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Abstract

As a vital problem in classification-oriented trans-

fer, unsupervised domain adaptation (UDA) has attracted

widespread attention in recent years. Previous UDA meth-

ods assume the marginal distributions of different domains

are shifted while ignoring the discriminant information in

the label distributions. This leads to classification perfor-

mance degeneration in real applications. In this work, we

focus on the conditional distribution shift problem which

is of great concern to current conditional invariant model-

s. We aim to seek a kernel covariance embedding for con-

ditional distribution which remains yet unexplored. Theo-

retically, we propose the Conditional Kernel Bures (CKB)

metric for characterizing conditional distribution discrep-

ancy, and derive an empirical estimation for the CKB metric

without introducing the implicit kernel feature map. It pro-

vides an interpretable approach to understand the knowl-

edge transfer mechanism. The established consistency the-

ory of the empirical estimation provides a theoretical guar-

antee for convergence. A conditional distribution matching

network is proposed to learn the conditional invariant and

discriminative features for UDA. Extensive experiments and

analysis show the superiority of our proposed model.

1. Introduction

Large-scale data with sufficient annotations are vital

sources of machine learning. However, the data collect-

ed from the real-world scenarios are usually unlabeled and

the manual annotations are expensive. Recent advances in

transfer learning yields plenty of methods for dealing with

the shortage of labeled data. These methods aim to transfer

the knowledge on a labeled source domain to a target do-

main with few or no annotations, such setting is also known

as domain adaptation [27].

The most common assumption in Unsupervised Domain

Adaptation (UDA) is that the labeled source domain and
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Figure 1. Illustration of the conditional shift problem. Previous

metrics that only consider the marginal distribution discrepancy

may lead to a misaligned conditional distribution, i.e., the red cir-

cle region. On the bottom, the class-level alignment is achieved by

exploiting the conditional distribution embedding metric.

unlabeled target domain have the same feature spaces, but

different marginal distributions [27], i.e., X s = X t, P s
X 6=

P t
X . This assumption is also called covariate shift [29] and

sample selection bias [35]. Ben-David et al. [2] give a the-

oretical insight into the domain adaptation problem, they

show that the risk of the target domain is mainly bounded by

the risk of the source domain and the discrepancy between

distributions of two domains. Inspired by this theory, many

methods are proposed to mitigate the discrepancy between

feature distributions of the source and target domains, e.g.,

explicit discrepancy minimization via Maximum Mean Dis-

crepancy (MMD) [13, 21], domain invariant feature learn-

ing [26], Optimal Transport (OT) based feature matching

[7, 20, 37], manifold based feature alignment [10], statisti-

cal moment matching [21, 32] and adversarial domain adap-

tation [9]. These methods are proved to be effective in mini-

mizing the marginal discrepancy and alleviating the domain

shift problem. However, this assumption may lead to the

omission of discriminant information in the label distribu-

tions, which is described in Figure 1. Recent advancements

[19, 22, 24] show that the adaptation models will be more

discriminative on the target domain if the target label infor-

mation (e.g., pseudo labels) is explored carefully.

Extended from the marginal shift assumption, the con-
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ditional shift problem is studied to build a conditional in-

variant model [36], i.e., P s
X|Y = P t

X|Y . The most critical

problem is to construct a framework which can explicitly

reflect the relation between different conditional distribu-

tions. Zhao et al. [38] prove a new generalization bound

which quantitatively reflects the underlying structure of the

conditional shift problem. Several works have also been

made in the field of conditional/joint distribution matching

for domain adaptation, e.g., multi-layer feature approxima-

tion [23], conditional variants of MMD [16, 19, 39], condi-

tional invariant learning with causal interpretations [11, 28],

OT based joint distribution models [4, 6].

In this paper, we aim to estimate the transport cost in Re-

producing Kernel Hilbert Space (RKHS) for the continuous

conditional distributions. Inspired by pioneering work [8],

which employs the conditional covariance operator on the

RKHS to characterize the independence, we define trans-

port cost estimation on the set of conditional covariance op-

erators called Conditional Kernel Bures (CKB) metric. By

virtue of the conditional covariance operator and OT theory,

we prove that the CKB metric reflects the discrepancy be-

tween two conditional distributions directly. This result can

be taken as an extension of the marginal distribution embed-

ding property in MMD [13] and kernel Bures metric [37].

An explicit empirical estimation of the CKB metric and its

consistency theory are presented. Further, we apply it to the

proposed conditional distribution matching network. Exten-

sive experiment results show the effectiveness of the CKB

metric and the superiority of the proposed model. Our con-

tributions are summarized as follows.

• A novel CKB metric for characterizing conditional dis-

tribution discrepancy is proposed, and the kernel em-

bedding property of the CKB metric is proved to show

that it is well-defined on conditional distributions. This

metric is also exactly the OT between conditional dis-

tributions, which provides an interpretable approach to

understand the knowledge transfer mechanism.

