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Figure 1: Given a single photograph, we can reconstruct a high-quality textured 3D face with neutral expression and nor-
malized lighting condition. Our approach can handle extremely challenging cases and our generated avatars are animation
friendly and suitable for complex relighting in virtual environments.

Abstract

We introduce a highly robust GAN-based framework for

digitizing a normalized 3D avatar of a person from a sin-

gle unconstrained photo. While the input image can be of a

smiling person or taken in extreme lighting conditions, our

method can reliably produce a high-quality textured model

of a person’s face in neutral expression and skin textures

under diffuse lighting condition. Cutting-edge 3D face re-

construction methods use non-linear morphable face mod-

els combined with GAN-based decoders to capture the like-

ness and details of a person but fail to produce neutral head

models with unshaded albedo textures which is critical for

creating relightable and animation-friendly avatars for in-

tegration in virtual environments. The key challenges for

existing methods to work is the lack of training and ground

truth data containing normalized 3D faces. We propose a

Hao Li is affiliated with Pinscreen and UC Berkeley; Koki Nagano is
currently at NVIDIA. This work was fully conducted at Pinscreen.

two-stage approach to address this problem. First, we adopt

a highly robust normalized 3D face generator by embed-

ding a non-linear morphable face model into a StyleGAN2

network. This allows us to generate detailed but normalized

facial assets. This inference is then followed by a perceptual

refinement step that uses the generated assets as regulariza-

tion to cope with the limited available training samples of

normalized faces. We further introduce a Normalized Face

Dataset, which consists of a combination photogrammetry

scans, carefully selected photographs, and generated fake

people with neutral expressions in diffuse lighting condi-

tions. While our prepared dataset contains two orders of

magnitude less subjects than cutting edge GAN-based 3D

facial reconstruction methods, we show that it is possible to

produce high-quality normalized face models for very chal-

lenging unconstrained input images, and demonstrate supe-

rior performance to the current state-of-the-art.
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1. Introduction

Figure 2: Automated digitization of normalized 3D avatars
from a single photo.

The creation of high-fidelity virtual avatars have been

mostly reserved to professional production studios and typ-

ically involves sophisticated equipment and controlled cap-

ture environments. Automated 3D face digitization meth-

ods that are based on unconstrained images such as selfies

or downloaded internet pictures are gaining popularity for

a wide range of consumer applications, such as immersive

telepresence, video games, or social media apps based on

personalized avatars.

Cutting-edge single-view avatar digitization solutions

are based on non-linear 3D morphable face models

(3DMM) generated from GANs [66, 65, 28, 45], outper-

forming traditional linear models [10] which often lack fa-

cial details and likeness of the subject. To successfully train

these networks, hundreds of thousands of subjects in vari-

ous lighting conditions, poses, and expressions are needed.

While highly detailed 3D face models can be recovered,

the generated textures have the lighting of the environment

baked in, and expressions are often difficult to neutralize

making these methods unsuitable for applications that re-

quire relighting or facial animation. In particular, inconsis-

tent textured models are obtained when images are taken

under different lighting conditions.

Collecting the same volume of 3D face data with neu-

tral expressions and controlled lighting condition is in-

tractable. Hence, we introduce a GAN-based facial digitiza-

tion framework that can generate a high-quality textured 3D

face model with neutral expression and normalized lighting

using only thousands of real world subjects. Our approach

consists of dividing the problem into two stages. The first

stage uses a non-linear morphable face model embedded

into a StyleGAN2 [40] network to robustly generate de-

tailed and clean assets of a normalized face. The likeness

of the person is then transferred from the input photograph

using a perceptual refinement stage based on iterative op-

timization using a differentiable renderer. StyleGAN2 has

proven to be highly expressive in generating and represent-

ing real world images using an inversion step to convert im-

age to latent vector [3, 60, 4, 33] and we are adopting the

same two step GAN-inversion approach to learn facial ge-

ometry and texture jointly. To enable 3D neutral face in-

ference from an input image, we connect the image with

the embedding space of our non-linear 3DMM using an

identity regression network based on identity features from

FaceNet [58]. To train a sufficiently effective generator, we

introduce a new Normalized Face Dataset which consists

of a combination of high-fidelity photogrammetry scans,

frontal and neutral portraits in diffuse lighting conditions,

as well as fake subjects generated using a pre-trained Style-

GAN2 network with FFHQ dataset [39].

