoU thresholds. And it is worth not-

ing that the performance gain at IoU = 0.4, 0.5, 0.6 is more

significant than that at IoU = 0.1, 0.2, 0.3. To further verify

the self-attention design, we show several visualization re-

sults in Figure 3. With the self-attention module, some less

discriminative action segments can be assigned higher con-

fidence scores, and it means that the self-attention module

can indeed help to improve localization completeness.
Influence of the Template Number. To explore the in-

fluence of the template number, we conduct experiments on

the THUMOS14 dataset and report the average mAP at IoU

0.1:0.1:0.5 of AUMN with different template numbers. The

results are shown in Figure 4, the average mAP can be con-

sistently improved as the template number K grows from 1

to 7, which means 7 templates are sufficient to model all the

action units on the THUMOS14 dataset.

4.4. Qualitative Results

To better understand our method, the qualitative results

of our AUMN on three videos from the ActivityNet1.2 vali-

dation set are presented in Figure 5. The action instances

from left to right are javelin-throw, long-jump and high-

jump respectively. We visualize the similarities between

video segments with different templates in third to fifth

rows. And the 6th row is the foreground attention a. We find

that different templates attend to model different visual pat-

terns. For example, the first template has a high similarity

to the segments which contain the action unit running while

GT

S(;,1)

S(;,2)

S(;,3)

a

Action

Figure 5. Qualitative results on ActivityNet1.2. The action in-

stances from left to right are javelin-throw, long-jump and high-

jump respectively. The six rows in each example are input video,

ground truth action instance, three different subsets of similarities

scores S in Eq. (5) and the foreground attention a.

the second is similar to jumping. The third template tends

to focus on throwing, which is an important action unit in

javelin-throw. Interestingly, some segments of throwing are

a little similar to the first template, because the man still

keeps running while throwing the javelin. It is worth noting

that long-jump and high-jump both contain segments about

jumping, to distinguish them from each other, the segment-

wise classifiers defined in Eq (6) are desired. In summary,

by finding action units in untrimmed videos via the tem-

plates from memory and utilizing the segment-wise classi-

fiers, we can correctly recognize an action and obtain robust

foreground attentions for complete action localization.

5. Conclusion
In this paper, we propose an Action Unit Memory Net-

work (AUMN) to model action units for weakly supervised

temporal action localization. We design a memory bank to

store the appearance and motion information of action units

and their corresponding classifiers. We further introduce

a cross-attention module to read segment-wise classifiers

from the memory and a self-attention module for refining

features by aggregating temporal context information. Then

we can get segment-level predictions and update the mem-

ory in an adaptive way with three auxiliary mechanisms

(diversity, homogeneity and sparsity). With a meaningful

memory bank, we can achieve more complete localization

results by finding action units in untrimmed videos. Exten-

sive experimental results on two benchmarks demonstrate

the effectiveness of the proposed AUMN.
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