• An explicit empirical estimation of the CKB metric

is derived, which provides a computable measuremen-

t for conditional domain discrepancy. The asymptotic

property of the estimation is proved which provides a

rigorous theoretical guarantee for convergence.

• A conditional distribution matching network based on

the CKB metric is proposed for discriminative domain

alignment, and a joint distribution matching variant is

further extended. The SOTA results in extensive ex-

periments validate the model’s effectiveness.

2. Related Work

Unsupervised Domain Adaptation. Based on the dis-

tribution shift assumption, the UDA methods can be rough-

ly categorized as follows. Domain invariant feature learning

methods like Transfer Component Analysis (TCA) [26] try

to learn a set of transfer components that make the corre-

sponding distribution robust to the change of domains. OT

based methods mitigate the domain discrepancy by mini-

mizing the cost of transporting the source samples to the tar-

get domain. It has been shown that OT alignment is equiv-

alent to minimizing the KL divergence [7] or Wasserstein

distance [37] between the distributions. Moment matching

methods attempt to minimize the distribution discrepancy

via statistical moments, e.g., Domain Adaptation Network

(DAN) [21] for the first order matching and CORAL [32]

the second order. Manifold alignment methods take the do-

mains as the points on the manifold and align the domain-

s under the manifold metric [10, 24]. Adversarial based

methods [9, 33] alternatively optimize the feature generator

and domain discriminator, which are respectively supposed

to be domain-confusable and discriminative, to achieve do-

main confusion. Extended from the marginal distribution

assumption, recent works [4, 6, 20, 22, 23] show that the

models yield promising results by introducing the label in-

formation. Joint Adaptation Network (JAN) [23] builds a

joint distribution alignment model via the features from dif-

ferent hidden layers. Conditional Domain Adversarial Net-

work (CDAN) [22] extends the Domain Adversarial Neural

Network (DANN) [9] by exploring a multilinear map to de-

scribe the conditional variables in adversarial training.

Optimal Transport. Recently, OT has been successive-

ly applied to the UDA problem [4, 6, 7, 20, 37]. Courty et al.

[7] deal with UDA based on the Kantorovitch formulation

of OT, which allows to define the well-known Wasserstein

distance between the domain distributions. As a variant of

Wasserstein distance, Bures metric has been of great interest

to various research fields like quantum information, infor-

mation theory and Riemannian geometry [3]. The original

Bures metric is defined on the set of Positive Semi-Definite

(PSD) matrices and cannot be used to measure the distri-

bution discrepancy. In [37], Zhang et al. extend the OT

problem to RKHS, and then define the kernel Wasserstein

distance and kernel Bures metric. They show the covari-

ance embedding in RKHS is injective which implies that

the kernel Bures metric defines a metric on the distribution-

s. However, these discrepancy measures mainly focus on

the marginal distribution. To exploit the label information,

joint distribution OT models [4, 6] seek an optimal joint

transport map that minimizes the generalized cost associat-

ed to the joint space of features and labelsX×Y . Enhanced

Transport Distance (ETD) [20] uses the prediction feedback

from the classifier to reweigh the transport cost. Differing

from the above OT based methods which are formulated on

discrete joint distribution or marginal distribution, our work

focuses on the explicit estimation of OT between condition-

al distributions under the continuous case.
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3. OT for Conditional Distribution

In this section, we first review the definitions and prop-

erties of conditional covariance operator and Kantorovitch’s

OT in RKHS, which are the fundamentals of the proposed

CKB metric. Then we present the theoretical definition and

property of the CKB metric. Finally, we provide the empir-

ical estimation and its asymptotic property.

3.1. Preliminary

Conditional Covariance Operators. Let (X ,B) be a

measure space with Borel σ-field B. Denote (HX , kX ) as

the RKHSs of X , which is generated by the positive definite

kernels kX . The mean element µX in HX with law PX is

given by µX = EX [φ(X)], where φ is the nonlinear feature

map of HX . It is assumed that φ(x) = kX (x, ·) satisfies the

reproducing properties 〈φ(x), φ(x′)〉HX
= kX (x, x′) and

〈φ(x), f〉HX
= f(x), ∀f ∈ HX .

To explore the casual connection between X and Y , we

consider the pair (X,Y ) : Ω → X × Y with probabili-

ty measure PXY ∈ Pr(X ,Y), where Pr(X ,Y) is the set

of Borel probability measures on (X ,Y). Given a joint

measure (HX × HY ,BX × BY), its corresponding cross-

covariance operator [1] RXY : HY → HX satisfies that

∀ f ∈ HX , g ∈ HY ,

〈f,RXY g〉HX
= EXY [f(X)g(Y )]−EX [f(X)]EY [g(Y )]

Formally, RXY is defined as [30]

RXY = EXY [(φ(X)− µX)⊗ (ψ(Y )− µY )] .