Despite our data augmentation effort, we show that our

two-stage approach is still necessary to handle the large

variation of possible facial appearances, expressions and

lighting conditions. We demonstrate the robustness of our

digitization framework on a wide range of extremely chal-

lenging examples, and provide extensive evaluations and

comparisons with current state-of-the-art methods. Our

method outperforms existing techniques in terms of digitiz-

ing textured 3D face models with neutral expressions and

diffuse lighting conditions. Our normalized 3D avatars can

be converted into parametric models with complete bodies

and hair, and the solution is suitable for animation, relight-

ing, and integration with game engines as shown in Fig. 2.

We summarize our key contributions as follows:

• We propose the first StyleGAN2-based approach for

digitizing a 3D face model with neutral expressions

and diffusely lit textures from an unconstrained image.

• We present a two-stage digitization framework which

consists of a robust normalized face model inference

stage followed by a perception-based iterative face re-

finement step.

• We introduce a new data generation approach and

dataset based on a combination of photogrammetry

scans, photographs of expression and lighting normal-

ized subjects, and generated fake subjects.

• Our method outperforms existing single-view 3D face

reconstruction techniques for generating normalized

faces, and we also show that our digitization approach

works using limited subjects for training.

2. Related Works

While a wide range of avatar digitization solutions exist

for professional production, they mostly rely on sophisti-

cated 3d scanning equipment (e.g., multi-view stereo, pho-

tometric stereo, depth sensors etc.) and controlled capture

settings [8, 30, 25]. We focus our discussion on monocular
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3D face reconstruction methods as they provide the most ac-

cessible and flexible way of creating avatars for end-users,

where only a selfie or downloaded internet photo is needed.

3D Morphable Face Models. Linear 3D Morphable

Models (3DMM) have been introduced by Blanz and Vet-

ter [10] two decades ago, and have been established as the

de-facto standard for 3D face reconstruction from uncon-

strained input images. The linear parametric face model en-

codes shape and textures using principal component analy-

sis (PCA) built from 200 laser scans. Various extensions of

this work include the use of larger numbers of high-fidelity

3D face scans [12, 11], web images [41], as well as facial

expressions often based on PCA or Facial Action Coding

Systems(FACS)-based blendshapes [9, 68, 16].

The low dimensionality and effectiveness of 3DMMs

make them suitable for robust 3D face modeling as well

as facial performance capture in monocular settings. To

reconstruct a textured 3D face model from a photograph,

conventional methods iteratively optimize for shape, tex-

ture, and lighting condition by minimizing energy terms

based on constraints such as facial landmarks, pixel col-

ors [10, 57, 26, 61, 15, 37, 64, 27, 17, 48], or depth in-

formation if available such as for the case of RGB-D sen-

sors [70, 69, 13, 46, 35, 50, 36].

While robust face reconstruction is possible, linear face

models combined with gradient optimization-based opti-

mization are ineffective in handling the wide variation of

facial appearances and challenging input photographs. For

instance, detailed facial hair and wrinkles are hard to gen-

erate and the likeness of the original subject is typically

lost after the reconstruction. Deep learning-based inference

techniques [71, 28, 21, 29, 63, 67, 22, 7, 63] were later in-

troduced and have demonstrated significantly more robust

facial digitization capabilities but they are still ineffective

in capturing facial geometric and appearance detail due to

the linearity and low dimensionality of the face model. Sev-

eral post-processing techniques exist and use inferred linear

face models to generate high-fidelity facial assets such as

albedo, normal, and specular maps for relightable avatar

rendering [43, 18, 72]. AvatarMe [43] for instance uses

GANFIT [28] to generate a linear 3DMM model as input

to their post processing framework. Our proposed method

can be used as alternative input to AvatarMe, and we com-

pare it to GANFIT later in Section 4.