If Y equals to X , RXX is just the covariance operator on

HX . Based on the cross-covariance operator, we further

consider the conditional covariance of φ(X) w.r.t. the con-

ditioning variable Y . The conditional covariance operator

RXX|Y is usually written as [8]

RXX|Y = RXX −RXY R
−1
Y Y RY X .

Note that RY Y may be non-invertible, especially in the

real-world applications with finite samples. When neces-

sary conditions are fulfilled [8], the conditional covariance

operator also satisfies that

〈

f,RXX|Y f
〉

HY
= EY

[

VarX|Y [f(X)|Y ]
]

, ∀ f ∈ HX .

Kantorovitch’s OT in RKHS. For any two distributions

P s
X , P

t
X ∈ Pr(X ), let Π(P s

X ×P t
X) be the set of probabilis-

tic couplings, the Kantorovitch formulation of OT is

γ∗ = inf
γ∈Π(P s

X
×P t

X
)

∫

X×Y
d2(xs,xt)dγ(xs,xt). (1)

The Kantorovitch problem in Eq. (1) is also equivalent to

the Wasserstein distance. Under the Gaussian measures, if

the distributions P s
X and P t

X have the same expectations,

the Wasserstein distance between them is equivalent to the

Bures metric between their covariance matrices. Let S+(d)
be the set of d × d PSD matrices; for any PSD matrix Σ,

its unique square root
√
Σ is defined by Σ =

√
Σ
√
Σ. The

Bures metric is defined by

d2B(Σ
s
XX ,Σ

t
XX) = tr

(

Σs
XX +Σt

XX − 2Σst
XX

)

,

where Σst
XX =

√

√

Σs
XXΣt

XX

√

Σs
XX and Σs

XX and

Σt
XX are the covariance matrices of P s

X and P t
X , respec-

tively. Recent work shows that the Bures metric is also

related to the Riemannian geometry, as it can be taken as

the metric on PSD manifold [3]. Though the Bures met-

ric defines a metric on S
+(d), it cannot reflect discrepancy

between distributions P s
X and P t

X .

The kernel Bures metric [37] generalizes the PSD setting

in Bures metric to the infinite-dimensional RKHS H. Let

S
+(HX ) ⊆ HX ×HX be the set of all positive, self-adjoint,

and trace-class operators on HX with kernel kX , the kernel

Bures metric dKB(·, ·) on S
+(HX ) is written as:

d2KB(R
s
XX ,R

t
XX) = tr

(

Rs
XX +Rt

XX − 2Rst
XX

)

,

where Rst
XX =

√

√

Rs
XXRt

XX

√

Rs
XX and Rs

XX ,R
t
XX

are the covariance operators of P s
X and P t

X on HX , respec-

tively. Note the kernel Bures is exactly the transport cost in

RKHS when the push-forward measures φ#P s
X and φ#P t

X

are Gaussian [37]. Zhang et al. [37] prove that if the mea-

surable space (X ,BX ) is locally compact and Hausdorff,

the embedding P s
X 7→ Rs

XX , ∀P s
X ∈ Pr(X ) is injective. It

turns out that dKB(·, ·) defines a metric on Pr(X ), which no

longer holds for the Bures metric. With this property, the

kernel Bures metric can be used to quantify the discrepancy

between two distributions.

3.2. Conditional Kernel Bures Metric

To introduce conditional distribution to OT, we develop

the kernel covariance embedding property for conditional

distributions and apply it to the kernel Bures metric. The

CKB metric for conditional distributions is now defined.

Definition 1 The Conditional Kernel Bures (CKB) met-
ric between two conditional distributions P s

X|Y , P
t
X|Y ∈

Pr(X|Y) is defined as

d
2

CKB(R
s

XX|Y ,R
t

XX|Y ) = tr
(

R
s

XX|Y +R
t

XX|Y − 2Rst

XX|Y

)

,

(2)

where R
st

XX|Y =

√

√

Rs

XX|Y Rt

XX|Y

√

Rs

XX|Y .

Proposition 1 CKB dCKB(·, ·) defines a metric on S
+(HX ).

Recall that the conditional covariance operator RXX|Y
is also positive, self-adjoint, and trace-class on HX [8].
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Thus, we can deduce from Proposition 1 that the CKB met-

ric is well-defined on the conditional covariance operators.

The injective property of mean embedding EX [φ(X)]
[13] and covariance embedding RXX [37] in RKHS give

the theoretical insights into how two distributions are

matched via the defined metrics, e.g., MMD and kernel Bu-

res metric. Similarly, we also make connection between

the CKB metric and conditional distributions. Note that

though the above embedding properties are well studied,

they only consider connections between the operators and

the marginal distributions. As the embedding property be-

tween the covariance operators and conditional distributions

is unexplored, our work focuses on extending the CKB met-

ric to a metric on conditional distributions Pr(X|Y). For

convenience, we denote the set of measures that satisfy the

3-splitting property [37] by Prs(X|Y = y) and the direct

sum by HX ⊕HY .

Theorem 1 Let (X ,BX ) be the locally compact and Haus-

dorff measurable space and k be c0-universal kernel. As-

suming that (φ(X), ψ(Y )) is a Gaussian random variable

in HX ⊕HY . For any P s
X|Y , P

t
X|Y ∈ Prs(X|Y), we have

dCKB(R
s
XX|Y ,R

t
XX|Y ) = 0 =⇒ P s

X|Y = P t
X|Y .

The above theorem shows that the CKB metric dCKB(·, ·)
defines a metric on Pr(X|Y) if some conditions are satis-

fied. Note that the CKB metric is exactly the minimized OT

cost between two conditional distributions since φ#P s
(X,Y )

and φ#P t
(X,Y ) are also Gaussian. Thus, it can be used

to measure the discrepancy between two conditional dis-

tributions. The condition c0-universal [31] in Theorem 1

is satisfied by many common kernels, e.g., Gaussian kernel

and Laplacian kernel. The assumption of Gaussian random

variable can be taken as the extension of Gaussian distri-

bution which takes values in RKHS [17]. Recall that the

feature maps φ(·) and ψ(·) are implicit, so the conditional

covariance operator RXX|Y is not formulable in practical

computation of the CKB metric. To present an explicit for-

mulation of the CKB metric, we use the kernel trick, i.e.,

〈φ(x), φ(x′)〉HX
= kX (x, x′), to avoid the explicit nonlin-

ear maps in the next section.

3.3. Empirical Estimation of the Conditional Kernel
Bures Metric

Let Ds = {(xs
i ,y

s
i )}ni=1 and Dt = {(xt

j ,y
t
j)}mj=1

be two sets of samples, which are assumed to be drawn

i.i.d. from P s
XY and P t

XY , respectively. Note that x
s/t
i ∈

R
d, y

s/t
i ∈ R

c, and we map the data x
s/t
i (resp. y

s/t
i ) to

the RKHS HX (resp. HY ) with the implicit feature map

φ (resp. ψ). Let K
s/t
XX , K

s/t
Y Y and Kts

XX be the explicit

kernel matrices computed as (K
s/t
XX)ij = kX (x

s/t
i ,x

s/t
j ),

(K
s/t
Y Y )ij = kY(y

s/t
i ,y

s/t
j ) and (Kts

XX)ij = kX (xt
i,x

s
j),

respectively. Denote the feature map matrices by Φs/t

and Ψs/t. Their cross-covariance matrices can be written

as R̂s
XY = 1

nΦsHnΨ
T
s , R̂t

XY = 1
mΦtHmΨT

t , where

Hn = In − 1
n1n1

T
n is the n × n centering matrix, and 1n

is n-dimensional vector with all elements equal to 1. As the

covariance matrix R̂
s/t
Y Y is always rank-deficient under the

finite sample case, we regularize it as

R̂XX|Y = R̂XX − R̂XY

(

R̂Y Y + εI
)−1

R̂Y X , (3)

where ε > 0 is the regularization parameter. Denote the

matrices

Bs , In − 1

nε

[

Gs
Y −Gs

Y (Gs
Y + εnIn)

−1
Gs

Y

]

,

Bt , Im − 1

mε

[

Gt
Y −Gt

Y

(

Gt
Y + εmIm

)−1
Gt

Y

]

,

where

Gs
X/Y = HnK

s
XX/Y Y Hn, Gt

X/Y = HmKt
XX/Y Y Hm

are the centralized kernel matrices. With the decomposi-

tion Bs/t = Cs/tC
T
s/t, the conditional covariance operator

R̂s
XX|Y can be reformulated as (R̂t

XX|Y is the same)

R̂s
XX|Y =

1

n
ΦsHnCs (ΦsHnCs)

T
. (4)

Proposition 2 If kY is positive definite kernel, then Bs and

Bt are positive definite for any ε > 0. Especially, we have

Bs = εn (Gs
Y + εnIn)

−1
, Bt = εm

(

Gt
Y + εmIm

)−1
.

Remark 1 Proposition 2 shows that Bs/t is positive def-

inite with a positive definite kernel kY (e.g., Gaussian k-

ernel and Laplacian kernel), so the decomposition Bs/t =
Cs/tC

T
s/t always exists. But, such a decomposition is not u-

nique, e.g., Cholesky factorization and eigendecomposition.

Here we compute Cs based on the Eigenvalue Decomposi-

tion (EVD) of Bs as (Ct is the same)

Bs = UsDsU
T
s = Us

√

Ds

(

Us

√

Ds

)T

= CsC
T
s ,

where Us and Ds are the eigenvector and eigenvalue ma-

trices of Bs, respectively.