More recently, non-linear 3DMMs have been introduced.

Instead of representing facial shapes and appearances as a

linear combination of basis vectors, these models are for-

mulated implicitly as decoders using neural networks where

the 3D faces are generated directly from latent vectors.

Some of these methods use fully connected layers or 2D

convolutions in image space [66, 6, 24, 65, 47], while oth-

ers use decoders in the mesh domain to represent local ge-

ometries [51, 55, 76, 19, 5, 45, 49]. With the help of differ-

entiable renderers [63, 29, 56], several methods [66, 65, 45]

have demonstrated high-fidelity 3D face reconstructions us-

ing non-linear morphable face models using fully unsuper-

vised or weakly supervised learning, which is possible us-

ing massive amounts of images in the wild. While the re-

constructed faces are highly detailed and accurate w.r.t. the

original input image, the generated assets are not suitable

for relightable avatars nor animation friendly, since lighting

conditions of the environment and expressions are baked

into the output. Our work focuses on producing normalized

3D avatars with unshaded albedo textures and neutral ex-

pressions. Due to the limited availability of training data

with normalized faces and the wide variation of facial ap-

pearances and capture conditions, the problem is signifi-

cantly more challenging and ill-posed.

Generative Adversarial Network. We adopt Style-

GAN2 [40] to encode our non-linear morphable 3D face

model. Among all generative models in deep learning, Gen-

erative Adversarial Networks (GANs) [31] have achieved

a great success in producing realistic 2D natural images,

nearly indistinguishable from real world images. After

a series of advancements, state-of-the-art GANs like PG-

GAN [38], BigGAN [14] and StyleGAN/StyleGAN2 [39,

40] have proven to be also effective in generating high res-

olution images and the ability to handle an extremely wide

range of variations. In this work, we mainly focus on adopt-

ing StyleGAN2 [40] to jointly learn facial geometry and

texture, since its intermediate latent representation has been

proven effective to best reconstruct a plausible target image

with clean assets [3, 60, 4, 33].

Facial Image Normalization. To address the problem

of unwanted lighting and expressions during facial digiti-

zation, several methods have been introduced to normal-

ize unconstrained portraits. Cole et al. [20] introduced

a deep learning-based image synthesis framework based

on FaceNet’s latent code [58], allowing one to generate a

frontal face with neutral expression and normalized lighting

from an input photograph. More recently, Nagano et al [53]

improved the method to generate higher resolution facial

assets for the purpose generating high-fidelity avatars. In

particular, their method breaks down the inference problem

into multiple steps, solving explicitly for perspective undis-

tortion, lighting normalization, followed by pose frontal-

ization and expression neutralization. While the successful

normalized portraits were demonstrated, their method rely

on transferring details from the input subject to the gener-

ated output. Furthermore, both methods rely on the linear

3DMMs for expression neutralization and thus cannot cap-

ture detailed appearance variations. Neutralizing expres-

sion from nonlinear 3DMM, however, is not straightforward
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since the feature space of identity and expression are often

entangled. Our new normalization framework with GAN-

based reconstruction fills in this gap.

3. Normalized 3D Avatar Digitization
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Figure 3: Two-stage facial digitization framework. The
avatar is firstly predicted in the inference stage, and then
improved to match the input image in the refinement stage.

An overview of our two-stage facial digitization frame-

work is illustrated in Fig. 3. At the inference stage,

our system uses a pre-trained face recognition network

FaceNet [58] to extract a person-specific facial embedding

feature given an unconstrained input image. This identity

feature is then mapped to the latent vector w ∈ W+ in

the latent space of our Synthesis Network using an Identity

Regressor. The synthesis network decodes w to an expres-

sion neutral face geometry and a normalized albedo texture.

For the refinement, the latent vector w produced by the in-

ference is then optimized iteratively using a differentiable

renderer by minimizing the perceptual difference between

the input image and the rendered one via gradient descent.