The reformulation Eq. (4) affords an explicit insight in-

to the conditional covariance operator. As Bs is computed

from the gram matrix Gs
Y , Cs is highly related to the con-

ditional variable Y . Compared with the covariance opera-

tor on RKHS R̂s
XX = ΦsHnΦ

T
s /n, the feature map Φs

in conditional covariance operator R̂s
XX|Y is transformed

by the modified centering matrix HnCs which contains the

conditional information. Based on the above reformulation,
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the following theorem provides the explicit computation of

the CKB metric. Note that the reformulation Eq. (4) is in-

cluded in the proof of Theorem 2, and all proofs of theorem-

s, propositions are provided in the supplementary material.

Theorem 2 The empirical estimation of the CKB metric is
computed as

d̂
2

CKB(R̂
s

XX|Y , R̂
t

XX|Y )

=εtr
[

G
s

X (εnIn +G
s

Y )−1

]

+ εtr
[

G
t

X

(

εmIm +G
t

Y

)−1
]

−
2

√
nm

∥

∥

∥
(HmCt)

T
K

ts

XX (HnCs)
∥

∥

∥

∗
, (5)

where ‖ · ‖∗ is the nuclear norm.

Remark 2 The computational complexity of the CKB met-

ric consists of three terms shown in Eq. (5). As for the

first term, the cost of the kernel matrices and matrix in-

verse are about O((c + d + n)n2). Similarly, the cost of

the second term is about O((c + d + m)m2). As for the

third term, the cost of kernel matrix, EVD and nuclear nor-

m is about O(nmd + n3 +m3 +min(mn2,m2n)). Thus,

the computational complexity of the CKB metric is about

O(max(c, d,m, n)(n2+m2+mn)), where d and c are the

feature dimension and number of classes, respectively.

3.4. Convergence Analysis

In this section, we focus on the convergence of the empir-

ical estimation of the CKB metric. This convergence theo-

rem is based on the properties of trace-class operator on the

Hilbert space and the asymptotic theory of the condition-

al covariance operator established by Fukumizu et al. [8].

Let R̂
(n)
XX|Y be the conditional covariance operator drawn

i.i.d. from distribution PXY with sample size n which is

computed as Eq. (3), Proposition 7 in [8] shows that the es-

timator R̂
(n)
XX|Y converges to RXX|Y in probability. More-

over, it shows that the sequence |tr(R̂(n)
XX|Y )− tr(RXX|Y )|

is bounded in probability at rate 1
εn

√
n

.

With the consistency of conditional covariance opera-

tor, we now establish the asymptotic theory for the CK-

B metric. Assuming that the conditional covariance op-

erators are specified by the source and target domains,

we define n′ = min{n,m} and the squared CKB met-

ric as D̂
(n′)
CKB = d̂2CKB(R

s(n)

XX|Y ,R
t(m)

XX|Y ) and DCKB =

d2CKB(R
s
XX|Y ,R

t
XX|Y ). The convergence of D̂

(n′)
CKB is dom-

inated by the convergence of three terms in Eq. (2). Specifi-

cally, the convergence of first two terms are concluded from

the consistency of conditional covariance operator, and the

third term can be deduced to the convergence in trace-norm

on the Hilbert space. We present the convergence theorem

of the CKB metric as follows.

Theorem 3 Let the regularization parameter ε in Eq. (3)

be a series related to n′, i.e., εn′ . Assuming εn′ satisfies

that εn′ → 0 and εn′

√
n′ → ∞ (n′ → ∞), then we have

|D̂(n′)
CKB −DCKB| → 0 (n′ → ∞)

in probability with rate ( 1
ε′
n

√
n′
)

1
2 .

Theorem 3 shows that the empirical estimation error of

the CKB metric converges to 0 as n → ∞ in probability.

Specifically, the estimation error |D̂(n′)
CKB−DCKB| is bounded

in probability at rate ( 1
ε′
n

√
n′
)

1
2 . Compared to the rate 1

εn
√
n

of the conditional covariance operator, the square root rate

( 1
ε′
n

√
n′
)

1
2 of the CKB metric comes from the convergence

rate of the cross term, i.e., Rst
XX|Y .

4. Unsupervised Domain Adaptation

In this section, we tackle the UDA problem by describing

the domains as conditional distributions and minimizing the

conditional distribution discrepancy under the CKB metric.