3.1. Robust GAN-Based Facial Inference

Our synthesis network G generates the geometry as well

as the texture in UV space. Each pixel in the UV map repre-

sents the 3D position and the RGB albedo color of the cor-

responding vertex using a 6-channel tuple (r, g, b, x, y, z).
The synthesis network is first trained using a GAN to en-

sure robust and high quality mapping from any normal dis-

tributed latent vector Z ∼ N (µ, σ). Then, the identity re-

gression network R is trained by freezing G to ensure ac-

curate mapping from the identity feature of an input image.

Further details of each network are described below.

We train our synthesis network to embed a nonlinear 3D

Morphable Model into its latent space, in order to model

the cross correlation between the 3D neutral face geometry
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Figure 4: GAN-based geometry and texture synthesis.

and the neutral albedo texture, as well as to generate high

fidelity and diverse 3D neutral faces from a latent vector. In-

spired by [47], we adopt the StyleGAN2 [40] architecture to

train a morphable face model using 3D geometry and albedo

texture as shown in Fig. 4. Rather than predicting vertex

positions directly, we infer vertex position offsets relative

to the mean face mesh to improve numerical stability. To

jointly learn geometry and texture, we project the geome-

try representation of classical linear 3DMMs S ∈ R
3×N ,

which consists of a set of N = 13557 vertices on the face

surface, onto a UV space using cylindrical parameteriza-

tion. The vertex map is then rasterized to a 3-channel posi-

tion map with 256×256 pixels. Furthermore, we train 3 dis-

criminators jointly, including 2 individual ones for albedo

and vertex position as well as a joint discriminator taking

both maps as input. The individual discriminators ensure

the quality and sharpness of each generated map, while the

joint discriminator can learn and preserve their correlated

distribution. This GAN is trained solely from the provided

ground truth 3D geometries and albedo textures without any

knowledge of the identity features.
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Figure 5: Our GAN-inversion searches a corresponding w,
which can reconstruct the target geometry and texture.

After obtaining G, we retrieve the corresponding input

latent code via our code inversion algorithm. Inspired by [3,

11665



77], we choose the disentangled and extended latent space

W+ := R
14×512 of StyleGAN2 as the inversion space to

achieve better reconstruction accuracy. As shown in Fig. 5,

we adopt an optimization approach to find the embedding of

a target pair of position and albedo map with the following

loss function:

Linv = Lpix + λ1LLPIPS + λ2Ladv (1)

where Lpix is the L1 pixel error of the synthesized position

and texture maps, LLPIPS is the LPIPS distance [74] as a

perceptual loss, and Ladv is the adversarial loss favoring re-

alistic reconstruction results using the three discriminators

trained with G. Note that while LPIPS outperforms other

perceptual metrics in practice [74], it is trained with real

images and measuring the perceptual loss directly on our

UV maps would lead to unstable results. Therefore, we use

a differentiable renderer [56] to render the geometry and

texture maps from three fixed camera viewpoints and com-

pute the perceptual loss based on these renderings. Finally,

the identity regressor R can be trained using the solved la-

tent codes of the synthesis network and their corresponding

identity features from the input images.

3.2. Unsupervised Dataset Expansion

Figure 6: Examples of synthetic faces from our Normalized

Face Dataset.

While datasets exist for frontal human face images in

neutral expression [52, 23, 32, 42], the amount of such

data is still limited and the lighting conditions often vary

between datasets. Instead of manually collecting more

images from the Internet for expanding our training data,

we propose an automatic approach to produce frontal neu-

tral portraits based on the pre-trained StyleGAN2 network

trained with FFHQ dataset. Similar to a recent technique

for semantic face editing [60], we train a neural network

to predict identity attributes α of an input image in latent

space. We used images collected from internet as input

and estimate each α and apply it to wmean. wmean is a

fixed value in latent space, which could generate a mean

and frontalized face. We then use a latent editing vec-

tor β to neutralize the expressions. The final latent value

w′ = wmean + α + β produces a frontalized and neutral-

ized face by feeding into StyleGAN2. Some examples are

shown in Fig. 6. We further emphasize that all images in our

Normalized Face Dataset are frontal and have neutral ex-

pressions. Also, these images have well conditioned diffuse

scene illuminations, which are preferred for conventional

gradient descent-based 3D face reconstruction methods.