4.1. Conditional Distribution Matching Network

For UDA problems, Ds = {(xs
i ,y

s
i )}ni=1 is taken as the

source domain and Dt = {xt
j}mj=1 the unlabeled target do-

main, where x
s/t
i represent the observations and ys

i ∈ R
K

the one-hot labels with K classes. The primary task is to

generalize the classifier C : x 7→ y trained on both Ds and

Dt to predict the yt
i . Previous UDA methods assume that

the target distribution is shifted from the source distribution

(i.e., P s
X 6= P t

X ) and generalize C by minimizing the distri-

bution discrepancy. This assumption only considers the fea-

ture distribution, but ignores the discriminant information

from the labels. Here we consider the shift of conditional

distribution PX|Y , which will help the adaptation model to

incorporate discriminant information. To learn a condition-

al distribution matching model, we first design a feature ex-

tractor F based on Deep Neural Networks (DNNs), which

aims to align the conditional distributions of the domains,

i.e., P s
X|Y and P t

X|Y . Then the classifier C : F (x) 7→ y

will be trained on the aligned features. Denote the extract-

ed features by Zs/t = [F (x
s/t
1 ), . . . , F (x

s/t
n/m)] and the

soft predictions by Ŷs/t = [C(z
s/t
1 ), . . . , C(z

s/t
n/m)], where

∑K
i=1 ŷ

s/t
ij = 1. The detailed network architecture is pro-

vided in the supplementary material.

The flowchart of the proposed method is shown in Figure

2. It aligns the source and target domains to the conditional

invariant space by minimizing the CKB metric between the

extracted features, i.e., Zs and Zt. Based on the condition-

al invariant features, a discriminative classifier is learned

by applying the entropy-based criterion to both domains.
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Figure 2. Flowchart of the conditional matching model. The fea-

tures are mapped into the RKHS, and the conditional distributions

of the domains are represented by their conditional covariance op-

erators in RKHS. Then the conditional distribution discrepancy is

estimated based on the CKB metric, and the adaptation model is

optimized according to the discrepancy feedback.

A well-aligned feature space is more preferable for train-

ing classifier. Meanwhile, a more accurate classifier leads

to a more precise estimation of the CKB metric and fewer

misaligned sample pairs. Therefore, the two processes can

benefit from each other and enhance the transferability and

discriminability of the model alternatively.

In general, the proposed network is trained based on

three loss terms. First, the cross-entropy function is applied

to the labeled source data, which builds a basic network for

classification. The cross-entropy loss LCE is written as

LCE =
∑K

i=1

∑n

j=1
−ysij log ŷsij .

Then the entropy LEnt is applied to the target prediction:

LEnt =
∑K

i=1

∑m

j=1
−ŷtij log ŷtij .

This term has been proved to be effective in the semi-

supervised learning and unsupervised learning [12]. For U-

DA, it preserves the intrinsic structure of the target domain

and reduces the uncertainty of the target prediction.

To match the conditional distributions of two domain-

s, the CKB metric is applied to the deep features learned

by the nonlinear mapping F . Thus, the kernel matrices

K
s/t
XX ,K

ts
XX and feature maps Φs/t are computed from the

deep features Zs/t hereinafter, i.e., k(zi, zj) and φ(zi). In

terms of the conditional variable Y , the kernel matrix Ks
Y Y

and feature map Ψs are computed from the source label-

s ys
i . As the ground-truth labels yt

i of the target samples

are unknown, we use the pseudo labels ŷt
i to approximate

them and compute the feature map as Ψ̂t. The CKB loss is

computed according to Eq. (5) as

LCKB = d̂2CKB(R̂
s
XX|Y , R̂

t
XX|Y ).

Let λ1 and λ2 be the trade-off parameters, the objective

function of the conditional alignment model is written as

min
F,C

LCE + λ1LEnt + λ2LCKB. (6)

According to Theorem 1, the domain conditional distri-

butions are aligned (i.e., P s
X|Y = P t

X|Y ) when LCKB = 0.

Further, if the marginal distributions P s
Y and P t

Y are also

aligned, then the domain joint distribution matching is also

achieved as PXY = PX|Y PY . Since the target distribution

P t
Y is unknown, we can apply the marginal matching con-

straint to the label distribution estimated from the classifi-

er’s predictions. Specifically, the marginal discrepancy can

be approximated by the MMD between Ψs and Ψ̃t, i.e.,

LMMD = ‖Ψs1n/n− Ψ̃t1m/m‖2HY
, where Ψ̃t is comput-

ed from the soft predictions ỹt
i . Finally, the joint distribu-

tion alignment loss is the sum of LMMD and LCKB, and the

objective function is written as

min
F,C

LCE + λ1LEnt + λ2(LCKB + LMMD). (7)

In summary, LMMD and LCKB aim to integrate the sam-

ples from different domains by mitigating the conditional

or joint distribution discrepancies, and the first two terms

enhance the model’s discriminability by using the label and

prediction information from both domains.