For each synthesized image, we apply light normaliza-

tion [53] and 3D face fitting based on Face2Face [64] to

generate a 3D face geometry and then project the light nor-

malized image for the albedo texture. Instead of using

the linear 3DMM completely, which results in coarse and

smooth geometry, we first run our inference pipeline to gen-

erate the 3D geometry and take it as the initialization for the

Face2Face optimization. After optimization, the resulting

geometry is in fact the non-linear geometry predicted from

our inference pipeline plus a linear combination of blend-

shape basis optimized by Face2Face, thus preserving its

non-linear expressiveness. Also note that the frontal poses

of the input images facilitate our direct projections onto UV

space to reconstruct high-fidelity texture maps.

The complete training procedure works as follows: we

first collect a high quality Scan Dataset with 431 subjects

with accurate photogrammetry scans, with 63 subjects from

3D Scan Store [1] and 368 subjects from Triplegangers [2].

The synthesis network G0 is then trained from such scan

data, and is then temporarily frozen for latent code inversion

and the training of identity regressor R0. These bootstrap-

ping networks (R0, G0) trained on the small Scan Dataset

are applied onto our Normalized Face Dataset to infer the

geometry and texture, which are then optimized and/or cor-

rected by the Face2Face algorithm. Next, the improved

geometry and texture are added back into the training of

(R0, G0) to obtain the fine-tuned networks (R1, G1) with

improved accuracy and robustness.

Our final Normalized Face Dataset consists of 5601
subjects, with 368 subjects from Triplegangers, 597 from

Chicago Face Dataset (CFD) [52], 230 from the com-

pound facial expressions (CFE) dataset [23], 153 from The

CMU Multi-PIE Face Dataset [32], 67 from Radboud Faces

Database (RaFD) [42], and the remaining 4186 generated

by our method. We use most of the frontal and neutral face

images that are available to increase diversity, but still rely

on the large volume of synthetic data for the training.

3.3. Perceptual Refinement

While the inference pipeline described in Sec. 3.1 with

training data from Sec. 3.2 can reliably infer the normal-

ized texture and geometry from an unconstrained image, a

second stage with perceptual refinement can help determine

a neighbor of the predicted latent code in the embedding

space that matches the input image better. The work from

Shi et al. [62] shows that an embedding space learned for

face recognition is often noisy and ambiguous due to the

nature of fully unconstrained input data. While FaceNet
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Figure 7: Qualitative comparison with other state-of-the-art 3D face reconstruction method. The first row shows the input
images and the second row shows our results, and the third row are the reconstructed 3D faces obtained by [45].

predicts the most likely latent code, the variance (or uncer-

tainty in Shi et al.’s work) could be large. A small pertur-

bation of the latent code may not affect the identity feature

training at all. On the other hand, such a small error in the

identity code may cause greater inconsistency in our infer-

ence pipeline after passing R and G.

An “end-to-end” refinement step is introduced, to han-

dle never seen before images while ensuring consistency

between the final renderings using the predicted geometry

and texture, and the input image. Fig. 3 shows the end-

to-end architecture for this refinement step. We reuse the

differentiable renderer to generate a 2D face image Î from

the estimated 3D face, and compute the perceptual distance

with the input image I . To project the 3D face back to

the head pose in image I , we train a regression network

with ResNet50 [34] as backbone to estimate the camera

c = [tx, ty, tz, rx, ry, rz, f ]
T from I , where [tx, ty, tz]

T and

[rx, ry, rz]
T denote the camera translation and rotation and

f is the focal length. The network is trained using the accu-

rate camera data from the Scan Dataset and the estimated

camera data from Normalized Face Dataset, computed by

Face2Face. Furthermore, in order to blend the projected

face only image with the background from the original im-

age I , we train a PSPNet [75] with ResNet101 [34] as back-

bone using CelebAMask-HQ [44]. We then blend the ren-

dered image Î into the segmented face region from I to pro-

duce I0. The final loss is simply represented as:

Lrefine = Lw + λ1LLPIPS + λ2Lid , (2)

where Lw is a regularization term on w, i.e., the Euclidean

distance between the variable w and its initial prediction de-

rived by R, enforcing the similarity between the modified

latent and the initial prediction. LLPIPS is the perceptual

loss measured by LPIPS distance [74] between I0 and I ,

which enables improved matching in terms of robustness

and better preservation of semantically meaningful facial

features compared to using pixel differences. Lid is the co-

sine similarity between the identity feature of Î and I , to

preserve consistent identity.

4. Results

We demonstrate the performance of our method in Fig. 1

and 7, and show how our method can handle extremely chal-

lenging unconstrained photographs with very harsh illumi-

nations, extreme filtering, and arbitrary expressions. We

can produce plausible textured face models where the like-

ness of the input subject is preserved and visibly recog-

nizable. Compared to the state-of-the-art 3D face recon-

struction method (see Fig. 7) based on non-linear 3DMMs,

our method can neutralize expressions and produce an un-

shaded albedo texture suitable for rendering in arbitrary

lighting conditions as demonstrated using various HDRI-

based lighting environments. We also show in Fig. 2 how

we can obtain a fully rigged 3D avatar from a single photo

including body and hair, by adopting the hair digitization

algorithm in [36] (see accompanying video for live demo).

Evaluations. Sec. 3.2 further improves the performance

of G and R using more training data. Fig. 8 compares the

default Face2Face optimization using a linear 3DMM with

the improved ones using an initialization from R0 and G0.

With such synthetic training data, Fig. 9 shows improved

expressiveness of G1 than G0. Several artifacts from G0
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Figure 8: Face2Face optimization results. The first row is
the original implementation [64]. The second row is our
proposed improvement with nonlinear initialization.
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Figure 9: Expressiveness of the synthesis network trained
with different datasets. From top to bottom: The ground
truth; The GAN-inversion results based on G0 trained with
Scan Dataset only; The same process based on G1, trained
with Normalized Face Dataset.
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Figure 10: Quality of the regression network trained with
different datasets. The first row shows the inference results
by R0m trained with Scan Dataset. The second row shows
the results by R1, trained with Normalized Face Dataset.
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Figure 11: Qualitative comparison with different initializa-
tion schemes for iterative refinement. The mean initializa-
tion starts optimization from a mean latent vector of our
training dataset. The inference initialization starts from the
latent vector predicted by R.

around eyes and the lack of facial hair are fixed in G1. In

Fig. 10, R1 also shows higher diversity of face shapes and

superior accuracy compared to R0 after training with the

Normalized Face Dataset.

Fig. 11 demonstrates the effect of both the inference

stage in Sec. 3.1 and the refinement stage. For each row

of the experiment, the end-to-end iterative refinement can

always improve the likeness and expressiveness of the 3D

avatar. However, notice that the refinements from the mean

latent vector would fail to produce a faithful result after

200 iterations, while the refinements from an accurate initial

prior by R converges to a highly plausible face reconstruc-

tion.
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Figure 12: Consistent reconstructions of the same person
under different environments.

Since our proposed pipeline simply rely on the identity

and perceptual features from I , the reconstructed 3D avatar

is invariant to the factors FaceNet filters, such as occlusion,

image resolution, lighting environment, and facial expres-

sion. Fig. 12 demonstrates how we can obtain consistent

geometries from different lighting, viewpoints, and facial

expressions. Further results of more challenging images,

such as low resolution or largely occluded ones are provided

in the supplemental material.

Comparisons. Fig. 7 compare our method with the most

recent single view face reconstruction method [45]. Lee et

al. [45] adopts a state-of-the-art nonlinear 3DMM on both

geometry and texture. They also use a Graph Convolutional

Neural Network to embed geometry and a Generative Ad-

versarial Network to synthesize texture. However, they train

two networks separately with different datasets, where fa-

cial shape and appearance are uncorrelated. More impor-

tantly, their results show that expressions and lighting are

baked in, which makes their method unsuitable for relight-

ing and facial animation purposes. More comparisons with

other monocular face reconstruction methods [21, 28, 65]

can be found in the supplemental material.