4.2. Implementation Details

We train the proposed model with back-propagation in

the mini-batch manner. As LCKB refers to the inverse of

the kernel matrices Gs
Y and Gt

Y , we treat Ŷt in LCKB

as constant to make the optimization stable. Thus, Gs
Y

and Gt
Y are independent of the network parameter and

there are no gradients refer to them. The regularization

parameter ǫ of inverse in Eq. (5) is set as 10−2 empir-

ically. In terms of the kernel function, Gaussian kernel

k(x,x′) = exp
(

−‖x− x′‖22/σ2
)

is adopted, and the pa-

rameter σ2 is set as the mean of the all square Euclidean

distances ‖x − x′‖22 that refer to the corresponding kernel

matrix. The kernel parameters σ are adaptively updated for

each minibatch. Thanks to the smoothness of the Gaussian

kernel, the gradients of the network parameters always ex-

ist. The proposed methods in Eq. (6) and Eq. (7) are respec-

tively abbreviated as CKB and CKB+MMD hereinafter.

5. Experiment

The proposed methods are evaluated and compared with

the SOTA methods on four UDA datasets.

ImageCLEF-DA [5] consists of 3 domains with 12 com-

mon classes, i.e., Caltech (C), ImageNet (I), Pascal (P),

where each domain include 600 images.

Office-Home [34] contains 15500 images from 4 do-

mains with 65 classes, i.e., Art (Ar), Clipart (Cl), Product

(Pr) and Real-World (Rw).

Office10 [10] consists of 4 domains with 10 classes, i.e.,

Amazon (A), Caltech (C), DSLR (D) and Webcam (W).

Digits Recognition Follow the protocol in [15], we

conduct the adaptation task between the handwritten digit

datasets MNIST (M) and USPS (U).
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Table 1. Accuracies (%) on Office-Home (ResNet-50), Image-CLEF-DA (ResNet-50) and Office10 (AlexNet).

Office-Home Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrMean

Source [14] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [21] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

KGOT [37] 36.2 59.4 65.0 48.6 56.5 60.2 52.1 37.8 67.1 59.0 41.9 72.0 54.7

CDAN+E [22] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

ETD [20] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

DMP [24] 52.3 73.0 77.3 64.3 72.0 71.8 63.6 52.7 78.5 72.0 57.7 81.6 68.1

CKB 54.7 74.4 77.1 63.7 72.2 71.8 64.1 51.7 78.4 73.1 58.0 82.4 68.5

CKB+MMD 54.2 74.1 77.5 64.6 72.2 71.0 64.5 53.4 78.7 72.6 58.4 82.8 68.7

Image-CLEF-DA I→P P→I I→C C→I C→P P→C Mean

Source [14] 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7

DAN [21] 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8 ± 0.4 82.5

DANN [9] 75.0 ± 0.3 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0

KGOT [37] 76.3 83.3 93.5 87.5 74.8 89.0 84.1

CDAN+E [22] 77.7 ± 0.3 90.7 ± 0.2 97.7 ± 0.3 91.3 ± 0.3 74.2 ± 0.2 94.3 ± 0.3 87.7

ETD [20] 81.0 91.7 97.9 93.3 79.5 95.0 89.7

DMP [24] 80.7 ± 0.1 92.5 ± 0.1 97.2 ± 0.1 90.5 ± 0.1 77.7 ± 0.2 96.2 ± 0.2 89.1

CKB 80.7 ± 0.1 93.7 ± 0.1 97.0 ± 0.1 93.5 ± 0.2 79.2 ± 0.1 97.0 ± 0.1 90.2

CKB+MMD 80.7 ± 0.2 92.2 ± 0.1 96.5 ± 0.1 92.2 ± 0.2 79.9 ± 0.2 96.7 ± 0.1 89.7

Office10 A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D Mean

Source [18] 82.7 85.4 78.3 91.5 88.5 83.1 80.6 74.6 99.0 77.0 69.6 100.0 84.2

GFK [10] 78.1 84.7 76.3 89.1 88.5 80.3 89.0 78.4 99.3 83.9 76.2 100.0 85.3

CORAL [32] 85.3 80.8 76.3 91.1 86.6 81.1 88.7 80.4 99.3 82.1 78.7 100.0 85.9

OT-IT [7] 83.3 84.1 77.3 88.7 90.5 88.5 83.3 84.0 98.3 88.9 79.1 99.4 87.1

KGOT [37] 85.7 86.6 82.4 91.4 92.4 87.1 91.8 85.6 99.3 89.7 85.0 100.0 89.7

DMP [24] 86.6 90.4 91.3 92.8 93.0 88.5 91.4 85.3 97.7 91.9 85.6 100.0 91.2

CKB 87.0 93.6 90.2 93.4 93.6 90.8 92.7 83.5 100.0 92.4 84.3 100.0 91.8

CKB+MMD 87.5 93.0 89.8 93.3 91.7 92.9 92.3 83.4 99.7 92.8 85.8 100.0 91.9

5.1. Results

Comparison. Several state-of-the-art UDA approach-

es are used to compare with the proposed methods, and

the results are shown in Table 1-2. From the results on

Office-Home in Table 1, we observe that the CKB+MMD

method outperforms the compared methods in average ac-

curacy, and the relaxed variant CKB also achieves the accu-

racy of 68.5%. The experiment results on ImageCLEF-DA

are shown in the middle of Table 1. The CKB method im-

proves the mean accuracy to 90.2% by further considering

the discrepancy between the conditional distributions. The

results show that the higher the accuracy of target predic-

tions, the more effective the CKB alignment, e.g., tasks P →
I and P → C. Table 1 shows the results on Office10 dataset.