Fig. 13 shows our results compared to the deep face nor-

malization method [53]. While some successful normalized

results were demonstrated, their image-to-image translation

architecture transfers details from the input subject to the

generated output. If those details are deteriorated, then face

normalization would fail.

Quantitative experiments on FaceScape [73] using high

resolution 3D scans and corresponding images are shown in
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(a) (b) (c) (d)

Figure 13: Qualitative comparison with state-of-the-art face
normalization method [53]. From left to right, we show (a)
input image; (b) our reconstructed result; (c) image-based
face normalization result generated by Nagano et al. [53];
(d) Face2Face reconstruction result based on (c).

Tran et al. [65] Deng et al. [21] Ours

1.935mm 1.568mm 1.557mm

Table 1: Quantitative comparison of with other 3D face re-
construction methods.

Tran et al. [65] Deng et al. [21] Ours

0.304 0.392 0.205

Table 2: Quantitative comparison on texture.

Tables 1 and 2. For geometric accuracy, we randomly select

20 scans from FaceScape, and for each method, we compute

the average point to mesh distance between the monocular

reconstructed geometry and the ground truth scan. The pro-

posed model has smaller reconstruction errors than other

state-of-the-art ones. For texture evaluation, we augment

the input images with lighting variations and compute the

mean L1 pixel loss between generated textures from each

method and the ground truth. Our method generates tex-

tures that are less sensitive to lighting conditions.

Implementation Details. All our networks are trained on

a desktop machine with Intel i7-6800K CPU, 32GB RAM

and one NVIDIA TITAN GTX (24GB RAM) GPU using

PyTorch [54]. The StyleGAN2 network training takes 13
days with the Normalized Face Dataset. We use the Py-

Torch implementation [59] and remove the noise injection

layer in the original implementation to remove the stochas-

tic noise inputs and enable full control of the generated re-

sults from the latent vector. Our identity regression net-

work is composed of four fully connected layers with Leaky

ReLU activations, and the training takes 1 hour to converge

with the same training data. At the testing stage, inference

takes 0.13 s and refinement takes 45 s for 200 iterations.

(a) (b)

Figure 14: Failure cases in our experiments. (a) shows a
failure where the specularity at the chin is baked into the
generated result; (b) shows that the robustness of the recon-
struction result is affected by the exaggerated expression.

5. Discussion

We have demonstrated a StyleGAN2-based digitization

approach using a non-linear 3DMM that can reliably gener-

ate high-quality normalized textured 3D face models from

challenging unconstrained input photos. Despite the lim-

ited amount of available training data (only thousands of

subjects), we have shown that our two-stage face inference

method combined with a hybrid Normalized Face Dataset

is effective in digitizing relightable and animation friendly

avatars and can produce results of quality comparable to

state-of-the-art techniques where generated faces are not

normalized. Our experiments show that simply adopting

existing methods using limited normalized facial training

data is insufficient to capture the likeness and fine-scale

details of the original subject, but a perceptual refinement

stage is necessary to transfer person-specific facial charac-

teristics from the input photo. Our experiments also show

that perceptual loss enables more robust matching using

deep features than only pixel loss, and is able to better pre-

serve semantically meaningful facial features. Compared

to state-of-the-art non-linear 3DMMs, our generated face

models can produce lighting and expression normalized

face models, which is a requirement for seamless integra-

tion of avatars in virtual environments. Furthermore, our

experiments also indicate that our results are not only per-

ceptually superior, but also quantitatively more accurate and

robust than existing methods.

Limitations and Future Work. As shown in Fig. 14, the

effectiveness of our method in generating faces with nor-

malized expressions and lighting is limited by imperfect

training data and challenging input photos. In particular,

some expressions and specularities can still be found in the

generated results. Furthermore, the fundamental problem of

disentangling identity from expressions, or lighting condi-

tions from skin tones is ill-posed. Nevertheless, we believe

that such disentanglement can be improved using superior

training data. In the future, we would like to explore how

to increase the resolution and fidelity of the digitized assets

and potentially combine our method with high-fidelity fa-

cial asset inference techniques such as [43, 18, 72].
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