OT-IT and KGOT methods achieve the accuracy of 87.1%

and 89.7%, which show the superiority of the OT theory in

distribution matching. CKB+MMD method achieves Top-

1 accuracy in most tasks and improves the mean accuracy

to 91.8%. Table 2 shows the results on digits recognition

Table 2. Accuracies (%) on Digits (LeNet).

Method M→U U→M

Source [15] 82.2 ± 0.8 69.6 ± 3.8

DANN [9] 95.7 ± 0.1 90.0 ± 0.2

CyCADA [15] 95.6 ± 0.4 96.5 ± 0.2

DeepJDOT [4] 95.7 96.4

ETD [20] 96.4 ± 0.3 96.3 ± 0.1

CKB 96.3 ± 0.1 96.6 ± 0.4

CKB+MMD 96.6 ± 0.1 96.3 ± 0.1

tasks. The proposed models surpass the advanced OT-based

method ETD and achieves the highest accuracy in all tasks.

Hyper-parameter. We investigate the selection of

hyper-parameters λ1 and λ2 on ImageCLEF-DA dataset.

The optimal λ1 and λ2 are respectively searched from [1e-
2,5e-2,1e-1,5e-1,1e0] and [1e-1,1e0,1e1,1e2]. Figure 3 (a)-

(b) show the results of grid search, we observe that the

model is stable for different hyper-parameter values and

(λ1, λ2)=(5e-1,1e0) is optimal among all settings.
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Figure 3. (a)-(b): Grid search for hyper-parameters λ1 and λ2. (c)-(d): Ablation analysis.

(a) Before Adaptation (b) After Adaptation (c) Before Adaptation (d) After Adaptation
Figure 4. Feature visualization of the source-only and CKB models via t-SNE [25] on Image-CLEF C → I task. ‘+’: source domain, ‘◦’:

target domain. (a)-(b): Features colored by domains. (c)-(d): Features colored by classes.
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Figure 5. Time comparison.

Ablation. We compare the CKB metric with the Bures

and Kernel Bures metrics [37], and evaluate the effective-

ness of the loss terms in Eq. (6) on ImageCLEF-DA dataset.

The model without CKB alignment loss and target entropy

loss are abbreviated as w/o LCKB and w/o LEnt, respectively.

The results in Figure 3 (c)-(d) show that the CKB metric is

superior to the Bures and Kernel Bures metric, which proves

that the conditional operators help the model to obtain the

discriminant information from the labels and predictions.

Visualization. To evaluate the aligned features quanti-

tatively, we use t-SNE [25] to visualize the features of the

source-only model (before adaptation) and the CKB model

(after adaptation) on Image-CLEF C → I task. From Fig-

ure 4 (a), we observe that the conditional distribution is still

shifted in the source-only model. In Figure 4 (b), all clusters

are well-aligned by the CKB method. Figure 4 (c)-(d) show

the features colored by classes, we observe that the CKB

model achieves the inter-class separability and intra-class

compactness on the target domain.

Time Comparison. We conduct the time comparison

experiments on Office-Home and Image-CLEF-DA dataset-

s. The results in Figure 5 suggest that CKB model is faster

than CKB+MMD and DMP, which demonstrates that the

conditional discrepancy metric is more efficient than the

structure learning model DMP. As the proposed models are

trained in mini-batch manner, the time complexity of the

CKB metric is only about O(db2s), where bs is the batch

size. Thus the CKB metric does not introduce much com-

plexity compared to the DNNs. Results show that CKB

model only takes 10s longer than ResNet while improving

the accuracy significantly by 22% on Office-Home dataset.

6. Conclusion

In this paper, we consider the conditional distribution

shift problem in classification. Theoretically, we extend OT

in RKHS by introducing the conditional variable, and prove

that the proposed CKB metric defines a metric on the con-

ditional distributions. An empirical estimation is derived to

provide an explicit computation of the CKB metric, and it-

s asymptotic theory is established for the consistency. By

applying the CKB metric to DNNs, we propose a condi-

tional distribution matching network which alleviates the

shift of conditional distributions and preserves the intrin-

sic structures of both domains simultaneously. Extensive

experimental results show the superiority of the proposed

models in UDA problems.
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